We discussed Riemann-Stieltjes’s integrals of the form \(\int_{a}^{b} f \, d\alpha \) under the restrictions that both \(f \) and \(\alpha \) are defined and bounded on a finite interval \([a,b]\).

To extend the concept, we shall relax these restrictions on \(f \) and \(\alpha \).

Definition

The integral \(\int_{a}^{b} f \, d\alpha \) is called an improper integral of first kind if \(a = -\infty \) or \(b = +\infty \) or both i.e. one or both integration limits is infinite.

Definition

The integral \(\int_{a}^{b} f \, d\alpha \) is called an improper integral of second kind if \(f(x) \) is unbounded at one or more points of \(a \leq x \leq b \). Such points are called singularities of \(f(x) \).

Notations

We shall denote the set of all functions \(f \) such that \(f \in R(\alpha) \) on \([a,b]\) by \(R(\alpha;a,b) \). When \(\alpha(x) = x \), we shall simply write \(R(\alpha,b) \) for this set. The notation \(\alpha \uparrow \) on \([a,\infty)\) will mean that \(\alpha \) is monotonically increasing on \([a,\infty)\).

Definition

Assume that \(f \in R(\alpha;a,b) \) for every \(b \geq a \). Keep \(a, \alpha \) and \(f \) fixed and define a function \(I \) on \([a,\infty)\) as follows:

\[
I(b) = \int_{a}^{b} f(x) \, d\alpha(x) \quad \text{if} \quad b \geq a \quad \ldots \ldots \quad (i)
\]

The function \(I \) so defined is called an infinite (or an improper) integral of first kind and is denoted by the symbol \(\int_{a}^{\infty} f(x) \, d\alpha(x) \) or by \(\int_{a}^{\infty} f \, d\alpha \).

The integral \(\int_{a}^{\infty} f \, d\alpha \) is said to converge if the limit

\[
\lim_{b \to \infty} I(b) \quad \ldots \ldots \quad (ii)
\]

exists (finite). Otherwise, \(\int_{a}^{\infty} f \, d\alpha \) is said to diverge.

If the limit in (ii) exists and equals \(A \), the number \(A \) is called the value of the integral and we write \(\int_{a}^{\infty} f \, d\alpha = A \).

Example

Consider \(\int_{1}^{b} x^{-p} \, dx \).

\[
\int_{1}^{b} x^{-p} \, dx = \frac{(1 - b^{-p})}{p - 1} \quad \text{if} \quad p \neq 1, \quad \text{the integral} \quad \int_{1}^{\infty} x^{-p} \, dx \quad \text{diverges if} \quad p < 1. \quad \text{When} \quad p > 1, \quad \text{it converges and has the value} \quad \frac{1}{p - 1}.
\]

If \(p = 1 \), we get \(\int_{1}^{b} x^{-1} \, dx = \log b \to \infty \) as \(b \to \infty \). \(\Rightarrow \int_{1}^{\infty} x^{-1} \, dx \) diverges.
Example

Consider $\int_0^b \sin 2\pi x \, dx$

$\therefore \int_0^b \sin 2\pi x \, dx = \frac{(1 - \cos 2\pi b)}{2\pi} \to \infty \quad \text{as} \quad b \to \infty$.

\therefore the integral $\int_0^\infty \sin 2\pi x \, dx$ diverges.

Note

If $\int_a^\infty f \, d\alpha$ and $\int_{-\infty}^a f \, d\alpha$ are both convergent for some value of a, we say that the integral $\int_{-\infty}^\infty f \, d\alpha$ is convergent and its value is defined to be the sum

$$\int_{-\infty}^\infty f \, d\alpha = \int_{-\infty}^a f \, d\alpha + \int_a^\infty f \, d\alpha$$

The choice of the point a is clearly immaterial.

If the integral $\int_{-\infty}^\infty f \, d\alpha$ converges, its value is equal to the limit: $\lim_{b \to +\infty} \int_a^b f \, d\alpha$.

Theorem

Assume that $\alpha \uparrow$ on $[a, +\infty)$ and suppose that $f \in R(\alpha; a, b)$ for every $b \geq a$.

Assume that $f(x) \geq 0$ for each $x \geq a$. Then $\int_a^\infty f \, d\alpha$ converges if, and only if, there exists a constant $M > 0$ such that

$$\int_a^b f \, d\alpha \leq M \quad \text{for every} \quad b \geq a.$$

Proof

We have $I(b) = \int_a^b f(x) \, d\alpha(x), \quad b \geq a$

$\Rightarrow I \uparrow$ on $[a, +\infty)$

Then $\lim_{b \to +\infty} I(b) = \sup \{ I(b) | b \geq a \} = M > 0$ and the theorem follows

$\Rightarrow \int_a^b f \, d\alpha \leq M$ for every $b \geq a$ whenever the integral converges.
Theorem: (Comparison Test)

Assume that \(\alpha \uparrow \) on \([a, +\infty)\). If \(f \in R(\alpha; a, b) \) for every \(b \geq a \), if

\[0 \leq f(x) \leq g(x) \quad \text{for every} \quad x \geq a, \]

and if \(\int_a^\infty g \, d\alpha \) converges, then \(\int_a^\infty f \, d\alpha \) converges and we have

\[\int_a^\infty f \, d\alpha \leq \int_a^\infty g \, d\alpha. \]

Proof

Let \(I_1(b) = \int_a^b f \, d\alpha \) and \(I_2(b) = \int_a^b g \, d\alpha \), \(b \geq a \)

\[\therefore \quad 0 \leq f(x) \leq g(x) \quad \text{for every} \quad x \geq a \]

\[\therefore \quad I_1(b) \leq I_2(b) \quad \text{.................. (i)} \]

\[\therefore \quad \int_a^\infty g \, d\alpha \text{ converges} \quad \exists \text{ a constant } M > 0 \text{ such that} \]

\[\int_a^\infty g \, d\alpha \leq M, \quad b \geq a \quad \text{...............(ii)} \]

From (i) and (ii) we have \(I_1(b) \leq M, \quad b \geq a \)

\[\Rightarrow \quad \lim_{b \to \infty} I_1(b) \quad \text{exists and is finite.} \]

\[\Rightarrow \quad \int_a^\infty f \, d\alpha \quad \text{converges.} \]

Also \(\lim_{b \to \infty} I_1(b) \leq \lim_{b \to \infty} I_2(b) = M \)

\[\Rightarrow \quad \int_a^\infty f \, d\alpha \leq \int_a^\infty g \, d\alpha. \]

Theorem (Limit Comparison Test)

Assume that \(\alpha \uparrow \) on \([a, +\infty)\). Suppose that \(f \in R(\alpha; a, b) \) and that \(g \in R(\alpha; a, b) \) for every \(b \geq a \), where \(f(x) \geq 0 \) and \(g(x) \geq 0 \) if \(x \geq a \). If

\[\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \]

then \(\int_a^\infty f \, d\alpha \) and \(\int_a^\infty g \, d\alpha \) both converge or both diverge.

Proof

For all \(b \geq a \), we can find some \(N > 0 \) such that

\[\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \quad \forall \quad x \geq N \quad \text{for every} \quad \varepsilon > 0. \]

\[\Rightarrow \quad 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon \]

Let \(\varepsilon = \frac{1}{2} \), then we have

\[\frac{1}{2} < \frac{f(x)}{g(x)} < \frac{3}{2} \]

\[\Rightarrow \quad g(x) < 2f(x) \quad \text{.........(i)} \quad \text{and} \quad 2f(x) < 3g(x) \quad \text{.........(ii)} \]
From (i) \[\int_a^\infty g \, d\alpha < 2 \int_a^\infty f \, d\alpha \]
\[\Rightarrow \int_a^\infty g \, d\alpha \text{ converges if } \int_a^\infty f \, d\alpha \text{ converges and } \int_a^\infty f \, d\alpha \text{ diverges if } \int_a^\infty f \, d\alpha \text{ diverges.} \]

From (ii) \[2 \int_a^\infty f \, d\alpha < 3 \int_a^\infty g \, d\alpha \]
\[\Rightarrow \int_a^\infty f \, d\alpha \text{ converges if } \int_a^\infty g \, d\alpha \text{ converges and } \int_a^\infty g \, d\alpha \text{ diverges if } \int_a^\infty f \, d\alpha \text{ diverges.} \]
\[\Rightarrow \text{The integrals } \int_a^\infty f \, d\alpha \text{ and } \int_a^\infty g \, d\alpha \text{ converge or diverge together.} \]

\[\textbf{Note} \]

The above theorem also holds if \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = c \), provided that \(c \neq 0 \). If \(c = 0 \), we can only conclude that convergence of \(\int_a^\infty g \, d\alpha \) implies convergence of \(\int_a^\infty f \, d\alpha \).

\[\textbf{Example} \]

For every real \(p \), the integral \(\int_1^\infty e^{-x^p} \, dx \) converges.

This can be seen by comparison of this integral with \(\int_1^\infty \frac{1}{x^2} \, dx \).

Since \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^{-x^p}}{\frac{1}{x^2}} \), where \(f(x) = e^{-x^p} \) and \(g(x) = \frac{1}{x^2} \).

\[\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} e^{-x^p} \cdot \frac{x^{p+2}}{e^x} = 0 \]
and \(\therefore \int_1^\infty \frac{1}{x^2} \, dx \) is convergent

\(\therefore \) the given integral \(\int_1^\infty e^{-x^p} \, dx \) is also convergent.

\[\textbf{Theorem} \]

Assume \(\alpha \uparrow \) on \([a, +\infty)\). If \(f \in \text{R}(\alpha; a, b) \) for every \(b \geq a \) and if \(\int_a^\infty |f| \, d\alpha \)
converges, then \(\int_a^\infty f \, d\alpha \) also converges.

Or: An absolutely convergent integral is convergent.

\[\textbf{Proof} \]

If \(x \geq a \), \(\pm f(x) \leq |f(x)| \)
\[\Rightarrow |f(x)| - f(x) \geq 0 \]
\[\Rightarrow 0 \leq |f(x)| - f(x) \leq 2|f(x)| \]
\[\Rightarrow \int_a^\infty (|f| - f) \, d\alpha \text{ converges.} \]

Subtracting from \(\int_a^\infty f \, d\alpha \) we find that \(\int_a^\infty f \, d\alpha \) converges.

(\because \text{ Difference of two convergent integrals is convergent })

\(\Rightarrow \) \textbf{Note}

\(\int_a^\infty f \, d\alpha \) is said to converge absolutely if \(\int_a^\infty |f| \, d\alpha \) converges. It is said to be convergent conditionally if \(\int_a^\infty f \, d\alpha \) converges but \(\int_a^\infty |f| \, d\alpha \) diverges.

\(\Rightarrow \) \textbf{Remark}

Every absolutely convergent integral is convergent.

\(\Rightarrow \) \textbf{Theorem}

Let \(f \) be a positive decreasing function defined on \([a, +\infty)\) such that \(f(x) \to 0 \) as \(x \to +\infty \). Let \(\alpha \) be bounded on \([a, +\infty)\) and assume that \(f \in R(\alpha; a, b) \) for every \(b \geq a \). Then the integral \(\int_a^\infty f \, d\alpha \) is convergent.

\textbf{Proof}

Integration by parts gives

\[
\int_a^b f \, d\alpha = \left[f(x) \cdot \alpha(x) \right]_a^b - \int_a^b \alpha(x) \, df
\]

\[= f(b) \cdot \alpha(b) - f(a) \cdot \alpha(a) + \int_a^b \alpha \, d(-f)
\]

It is obvious that \(f(b)\alpha(b) \to 0 \) as \(b \to +\infty \)

(\because \alpha \text{ is bounded and } f(x) \to 0 \text{ as } x \to +\infty)

and \(f(a)\alpha(a) \) is finite.

\(\therefore \) the convergence of \(\int_a^b f \, d\alpha \) depends upon the convergence of \(\int_a^b \alpha \, d(-f) \).

Actually, this integral converges absolutely. To see this, suppose \(|\alpha(x)| \leq M \) for all \(x \geq a \) (\because \alpha(x) \text{ is given to be bounded})

\[\Rightarrow \int_a^b |\alpha(x)| \, d(-f) \leq \int_a^b M \, d(-f)
\]

But \(\int_a^b M \, d(-f) = M \int_a^b -f \, df = M \int_a^b -f \, d(-f) \to M \int_a^b f \, d\alpha \) as \(b \to \infty \).

\(\Rightarrow \int_a^\infty M \, d(-f) \) is convergent.

\(\therefore \int_a^\infty f \, d\alpha \) is convergent.

\(\therefore \int_a^\infty |f| \, d\alpha \) is convergent. (Comparison Test)

\[\Rightarrow \int_a^\infty f \, d\alpha \text{ is convergent.}
\]
Theorem (Cauchy condition for infinite integrals)

Assume that \(f \in R(\alpha; a, b) \) for every \(b \geq a \). Then the integral \(\int_{a}^{\infty} f \, d\alpha \) converges if, and only if, for every \(\varepsilon > 0 \) there exists a \(B > 0 \) such that \(c > b > B \) implies

\[
\left| \int_{b}^{c} f(x) \, d\alpha(x) \right| < \varepsilon
\]

Proof

Let \(\int_{a}^{\infty} f \, d\alpha \) be convergent. Then \(\exists \ B > 0 \) such that

\[
\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \quad \text{for every} \quad b \geq B \quad \ldots \ldots \ldots \ldots \ldots (i)
\]

Also for \(c > b > B \),

\[
\left| \int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} \quad \ldots \ldots \ldots \ldots \ldots (ii)
\]

Consider

\[
\left| \int_{b}^{c} f \, d\alpha \right| = \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|
\]

\[
= \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|
\]

\[
\leq \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| + \left| \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

\[
\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{when} \quad c > b > B.
\]

Conversely, assume that the Cauchy condition holds.

Define \(a_{n} = \int_{a}^{a+n} f \, d\alpha \) if \(n = 1, 2, \ldots \).

The sequence \(\{a_{n}\} \) is a Cauchy sequence \(\Rightarrow \) it converges.

Let \(\lim_{n \to \infty} a_{n} = A \)

Given \(\varepsilon > 0 \), choose \(B > 0 \) such that \(\left| \int_{b}^{c} f \, d\alpha \right| < \frac{\varepsilon}{2} \) if \(c > b > B \).

and also that \(\left| a_{n} - A \right| < \frac{\varepsilon}{2} \) whenever \(a + n \geq B \).

Choose an integer \(N \) such that \(a + N > B \) i.e. \(N > B - a \)

Then, if \(b > a + N \), we have

\[
\left| \int_{a}^{b} f \, d\alpha - A \right| = \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right|
\]

\[
\leq \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

\[
\Rightarrow \int_{a}^{\infty} f \, d\alpha = A
\]

This completes the proof.
Remarks
It follows from the above theorem that convergence of \(\int_{a}^{\infty} f \, d\alpha \) implies
\[
\lim_{b \to \infty} \int_{a}^{b} f \, d\alpha = 0 \quad \text{for every fixed } \varepsilon > 0.
\]
However, this does not imply that \(f(x) \to 0 \) as \(x \to \infty \).

Theorem
Every convergent infinite integral \(\int_{a}^{\infty} f(x) \, dx \) can be written as a convergent infinite series. In fact, we have
\[
\int_{a}^{\infty} f(x) \, dx = \sum_{k=1}^{\infty} a_k \quad \text{where} \quad a_k = \int_{a+k-1}^{a+k} f(x) \, dx \quad \text{……… (1)}
\]

Proof
\[\because \int_{a}^{\infty} f \, d\alpha \quad \text{converges}, \quad \text{the sequence} \quad \left\{ \int_{a}^{a+n} f \, d\alpha \right\} \quad \text{also converges.}
\]
But \[\int_{a}^{a+n} f \, d\alpha = \sum_{k=1}^{n} a_k \]. Hence the series \(\sum_{k=1}^{\infty} a_k \) converges and equals \(\int_{a}^{\infty} f \, d\alpha \).

Remarks
It is to be noted that the convergence of the series in (1) does not always imply convergence of the integral. For example, suppose \(a_k = \int_{k}^{k+1} \sin 2\pi x \, dx \). Then each \(a_k = 0 \) and \(\sum a_k \) converges.

However, the integral \[\int_{0}^{\infty} \sin 2\pi x \, dx = \lim_{b \to \infty} \int_{0}^{b} \sin 2\pi x \, dx = \lim_{b \to \infty} \frac{1 - \cos 2\pi b}{2\pi} \] diverges.

Improper Integral of the Second Kind

Definition
Let \(f \) be defined on the half open interval \((a, b]\) and assume that \(f \in R(\alpha; x, b) \) for every \(x \in (a, b] \). Define a function \(I \) on \((a, b]\) as follows:
\[
I(x) = \int_{a}^{x} f \, d\alpha \quad \text{if} \quad x \in (a, b] \quad \text{……… (i)}
\]

The function \(I \) so defined is called an improper integral of the second kind and is denoted by the symbol \(\int_{a+}^{b} f(t) \, d\alpha(t) \) or \(\int_{a+}^{b} f \, d\alpha \).

The integral \(\int_{a+}^{b} f \, d\alpha \) is said to converge if the limit
\[\lim_{x \to a+} I(x) \quad \text{……… (ii)} \quad \text{exists (finite)}.
\]
Otherwise, \(\int_{a+}^{b} f \, d\alpha \) is said to diverge. If the limit in (ii) exists and equals \(A \), the number \(A \) is called the value of the integral and we write \(\int_{a+}^{b} f \, d\alpha = A \).
Similarly, if \(f \) is defined on \([a,b]\) and \(f \in R(\alpha;a,x) \ \forall \ x \in [a,b] \) then

\[
I(x) = \int_{a}^{b} f \, dx \quad \text{if} \quad x \in [a,b]
\]

is also an improper integral of the second kind and is denoted as \(\int_{a}^{b} f \, dx \) and is convergent if \(\lim_{x \to b^-} I(x) \) exists (finite).

Example

\(f(x) = x^{-p} \) is defined on \((0,b]\) and \(f \in R(\alpha;b,\infty) \) for every \(x \in (0,b] \).

\[
I(x) = \int_{x}^{b} x^{-p} \, dx \quad \text{if} \quad x \in (0,b]
\]

\[
= \int_{0^+}^{b} x^{-p} \, dx = \lim_{\varepsilon \to 0^+} \int_{x}^{b} x^{-p} \, dx
\]

\[
= \lim_{\varepsilon \to 0^+} \left[\frac{x^{-p}}{1-p} \right]_{x}^{b} = \lim_{\varepsilon \to 0^+} \frac{b^{1-p} - x^{1-p}}{1-p}, \quad (p \neq 1)
\]

\[
= \begin{cases}
\text{finite}, & p < 1 \\
\text{infinite}, & p > 1
\end{cases}
\]

When \(p = 1 \), we get

\[
\int_{0^+}^{b} \frac{1}{x} \, dx = \log b - \log \varepsilon \to \infty \quad \text{as} \quad \varepsilon \to 0.
\]

\(\Rightarrow \int_{0^+}^{b} x^{-1} \, dx \) also diverges.

Hence the integral converges when \(p < 1 \) and diverges when \(p \geq 1 \).

Note

If the two integrals \(\int_{a}^{c} f \, dx \) and \(\int_{c}^{b} f \, dx \) both converge, we write

\[
\int_{a}^{b} f \, dx = \int_{a}^{c} f \, dx + \int_{c}^{b} f \, dx
\]

The definition can be extended to cover the case of any finite number of sums.

We can also consider mixed combinations such as

\[
\int_{a}^{b} f \, dx \bigg|_{c}^{d} + \int_{d}^{f} f \, dx \quad \text{which can be written as} \quad \int_{a}^{f} f \, dx.
\]

Example

Consider \(\int_{0^+}^{\infty} x^{p-1} \, dx \), \((p > 0) \)

This integral must be interpreted as a sum as

\[
\int_{0^+}^{\infty} x^{p-1} \, dx = \int_{0^+}^{1} x^{p-1} \, dx + \int_{1}^{\infty} x^{p-1} \, dx
\]

\[
= I_1 + I_2 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (i)
\]

\(I_2 \), the second integral, converges for every real \(p \) as proved earlier.

To test \(I_1 \), put \(t = \frac{1}{x} \) \(\Rightarrow \) \(dx = -\frac{1}{t^2} \, dt \)
\[I_1 = \lim_{e \to 0} \int_{e}^{1} e^{-x} x^{p-1} \, dx = \lim_{e \to 0} \int_{e}^{1} e^{-\frac{1}{t}} t^{1-p} \left(-\frac{1}{t^2} \, dt \right) = \lim_{e \to 0} \int_{1}^{e} e^{-\frac{1}{t}} t^{-p-1} \, dt \]

Take \(f(t) = e^{-\frac{1}{t}} t^{-p-1} \) and \(g(t) = t^{-p} \)

Then \(\lim_{t \to \infty} \frac{f(t)}{g(t)} = \lim_{t \to \infty} \frac{e^{-\frac{1}{t}} t^{-p-1}}{t^{-p}} = 1 \) and since \(\int_{1}^{\infty} t^{-p} \, dt \) converges when \(p > 0 \)

\[\therefore \int_{0+}^{\infty} e^{-x} x^{p-1} \, dx \text{ converges when } p > 0 \]

Thus \(\int_{0+}^{\infty} e^{-x} x^{p-1} \, dx \) converges when \(p > 0 \).

When \(p > 0 \), the value of the sum in (i) is denoted by \(\Gamma(p) \). The function so defined is called the Gamma function.

Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

A Useful Comparison Integral

\[\int_{a}^{b} \frac{dx}{(x-a)^n} \]

We have, if \(n \neq 1 \),

\[\int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^n} = \left[\frac{1}{(1-n)(x-a)^{n-1}} \right]_{a+\varepsilon}^{b} = \frac{1}{(1-n)} \left(\frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right) \]

Which tends to \(\frac{1}{(1-n)(b-a)^{n-1}} \) or \(+\infty \) according as \(n < 1 \) or \(n > 1 \), as \(\varepsilon \to 0 \).

Again, if \(n = 1 \),

\[\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \log(b-a) - \log \varepsilon \to +\infty \text{ as } \varepsilon \to 0. \]

Hence the improper integral \(\int_{a}^{b} \frac{dx}{(x-a)^n} \) converges iff \(n < 1 \).
Question

Examine the convergence of

(i) \[\int_0^1 \frac{1}{x^{3/2}(1 + x^2)} \, dx \]

(ii) \[\int_0^1 \frac{1}{x^2(1 + x)^2} \, dx \]

(iii) \[\int_0^1 \frac{1}{x^{1/2}(1 - x)^{3/2}} \, dx \]

Solution

(i) \[\int_0^1 \frac{1}{x^{3/2}(1 + x^2)} \, dx \]

Here ‘0’ is the only point of infinite discontinuity of the integrand. We have

\[f(x) = \frac{1}{x^{3/2}(1 + x^2)} \]

Take \[g(x) = \frac{1}{x^{3/2}} \]

Then \[\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{1 + x^2} = 1 \]

\[\Rightarrow \int_0^1 f(x) \, dx \quad \text{and} \quad \int_0^1 g(x) \, dx \quad \text{have identical behaviours.} \]

\[\therefore \int_0^1 \frac{dx}{0 x^{3/2}(1 + x^2)} \quad \text{converges} \quad \therefore \int_0^1 \frac{dx}{0 x^{1/2}(1 + x^2)} \quad \text{also converges.} \]

(ii) \[\int_0^1 \frac{1}{x^2(1 + x)^2} \, dx \]

Here ‘0’ is the only point of infinite discontinuity of the given integrand. We have

\[f(x) = \frac{1}{x^2(1 + x)^2} \]

Take \[g(x) = \frac{1}{x^2} \]

Then \[\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{1 + x} = 1 \]

\[\Rightarrow \int_0^1 f(x) \, dx \quad \text{and} \quad \int_0^1 g(x) \, dx \quad \text{behave alike.} \]

But \[n = 2 \] being greater than 1, the integral \[\int_0^1 g(x) \, dx \] does not converge. Hence the given integral also does not converge.

(iii) \[\int_0^1 \frac{1}{x^{1/2}(1 - x)^{3/2}} \, dx \]

Here ‘0’ and ‘1’ are the two points of infinite discontinuity of the integrand. We have

\[f(x) = \frac{1}{x^{1/2}(1 - x)^{3/2}} \]

We take any number between 0 and 1, say \[1/2, \] and examine the convergence of
the improper integrals $\int_{0}^{1/2} f(x) \, dx$ and $\int_{1/2}^{1} f(x) \, dx$.

To examine the convergence of $\int_{0}^{1/2} \frac{1}{x^{1/2}(1-x)^{3/5}} \, dx$, we take $g(x) = \frac{1}{x^{1/2}}$.

Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{x^{1/2}(1-x)^{3/5}} = 1$$

$\therefore \int_{0}^{1/2} \frac{1}{x^{1/2}} \, dx$ converges $\therefore \int_{0}^{1/2} \frac{1}{x^{1/2}(1-x)^{3/5}} \, dx$ is convergent.

To examine the convergence of $\int_{1/2}^{1} \frac{1}{x^{1/2}(1-x)^{3/5}} \, dx$, we take $g(x) = \frac{1}{(1-x)^{3/5}}$.

Then

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1}{x^{1/2}(1-x)^{3/5}} = 1$$

$\therefore \int_{1/2}^{1} \frac{1}{(1-x)^{3/5}} \, dx$ converges $\therefore \int_{1/2}^{1} \frac{1}{x^{1/2}(1-x)^{3/5}} \, dx$ is convergent.

Hence $\int_{0}^{1} f(x) \, dx$ converges.

Question

Show that $\int_{0}^{1} x^{m-1}(1-x)^{n-1} \, dx$ exists iff m, n are both positive.

Solution

The integral is proper if $m \geq 1$ and $n \geq 1$.

The number ‘0’ is a point of infinite discontinuity if $m < 1$ and the number ‘1’ is a point of infinite discontinuity if $n < 1$.

Let $m < 1$ and $n < 1$.

We take any number, say $1/2$, between 0 & 1 and examine the convergence of the improper integrals $\int_{0}^{1/2} x^{m-1}(1-x)^{n-1} \, dx$ and $\int_{1/2}^{1} x^{m-1}(1-x)^{n-1} \, dx$ at ‘0’ and ‘1’ respectively.

Convergence at 0:

We write

$$f(x) = x^{m-1}(1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}}$$

and take $g(x) = \frac{1}{x^{1-m}}$.

Then $\frac{f(x)}{g(x)} \to 1$ as $x \to 0$.

As $\int_{0}^{1/2} x^{m-1} \, dx$ is convergent at 0 iff $1 - m < 1$ i.e. $m > 0$.

We deduce that the integral $\int_{0}^{1/2} x^{m-1}(1-x)^{n-1} \, dx$ is convergent at 0, iff m is +ive.
Convergence at 1:
We write \(f(x) = x^{m-1}(1-x)^{-1-n} = \frac{x^{m-1}}{(1-x)^{1-n}} \) and take \(g(x) = \frac{1}{(1-x)^{1-n}} \)

Then \(\frac{f(x)}{g(x)} \to 1 \) as \(x \to 1 \)

As \(\int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{1-n}} \, dx \) is convergent, iff \(1 - n < 1 \) i.e. \(n > 0 \).

We deduce that the integral \(\int_{\frac{1}{2}}^{1} x^{m-1}(1-x)^{n-1} \, dx \) converges iff \(n > 0 \).

Thus \(\int_{0}^{1} x^{m-1}(1-x)^{n-1} \, dx \) exists for positive values of \(m, n \) only.

It is a function which depends upon \(m \) & \(n \) and is defined for all positive values of \(m \) & \(n \). It is called Beta function.

> **Question**
> Show that the following improper integrals are convergent.

\((i)\) \(\int_{1}^{\infty} \sin^{2} \frac{1}{x} \, dx \) \((ii)\) \(\int_{1}^{\infty} \frac{\sin^{2} x}{x^{2}} \, dx \) \((iii)\) \(\int_{0}^{\infty} \frac{x \log x}{(1+x)^{2}} \, dx \) \((iv)\) \(\int_{0}^{\infty} \log x \cdot \log(1+x) \, dx \)

> **Solution**

\((i)\) Let \(f(x) = \sin^{2} \frac{1}{x} \) and \(g(x) = \frac{1}{x^{2}} \)

then \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin^{2} \frac{1}{x}}{x^{2}} = \lim_{y \to 0} \left(\frac{\sin y}{y} \right)^{2} = 1 \)

\(\Rightarrow \int_{1}^{\infty} f(x) \, dx \) and \(\int_{1}^{\infty} \frac{1}{x^{2}} \, dx \) behave alike.

\(\therefore \int_{1}^{\infty} \frac{1}{x^{2}} \, dx \) is convergent \(\because \int_{1}^{\infty} \sin^{2} \frac{1}{x} \, dx \) is also convergent.

\((ii)\) \(\int_{1}^{\infty} \frac{\sin^{2} x}{x^{2}} \, dx \)

Take \(f(x) = \frac{\sin^{2} x}{x^{2}} \) and \(g(x) = \frac{1}{x^{2}} \)

\(\sin^{2} x \leq 1 \) \(\Rightarrow \frac{\sin^{2} x}{x^{2}} \leq \frac{1}{x^{2}} \) \(\forall \ x \in (1, \infty) \)

and \(\int_{1}^{\infty} \frac{1}{x^{2}} \, dx \) converges \(\therefore \int_{1}^{\infty} \frac{\sin^{2} x}{x^{2}} \, dx \) converges.

> **Note**

\(\int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \, dx \) is a proper integral because \(\lim_{x \to 0} \frac{\sin^{2} x}{x^{2}} = 1 \) so that ‘0’ is not a point of infinite discontinuity. Therefore \(\int_{0}^{\infty} \frac{\sin^{2} x}{x^{2}} \, dx \) is convergent.
(iii) $\int_{0}^{1} \frac{x \log x}{(1 + x)^{2}} \, dx$

$\because \log x < x, \quad x \in (0, 1)$

$\therefore x \log x < x^2$

$\Rightarrow \frac{x \log x}{(1 + x)^2} < \frac{x^2}{(1 + x)^2}$

Now $\int_{0}^{1} \frac{x^2}{(1 + x)^2} \, dx$ is a proper integral.

$\therefore \int_{0}^{1} \frac{x \log x}{(1 + x)^2} \, dx$ is convergent.

(iv) $\int_{0}^{1} \log x \cdot \log(1 + x) \, dx$

$\therefore \log x < x \therefore \log(x + 1) < x + 1$

$\Rightarrow \log x \cdot \log(1 + x) < x(x + 1)$

$\therefore \int_{0}^{1} x(x + 1) \, dx$ is a proper integral $\therefore \int_{0}^{1} \log x \cdot \log(1 + x) \, dx$ is convergent.

Note

(i) $\int_{0}^{a} \frac{1}{x^p} \, dx$ diverges when $p \geq 1$ and converges when $p < 1$.

(ii) $\int_{a}^{\infty} \frac{1}{x^p} \, dx$ converges iff $p > 1$.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

Definition

Let f be a real valued function of two variables $x \& y$, $x \in [a, +\infty)$, $y \in S$ where $S \subset \mathbb{R}$. Suppose further that, for each y in S, the integral $\int_{a}^{\infty} f(x, y) \, d\alpha(x)$ is convergent. If F denotes the function defined by the equation

$$F(y) = \int_{a}^{\infty} f(x, y) \, d\alpha(x) \quad \text{if} \quad y \in S$$

the integral is said to converge **pointwise** to F on S.

Definition

Assume that the integral $\int_{a}^{\infty} f(x, y) \, d\alpha(x)$ converges pointwise to F on S. The integral is said to converge **Uniformly** on S if, for every $\varepsilon > 0$ there exists a $B > 0$ (depending only on ε) such that $b > B$ implies

$$\left| F(y) - \int_{a}^{b} f(x, y) \, d\alpha(x) \right| < \varepsilon \quad \forall \quad y \in S.$$

(Pointwise convergence means convergence when y is fixed but uniform convergence is for every $y \in S$).
Theorem (Cauchy condition for uniform convergence.)

The integral \(\int_a^\infty f(x,y)\,d\alpha(x) \) converges uniformly on \(S \), iff, for every \(\varepsilon > 0 \) there exists a \(B > 0 \) (depending on \(\varepsilon \)) such that \(c > b > B \) implies
\[
\left| \int_b^c f(x,y)\,d\alpha(x) \right| < \varepsilon \quad \forall \ y \in S.
\]

Proof

Proceed as in the proof for Cauchy condition for infinite integral \(\int_a^\infty f\,d\alpha \).

Theorem (Weierstrass M-test)

Assume that \(\alpha \uparrow \) on \([a, +\infty) \) and suppose that the integral \(\int_a^b f(x,y)\,d\alpha(x) \) exists for every \(b \geq a \) and for every \(y \) in \(S \). If there is a positive function \(M \) defined on \([a, +\infty) \) such that the integral \(\int_a^\infty M(x)\,d\alpha(x) \) converges and \(|f(x,y)| \leq M(x) \) for each \(x \geq a \) and every \(y \) in \(S \), then the integral \(\int_a^\infty f(x,y)\,d\alpha(x) \) converges uniformly on \(S \).

Proof

Given \(\varepsilon > 0 \), \(\exists \ B > 0 \) such that \(b > B \) implies
\[
\left| \int_b^c M\,d\alpha - L \right| < \frac{\varepsilon}{2} \quad \text{.......... (ii)}
\]
Also if \(c > b > B \), then
\[
\left| \int_a^c M\,d\alpha - L \right| < \frac{\varepsilon}{2} \quad \text{.......... (iii)}
\]
Then
\[
\int_b^c M\,d\alpha = \left\| \int_b^c M\,d\alpha - \int_a^b M\,d\alpha \right\| \\
= \left\| \int_a^c M\,d\alpha - L + \int_a^b M\,d\alpha \right\| \\
\leq \left\| \int_a^c M\,d\alpha - L \right\| + \left\| \int_a^b M\,d\alpha - L \right\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{(By ii & iii)}
\]
\[
\Rightarrow \left| \int_b^c f(x,y)\,d\alpha(x) \right| < \varepsilon, \quad c > b > B \ & \text{for each} \ y \in S
\]
Cauchy condition for convergence (uniform) being satisfied.

Therefore the integral \(\int_a^\infty f(x,y)\,d\alpha(x) \) converges uniformly on \(S \).
Example

Consider \(\int_0^\infty e^{-xy} \sin x \, dx \)

\[|e^{-xy} \sin x| \leq |e^{-xy}| = e^{-xy} \quad (\because |\sin x| \leq 1) \]

and \(e^{-xy} \leq e^{-x} \) if \(c \leq y \)

Now take \(M(x) = e^{-cx} \)

The integral \(\int_0^\infty M(x) \, dx = \int_0^\infty e^{-c} \, dx \) is convergent & converging to \(\frac{1}{c} \).

\[\therefore \text{The conditions of M-test are satisfied and } \int_0^\infty e^{-xy} \sin x \, dx \text{ converges uniformly on } [c, +\infty) \text{ for every } c > 0. \]

Theorem (Dirichlet’s test for uniform convergence)

Assume that \(f \) is bounded on \([a, +\infty)\) and suppose the integral \(\int_a^b f(x, y) \, d\alpha(x) \) exists for every \(b \geq a \) and for every \(y \) in \(S \). For each fixed \(y \) in \(S \), assume that \(f(x, y) \leq f(x', y) \) if \(a \leq x' < x < +\infty \). Furthermore, suppose there exists a positive function \(g \), defined on \([a, +\infty)\), such that \(g(x) \to 0 \) as \(x \to +\infty \) and such that \(x \geq a \) implies

\[|f(x, y)| \leq g(x) \quad \text{for every } y \text{ in } S. \]

Then the integral \(\int_a^\infty f(x, y) \, d\alpha(x) \) converges uniformly on \(S \).

Proof

Let \(M > 0 \) be an upper bound for \(|\alpha| \) on \([a, +\infty)\).

Given \(\varepsilon > 0 \), choose \(B > a \) such that \(x \geq B \) implies

\[g(x) < \frac{\varepsilon}{4M} \]

(\(\because g(x) \) is +ive and \(\to 0 \) as \(x \to +\infty \) \(\therefore |g(x) - 0| < \frac{\varepsilon}{4M} \) for \(x \geq B \))

If \(c > B \), integration by parts yields

\[\int_b^c f \, d\alpha = \left| f(x, y) \right| \cdot \alpha(x) \bigg|_b^c - \int_b^c \alpha \cdot df \]

\[= f(c, y)\alpha(c) - f(b, y)\alpha(b) + \int_b^c \alpha \cdot df \] \hspace{1cm} (i)

But, since \(-f\) is increasing (for each fixed \(y \)), we have

\[\int_b^c \alpha \cdot df \leq M \int_b^c df \] \hspace{1cm} (\(\because \text{upper bound of } |\alpha| \text{ is } M \))

\[= M \left(f(b, y) - M f(c, y) \right) \] \hspace{1cm} (ii)

Now if \(c > b > B \), we have from (i) and (ii)

\[\left| \int_b^c f \, d\alpha \right| \leq |f(c, y)\alpha(c) - f(b, y)\alpha(b)| + \int_b^c |\alpha \cdot df| \]

\[\leq |\alpha(c)| |f(c, y)| + |f(b, y)| |\alpha(b)| + M \left| f(b, y) - f(c, y) \right| \]

\[\leq |\alpha(c)| |f(c, y)| + |\alpha(b)| |f(b, y)| + M \left| f(b, y) \right| + M \left| f(c, y) \right| \]
\[\leq M \, g(c) + M \, g(b) + M \, g(b) + M \, g(c) = 2M \left[g(b) + g(c) \right] \]
\[< 2M \left[\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right] = \varepsilon \]
\[\Rightarrow \left| \int_a^b f(x) \, dx \right| < \varepsilon \quad \text{for every} \ y \in S. \]

Therefore the Cauchy condition is satisfied and \(\int_a^b f(x,y) \, d\alpha(x) \) converges uniformly on \(S \).

Example

Consider \(\int_0^\infty \frac{e^{-xy}}{x} \, \sin x \, dx \)

Take \(\alpha(x) = \cos x \) and \(f(x,y) = \frac{e^{-xy}}{x} \) if \(x > 0, \ y \geq 0 \).

If \(S = [0, +\infty) \) and \(g(x) = \frac{1}{x} \) on \([\varepsilon, +\infty) \) for every \(\varepsilon > 0 \) then

i) \(f(x,y) \leq f(x', y) \) if \(x' \leq x \) and \(\alpha(x) \) is bounded on \([\varepsilon, +\infty) \).

ii) \(g(x) \to 0 \) as \(x \to +\infty \)

iii) \(\left| f(x,y) \right| = \left| \frac{e^{-xy}}{x} \right| \leq \frac{1}{x} = g(x) \quad \forall \ y \in S. \)

So that the conditions of Dirichlet’s theorem are satisfied. Hence

\[\int_0^\infty \frac{e^{-xy}}{x} \, \sin x \, dx = + \int_0^\infty \frac{e^{-xy}}{x} \, d(-\cos x) \] converges uniformly on \([\varepsilon, +\infty) \) if \(\varepsilon > 0 \).

\[\lim_{x \to \infty} \frac{\sin x}{x} = 1 \quad \therefore \int_0^\infty \frac{e^{-xy}}{x} \, \sin x \, dx \] converges being a proper integral.

\[\Rightarrow \int_0^\infty \frac{e^{-xy}}{x} \, \sin x \, dx \] also converges uniformly on \([0, +\infty) \).

Remarks

Dirichlet’s test can be applied to test the convergence of the integral of a product. For this purpose the test can be modified and restated as follows:

Let \(\phi(x) \) be bounded and monotonic in \([a, +\infty) \) and let \(\phi(x) \to 0 \), when \(x \to \infty \). Also let \(\int_a^X f(x) \, dx \) be bounded when \(X \geq a \).

Then \(\int_a^\infty f(x) \phi(x) \, dx \) is convergent.

Example

Consider \(\int_0^\infty \frac{\sin x}{x} \, dx \)

\[\therefore \frac{\sin x}{x} \to 1 \quad \text{as} \quad x \to 0. \]
\[0 \text{ is not a point of infinite discontinuity.} \]

Now consider the improper integral \(\int_{1}^{\infty} \frac{\sin x}{x} \, dx \).

The factor \(\frac{1}{x} \) of the integrand is monotonic and \(\to 0 \) as \(x \to \infty \).

Also \(\int_{1}^{X} \sin x \, dx = \cos X + \cos(1) - \cos X - \cos(1) < 2 \)

So that \(\int_{1}^{X} \sin x \, dx \) is bounded above for every \(X \geq 1 \).

\[\Rightarrow \int_{1}^{\infty} \frac{\sin x}{x} \, dx \text{ is convergent. Now since } \int_{0}^{\infty} \frac{\sin x}{x} \, dx \text{ is a proper integral, we see that } \int_{0}^{\infty} \frac{\sin x}{x} \, dx \text{ is convergent.} \]

\[\textbf{Example} \]

Consider \(\int_{0}^{\infty} \sin x^2 \, dx \).

We write \(\sin x^2 = \frac{1}{2x} \cdot 2x \cdot \sin x^2 \)

Now \(\int_{1}^{X} \sin x^2 \, dx = \int_{1}^{X} \frac{1}{2x} \cdot 2x \cdot \sin x^2 \, dx \)

\(\frac{1}{2x} \) is monotonic and \(\to 0 \) as \(x \to \infty \).

Also \(\left| \int_{1}^{X} 2x \sin x^2 \, dx \right| = \left| -\cos x^2 + \cos(1) \right| < 2 \)

So that \(\int_{1}^{X} 2x \sin x^2 \, dx \) is bounded for \(X \geq 1 \).

Hence \(\int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^2 \, dx \) i.e. \(\int_{1}^{\infty} \sin x^2 \, dx \) is convergent.

Since \(\int_{0}^{\infty} \sin x^2 \, dx \) is only a proper integral, we see that the given integral is convergent.

\[\textbf{Example} \]

Consider \(\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} \, dx \), \(a > 0 \)

Here \(e^{-ax} \) is monotonic and bounded and \(\int_{0}^{\infty} \frac{\sin x}{x} \, dx \) is convergent.

Hence \(\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} \, dx \) is convergent.
Example

Show that \(\int_0^\infty \frac{\sin x}{x} \, dx \) is not absolutely convergent.

Solution

Consider the proper integral
\[
\int_0^\pi \left| \frac{\sin x}{x} \right| \, dx
\]
where \(n \) is a positive integer. We have
\[
\int_0^\pi \left| \frac{\sin x}{x} \right| \, dx = \sum_{r=1}^{n} \int_{(r-1)\pi}^{r\pi} \left| \frac{\sin x}{x} \right| \, dx
\]
Put \(x = (r-1)\pi + y \) so that \(y \) varies in \([0,\pi]\).
We have \(|\sin((r-1)\pi + y)| = |(-1)^{r-1} \sin y| = \sin y \)
\[
\therefore \int_{(r-1)\pi}^{r\pi} \frac{\sin x}{x} \, dx = \int_0^{\pi} \frac{\sin y}{(r-1)\pi + y} \, dy
\]
\[
\therefore r\pi \text{ is the max. value of } [(r-1)\pi + y] \text{ in } [0,\pi]
\]
\[
\Rightarrow \int_0^{\pi} \frac{\sin y}{(r-1)\pi + y} \, dy \geq \frac{1}{r\pi} \int_0^{\pi} \sin y \, dy = \frac{\pi}{r\pi} \sum_{r=1}^{n} \frac{1}{r} \Rightarrow \sum_{r=1}^{n} \frac{1}{r} \to \infty \quad \text{as } n \to \infty
\]
Let, now, \(X \) be any real number.
There exists a positive integer \(n \) such that \(n\pi \leq X < (n+1)\pi \).
We have
\[
\int_0^X \left| \frac{\sin x}{x} \right| \, dx \geq \int_0^\pi \left| \frac{\sin x}{x} \right| \, dx
\]
Let \(X \to \infty \) so that \(n \) also \(\to \infty \). Then we see that
\[
\int_0^\infty \left| \frac{\sin x}{x} \right| \, dx \to \infty
\]
So that \(\int_0^\infty \left| \frac{\sin x}{x} \right| \, dx \) does not converge.

Questions

Examine the convergence of
\[
(i) \int_1^\infty \frac{x}{(1+x)^3} \, dx \quad (ii) \int_1^\infty \frac{1}{(1+x)\sqrt{x}} \, dx \quad (iii) \int_1^\infty \frac{dx}{x^{3/2} (1+x)^{1/2}}
\]

Solution

(i) Let \(f(x) = \frac{x}{(1+x)^3} \) and take \(g(x) = \frac{x^3}{x^2} = \frac{1}{x} \)
As \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{(1+x)^3} = 1 \)
Therefore the two integrals \(\int_{1}^{\infty} \frac{x}{(1 + x)^3} \, dx \) and \(\int_{1}^{\infty} \frac{1}{x^2} \, dx \) have identical behaviour for convergence at \(\infty \).

\[\therefore \int_{1}^{\infty} \frac{1}{x^2} \, dx \text{ is convergent} \quad \therefore \int_{1}^{\infty} \frac{x}{(1 + x)^3} \, dx \text{ is convergent.} \]

(ii) Let \(f(x) = \frac{1}{(1 + x)^{\frac{3}{2}}} \) and take \(g(x) = \frac{1}{x^{\frac{5}{2}}} \).

We have \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 1 \)

and \(\int_{1}^{\infty} \frac{1}{x^{\frac{5}{2}}} \, dx \) is convergent. Thus \(\int_{1}^{\infty} \frac{1}{(1 + x)^{\frac{3}{2}}} \, dx \) is convergent.

(iii) Let \(f(x) = \frac{1}{x^{\frac{3}{2}} (1 + x)^{\frac{1}{2}}} \)

we take \(g(x) = \frac{1}{x^2} \).

We have \(\lim_{x \to \infty} f(x) = 1 \) and \(\int_{1}^{\infty} \frac{1}{x^2} \, dx \) is convergent \(\therefore \int_{1}^{\infty} f(x) \, dx \) is convergent.

\[\text{Question} \]

Show that \(\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx \) is convergent.

\[\text{Solution} \]

We have

\[\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx = \lim_{a \to \infty} \left[\int_{-a}^{0} \frac{1}{1 + x^2} \, dx + \int_{0}^{a} \frac{1}{1 + x^2} \, dx \right] \]

\[= \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1 + x^2} \, dx + \int_{0}^{a} \frac{1}{1 + x^2} \, dx \right] = 2 \lim_{a \to \infty} \left[\frac{1}{1 + x^2} \right] \]

\[= 2 \lim_{a \to \infty} \tan^{-1} x \bigg|_{0}^{a} = 2 \left(\frac{\pi}{2} \right) = \pi \]

therefore the integral is convergent.

\[\text{Question} \]

Show that \(\int_{0}^{\infty} \frac{\tan^{-1} x}{1 + x^2} \, dx \) is convergent.

\[\text{Solution} \]

\[\therefore (1 + x^2) \cdot \frac{\tan^{-1} x}{(1 + x^2)} = \tan^{-1} x \to \frac{\pi}{2} \text{ as } x \to \infty \]

\(\int_{0}^{\infty} \frac{\tan^{-1} x}{1 + x^2} \, dx \) & \(\int_{0}^{\infty} \frac{1}{1 + x^2} \, dx \) behave alike.

\[\therefore \int_{0}^{\infty} \frac{1}{1 + x^2} \, dx \text{ is convergent} \quad \therefore \text{A given integral is convergent.} \]

\[\text{Here } f(x) = \frac{\tan^{-1} x}{1 + x^2} \text{ and } g(x) = 1 + x^2 \]
Question
Show that \(\int_{0}^{\infty} \frac{\sin x}{(1 + x)^\alpha} \, dx \) converges for \(\alpha > 0 \).

Solution
\[
\int_{0}^{\infty} \sin x \, dx
\]
is bounded because \(\int_{0}^{x} \sin x \, dx \leq 2 \quad \forall \ x > 0 \).

Furthermore the function \(\frac{1}{(1 + x)^\alpha} \), \(\alpha > 0 \) is monotonic on \([0, +\infty)\).

\[\Rightarrow\] the integral \(\int_{0}^{\infty} \frac{\sin x}{(1 + x)^\alpha} \, dx \) is convergent.

Question
Show that \(\int_{0}^{\infty} e^{-x} \cos x \, dx \) is absolutely convergent.

Solution
\[\because \left| e^{-x} \cos x \right| < e^{-x} \quad \text{and} \quad \int_{0}^{\infty} e^{-x} \, dx = 1\]

\[\therefore\] the given integral is absolutely convergent. (comparison test)

Question
Show that \(\int_{0}^{1} \frac{e^{-x}}{\sqrt{1 - x^4}} \, dx \) is convergent.

Solution
\[\because e^{-x} < 1 \quad \text{and} \quad 1 + x^2 > 1\]

\[\therefore \frac{e^{-x}}{\sqrt{1 - x^4}} < \frac{1}{\sqrt{(1-x^2)(1+x^2)}} < \frac{1}{\sqrt{1 - x^2}}\]

Also \(\int_{0}^{1} \frac{1}{\sqrt{1 - x^2}} \, dx = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} \frac{1}{\sqrt{1 - x^2}} \, dx \)

\[= \lim_{\varepsilon \to 0} \sin^{-1}(1-\varepsilon) = \frac{\pi}{2}\]

\[\Rightarrow \int_{0}^{1} \frac{e^{-x}}{\sqrt{1 - x^4}} \, dx \] is convergent. (by comparison test)

References:

(1) Lectures (Year 2003-04)
Prof. Syed Gul Shah
Chairman, Department of Mathematics.
University of Sargodha, Sargodha.

(2) Book
Mathematical Analysis
Tom M. Apostol (John Wiley & Sons, Inc.)

Made by: Atiq ur Rehman (atiq@mathcity.org)
Available online at http://www.mathcity.org in PDF Format.
Page Setup: Legal (8\(\frac{1}{2}\) x 14\(\frac{1}{2}\))
Printed: 15 April 2004 (Revised: March 19, 2006.)
Submit error or mistake at http://www.mathcity.org/error