
 
Ø Introduction 

In elementary treatment of Integral Calculus the subject of integration is 
treated as inverse of differentiation. The subject arose in connection with the 
determination of areas of plane regions and was based on the notion of the limit of a 
type of sum when the number of terms in the sum tends to infinity and each term 
tends to zero. In fact the name Integral Calculus has its origin in this process of 
summation. It was only afterwards that it was seen that the subject of integration 
can also be viewed from the point of the inverse of differentiation.  
 

Ø Partition 
   Let [ , ]a b  be a given interval. A finite set { }0 1 2, , ,...., ,....,k nP a x x x x x b= = =  is 
said to be a partition of [ , ]a b  which divides it into n  such intervals  
                               [ ] [ ] [ ] [ ]0 1 1 2 2 3 1, , , , , ,......, ,n nx x x x x x x x−  
   Each sub-interval is called a component of the partition. 
   Obviously, corresponding to different choices of the points ix  we shall have 
different partition. 
   The maximum of the length of the components is defined as the norm of the 
partition. 
 

Ø Riemann Integral 
   Let f  be a real-valued function defined and bounded on  [ , ]a b . Corresponding to 
each partition P  of  [ , ]a b , we put 
                               sup ( )iM f x=     1( )i ix x x− ≤ ≤  
                               inf ( )im f x=   1( )i ix x x− ≤ ≤  
   We define upper and lower sums as  

                               ( )
1

,
n

i i
i

U P f M x
=

= ∆∑  

                    and  ( )
1

,
n

i i
i

L P f m x
=

= ∆∑  

   where   1 ( 1,2,...., )i i ix x x i n−∆ = − =  

   and finally     inf ( , )
b

a

f dx U P f=∫  ………….… (i) 

               sup ( , )
b

a

f dx L P f=∫  ……………..(ii) 

   Where the infimum and the supremum are taken over all partitions P  of  [ , ]a b . 

Then  
b

a

f dx∫   and  
b

a

f dx∫   are called the upper and lower Riemann Integrals of f  

over  [ , ]a b   respectively. 
   In case the upper and lower integrals are equal, we say that f  is Riemann-
Integrable on [ , ]a b  and we write  f ∈R , where R  denotes the set of Riemann 
integrable functions. 
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   The common value of ( )i and ( )ii  is denoted by  
b

a

f dx∫   or by  ( )
b

a

f x dx∫ . 

   Which is known as the Riemann integral of f  over [ , ]a b . 
 

Ø Theorem 
   The upper and lower integrals are defined for every bounded function  f . 
Proof 
   Take M  and m  to be the upper and lower bounds of  ( )f x   in  [ , ]a b . 

( )m f x M⇒ ≤ ≤          ( )a x b≤ ≤  
   Then   iM M≤    and   im m≥    ( 1,2,....., )i n=  
Where iM  and im  denote the supremum and infimum of ( )f x  in ( )1,i ix x−  for 
certain partition P  of  [ ],a b . 

( )
1 1

,
n n

i i i
i i

L P f m x m x
= =

⇒ = ∆ ≥ ∆∑ ∑      1( )i i ix x x−∆ = −  

( )
1

,
n

i
i

L P f m x
=

⇒ ≥ ∆∑  

   But      1 0 2 1 3 2 1
1

( ) ( ) ( ) .... ( )
n

i n n
i

x x x x x x x x x −
=

∆ = − + − + − + + −∑   

                          0nx x b a= − = −  
( ), ( )L P f m b a⇒ ≥ −  

   Similarity  ( ), ( )U P f M b a≤ −  
( ) ( )( ) , , ( )m b a L P f U P f M b a⇒ − ≤ ≤ ≤ −  

   Which shows that the numbers ( ),L P f  and ( ),U P f  form a bounded set. 
   ⇒  The upper and lower integrals are defined for every bounded function f .     ¤ 
 

Ø Riemann-Stieltjes Integral 
   It is a generalization of the Riemann Integral. Let ( )xα  be a monotonically 
increasing function on  [ , ]a b .  ( )aα   and  ( )bα  being finite, it follows that  ( )xα   
is bounded on [ , ]a b . Corresponding to each partition P  of  [ , ]a b , we write                         
                                         1( ) ( )i i ix xα α α −∆ = −  
                                                   ( Difference of values of α  at ix  & 1ix −  ) 
   ∵  ( )xα  is monotonically increasing. 
   0iα∴ ∆ ≥   
   Let f  be a real function which is bounded on [ , ]a b . 

   Put   ( )
1

, ,
n

i i
i

U P f Mα α
=

= ∆∑  

                     ( )
1

, ,
n

i i
i

L P f mα α
=

= ∆∑  

   Where  iM   and  im   have their usual meanings. 
   Define  

                     ( )inf , ,
b

a

f d U P fα α=∫  ……………. (i) 

                     ( )sup , ,
b

a

f d L P fα α=∫  ……………. (ii) 
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   Where the infimum and supremum are taken over all partitions of  [ , ]a b . 

   If   
b b

a a

f d f dα α=∫ ∫ ,  we denote their common value by  
b

a

f dα∫  or  ( ) ( )
b

a

f x d xα∫ . 

   This is the Riemann-Stieltjes integral or simply the Stieltjes Integral of  f   w.r.t. 
α   over  [ , ]a b . 

   If  
b

a
f dα∫  exists, we say that  f  is integrable w.r.t. α , in the Riemann sense, 

and write  ( )f α∈R . 
 
Ø Note 
   The Riemann-integral is a special case of the Riemann-Stieltjes integral when we 
take ( )x xα = . 
   ∵ The integral depends upon , ,f aα  and b  but not on the variable of integration. 

   ∴ We can omit the variable and prefer to write  
b

a

f dα∫  instead of   ( ) ( )
b

a

f x d xα∫ . 

   In the following discussion  f  will be assume to be real and bounded, and α  
monotonically increasing on  [ , ]a b . 
 

Ø Refinement of a Partition 
   Let P  and P∗  be two partitions of an interval [ ],a b  such that P P∗⊂  i.e. every 
point of P  is a point of P∗ , then P∗  is said to be a refinement of P . 
 

Ø Common Refinement 
   Let 1P  and 2P  be two partitions of [ , ]a b . Then a partition P∗  is said to be their 
common refinement if  1 2P P P∗ = ∪ . 
 

Ø Theorem 
   If P∗  is a refinement of P , then 
                               ( ) ( ), , , ,L P f L P fα α∗≤  ……..………… (i) 

                     and  ( ) ( ), , , ,U P f U P fα α∗≥  ………………. (ii) 

Proof 
   Let us suppose that *P  contains just one point x∗  more than P  such that 

1i ix x x∗
− < <   where 1ix −  and ix  are two consecutive points of  P . 

   Put  
1 inf ( )w f x=   ( )1ix x x∗

− ≤ ≤  

2 inf ( )w f x=  ( )ix x x∗ ≤ ≤  

   It is clear that  1 iw m≥   & 2 iw m≥   where inf ( )im f x=    ,  ( )1i ix x x− ≤ ≤ . 
Hence  
     ( ) ( ) 1 1 2, , , , ( ) ( ) ( ) ( )i iL P f L P f w x x w x xα α α α α α∗ ∗ ∗

−   − = − + −     

       [ ]1( ) ( )i i im x xα α −− −  
   1 1 2( ) ( ) ( ) ( )i iw x x w x xα α α α∗ ∗

−   = − + −     

       1( ) ( ) ( ) ( )i i im x x x xα α α α∗ ∗
− − − + −   

   *
1 1 2( ) ( ) ( ) ( ) ( ) ( )i i i iw m x x w m x xα α α α∗

−   = − − + − −     

xi – 1 x* xi 
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   α∵  is a monotonically increasing function. 
   1( ) ( ) 0ix xα α∗

−∴ − ≥     ,     ( ) ( ) 0ix xα α ∗− ≥  
          ( ) ( ), , , , 0L P f L P fα α∗⇒ − ≥  

          ( ) ( ), , , ,L P f L P fα α∗⇒ ≤       which is (i) 

   If P∗  contains k  points more than  P , we repeat this reasoning k  times and 
arrive at (i). 
   Now put  

1 sup ( )W f x=   1( )ix x x∗
− ≤ ≤  

and  2 sup ( )W f x=   ( )ix x x∗ ≤ ≤  
   Clearly     1iM W≥    &    2iM W≥  
   Consider 
        ( ) ( ) [ ]1, , , , ( ) ( )i i iU P f U P f M x xα α α α∗

−− = −  

                                   1 1 2( ) ( ) ( ) ( )i iW x x W x xα α α α∗ ∗
−   − − − −     

1( ) ( ) ( ) ( )i i iM x x x xα α α α∗ ∗
− = − + −   

            1 1 2( ) ( ) ( ) ( )i iW x x W x xα α α α∗ ∗
−   − − − −     

( ) ( )1 1 2( ) ( ) ( ) ( ) 0i i i iM W x x M W x xα α α α∗ ∗
−   = − − + − − ≥     

  ( )isα ↑∵  

( ) ( ), , , ,U P f U P fα α∗⇒ ≥      which is (ii)             
¤ 

 

Ø Theorem 
   Let f  be a real valued function defined on [ , ]a b  and α  be a monotonically 
increasing function on  [ , ]a b . Then  
                                 ( ) ( )sup , , inf , ,L P f U P fα α≤  

                         i.e.   
b b

a a

f d f dα α≤∫ ∫  

Proof 
   Let *P  be the common refinement of two partitions 1P  and 2P . Then  

( ) ( ) ( ) ( )1 2, , , , , , , ,L P f L P f U P f U P fα α α α∗ ∗≤ ≤ ≤  

   Hence    ( ) ( )1 2, , , ,L P f U P fα α≤  …………. (i) 
   If 2P  is fixed and the supremum is taken over all 1P  then (i) gives 

      ( )2 , ,
b

a

f d U P fα α≤∫  

   Now take the infimum over all 2P  
b b

a a

f d f dα α⇒ ≤∫ ∫              ¤ 

 
 

{{{{{{{{{{{{{{{{{{{{ 
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Ø Theorem (Condition of Integrability or Cauchy’s Criterion for  
                  Integrability.) 
    ( )f α∈R   on  [ , ]a b   iff for every  0ε >   there exists a partition P  such that  
                              ( ) ( ), , , ,U P f L P fα α ε− <  
Proof 
   Let      ( ) ( ), , , ,U P f L P fα α ε− <  …………. (i) 

   Then   ( ) ( ), , , ,
b b

a a

L P f f d f d U P fα α α α≤ ≤ ≤∫ ∫  

          ( ), , 0
b

a

f d L P fα α⇒ − ≥∫     and    ( ), , 0
b

a

U P f f dα α− ≥∫  

   Adding these two results, we have 

     ( ) ( ), , , , 0
b b

a a

f d f d L P f U P fα α α α− − + ≥∫ ∫  

    ( ) ( ), , , ,
b b

a a

f d f d U P f L P fα α α α ε⇒ − ≤ − <∫ ∫         from (i) 

i.e.    0
b b

a a

f d f dα α ε≤ − <∫ ∫      for every  0ε > . 

    
b b

a a

f d f dα α⇒ =∫ ∫      i.e.   ( )f α∈R  

   Conversely, let  ( )f α∈R  and let  0ε >  
b b b

a a a

f d f d f dα α α⇒ = =∫ ∫ ∫  

   Now    ( )inf , ,
b

a

f d U P fα α=∫    and    ( )sup , ,
b

a

f d L P fα α=∫  

   There exist partitions 1P  and 2P  such that  

( )2 , ,
2

b

a

U P f f d εα α− <∫  ……..…… (ii) 

and ( )1, ,
2

b

a

f d L P f εα α− <∫  ……..…… (iii) 

   We choose P  to be the common refinement of  1P  and 2P . 
   Then 

( ) ( ) ( ) ( )2 1, , , , , , , ,
2

b

a

U P f U P f f d L P f L P fεα α α α ε α ε≤ < + < + ≤ +∫  

   So that  
( ) ( ), , , ,U P f L P fα α ε− <              ¤

          
�-----------------------------� 

 
 
 
    

 

( )2 , , 2U P f f dεα α− < ∫  

( )1, , 2f d P fL εα α< +∫  
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Ø Theorem 
   a) If  ( ) ( ), , , ,U P f L P fα α ε− <   holds for some P  and some ε ,  then it holds  
        (with the same ε ) for every refinement of P . 
   b) If  ( ) ( ), , , ,U P f L P fα α ε− <   holds for { }0 ,...., nP x x=  and ,i is t  are arbitrary  
        points in [ ]1,i ix x− , then  

                                          
1

( ) ( )
n

i i i
i

f s f t α ε
=

− ∆ <∑  

   c) If  ( )f α∈R  and the hypotheses of (b) holds, then  

                                         
1

( )
bn

i i
i a

f t f dα α ε
=

∆ − <∑ ∫  

Proof 
   a)  Let P∗  be a refinement of  P . Then  

( ) ( ), , , ,L P f L P fα α∗≤  

and  ( ) ( ), , , ,U P f U P fα α∗ ≤  

   ( ) ( ) ( ) ( ), , , , , , , ,L P f U P f L P f U P fα α α α∗ ∗⇒ + ≤ +  

   ( ) ( ) ( ) ( ), , , , , , , ,U P f L P f U P f L P fα α α α∗ ∗⇒ − ≤ −  

   ( ) ( ), , , ,U P f L P fα α ε− <∵  
   ( ) ( ), , , ,U P f L P fα α ε∗ ∗∴ − <  
 

   b)  { }0 ,...., nP x x=  and is , it  are arbitrary points in [ ]1,i ix x− .  
   ( )if s⇒  and  ( )if t  both lie in  [ ],i im M . 
   ( ) ( )i i i if s f t M m⇒ − ≤ −  
   ( ) ( )i i i i i i if s f t M mα α α⇒ − ∆ ≤ ∆ − ∆  

   
1 1 1

( ) ( )
n n n

i i i i i i i
i i i

f s f t M mα α α
= = =

⇒ − ∆ ≤ ∆ − ∆∑ ∑ ∑  

   ( ) ( )
1

( ) ( ) , , , ,
n

i i i
i

f s f t U P f L P fα α α
=

⇒ − ∆ ≤ −∑  

   ( ) ( ), , , ,U P f L P fα α ε− <∵  

   
1

( ) ( )
n

i i i
i

f s f t α ε
=

∴ − ∆ <∑  

 
   c)     ( )i i im f t M≤ ≤∵  

   ( )i i i i i im f t Mα α α∴ ∆ ≤ ∆ ≤ ∆∑ ∑ ∑  
   ( ) ( ), , ( ) , ,i iL P f f t U P fα α α⇒ ≤ ∆ ≤∑  

   and also   ( ) ( ), , , ,
b

a

L P f f d U P fα α α≤ ≤∫  

   Using (b), we have  

( )
b

i i
a

f t f dα α ε∆ − <∑ ∫                        ¤ 

 

�-----------------------------� 

xi – 1 ti xi si 
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Ø Theorem 
   If  f  is continuous on  [ , ]a b  then  ( )f α∈R  on  [ , ]a b . 
Proof 
   Let  0ε >  be given. Choose  0β >  so that 

[ ]( ) ( )b aα α β ε− <  
   f  is continuous on  [ , ]a b     f⇒  is uniformly continuous on  [ , ]a b . 
   ⇒   There exists a  0δ >   such that  

( ) ( )f s f t β− <     if  [ , ]x a b∈ , [ , ]t a b∈  and  x t δ− <  ………..(i) 
If P  is any partition of  [ , ]a b  such that  ix δ∆ <  for all i   
then (i) implies that  i iM m β− ≤       ,      ( 1,2,...., )i n=  

( ) ( ), , , , i i i iU P f L P f M mα α α α⇒ − = ∆ − ∆∑ ∑  

   ( )i i iM m α= − ∆∑  

   [ ]( ) ( )i b aβ α β α α ε≤ ∆ = − <∑  
( )f α⇒ ∈R    by Cauchy Criterion.              ¤ 

 
Ø Theorem 
   If  f  is monotonic on  [ , ]a b , and if  α  is continuous on  [ , ]a b , then  ( )f α∈R . 
                                           ( Monotonicity of α  still assumed. )  
Proof 
   Let  0ε >   be a given positive number. 
   For any positive integer  n , choose a partition  { }0 1, ,....., nP x x x=  of  [ , ]a b   
such that 

( ) ( )
i

b a
n

α α
α

−
∆ =      ,      1,2,....,i n=  

   This is possible because  α  is continuous and monotonic increasing on the closed 
interval  [ , ]a b  and thus assumes every value between its bounds,  ( )aα  and  ( )bα . 
   Let  f  be monotonic increasing on  [ , ]a b , so that its lower and upper bounds 

,i im M   in  [ ]1,i ix x−   are given by  

1( )i im f x −=     ,     ( )i iM f x=     ,  1,2,....,i n=  

   ( ) ( ) ( )
1

, , , ,
n

i i i
i

U P f L P f M mα α α
=

∴ − = − ∆∑  

     [ ]1
1

( ) ( ) ( ) ( )
n

i i
i

b a f x f x
n

α α
−

=

−
= −∑  

     [ ]( ) ( ) ( ) ( )b a f b f a
n

α α−
= −    

     ε<    if n  is taken large enough. 
   ( )f R α⇒ ∈   on  [ , ]a b .                 

       ¤ 
 

Note:   ( )f α∈R  when either 
i)  f   is continuous and  α  is monotonic, or 
ii) f   is monotonic and  α  is continuous, of course  α  is still monotonic. 
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Ø Properties of Integral 
i)  If  ( )f α∈R   on  [ , ]a b , then  ( )cf α∈R  for every constant  c  and  

                                         
b b

a a

cf d c f dα α=∫ ∫ . 

Proof 
   ( )f α∈∵ R  
   ∴ ∃  a partition  P  such that  

( ) ( ), , , ,U P f L P fα α ε− <    ,   where ε  is an arbitrary +ive number. 

   Now      ( )
1 1

, ,
n n

i i i i
i i

U P cf cM c Mα α α
= =

= ∆ = ∆∑ ∑  

&   ( )
1 1

, ,
n n

i i i i
i i

L P cf cm c mα α α
= =

= ∆ = ∆∑ ∑  

   ( ) ( ), , , , i i i iU P f L P f c M mα α α α ⇒ − = ∆ − ∆ ∑ ∑  

      ( ) ( ), , , ,c U P f L P fα α= −    
      1cε ε< =  

   ( )cf α⇒ ∈R  
   ( ) ( ), , , ,U P cf c U P fα α=   ∵      &      ( ) ( ), , , ,L P cf c L P fα α=     

   ( ) ( )inf , , inf , ,U P cf c U P fα α∴ =      &   ( ) ( )sup , , sup , ,L P cf c L P fα α=     
   where infimum and supremum are taken over all  P  on [ , ]a b . 

   
b b

a a

cf d c f dα α⇒ =∫ ∫      &      
b b

a a

cf d c f dα α=∫ ∫  

   
b b

a a

cf d cf dα α=∫ ∫∵       and     
b b

a a

f d f dα α=∫ ∫  

                
b b

a a

cf d c f dα α∴ =∫ ∫               ¤ 

 
ii)  If  1 ( )f α∈R   and  2 ( )f α∈R  on  [ , ]a b , then  1 2 ( )f f α+ ∈R   and  

                               ( )1 2 1 2

b b b

a a a

f f d f d f dα α α+ = +∫ ∫ ∫ . 

Proof 
If  1 2f f f= +   and P  is any partition of  [ , ]a b , we have  
    i i i i i im m m M M M′ ′′ ′ ′′+ ≤ ≤ ≤ +   

   where  , , ,i i i iM m M m′ ′ ′′ ′′  and ,i iM m  are the bounds of 1 2,f f  and f  respectively in 
[ ]1,i ix x− . 
   Multiplying throughout by  iα∆   and adding the inequalities for  1,2,....,i n= , 
 we get 
  ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, , , , , , , , , , , ,L P f L P f L P f U P f U P f U P fα α α α α α+ ≤ ≤ ≤ +  ….....(i) 
   Since  1 ( )f α∈R  and  2 ( )f α∈R  on  [ , ]a b  therefore  ∃   0ε >   and there are 
partitions  1P   and  2P   such that 

( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

, , , ,
and  , , , ,

U P f L P f
U P f L P f

α α ε
α α ε

− < 
− < 

 ………….. (ii) 

   These inequalities hold if 1P  and 2P  are replaced by their common refinement P . 
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       (ii)  ( ) ( ) ( ) ( )1 2 1 2, , , , , , , , 2U P f U P f L P f L P fα α α α ε⇒ + − + <        
   Using (i) we have 

( )( , , ) , , 2U P f L P fα α ε− <  
   which proves that  ( )f α∈R  on  [ , ]a b  
   With the same partition  P , we have 

( )1 1, ,
b

a

U P f f dα α ε< +∫  

and  ( )2 2, ,
b

a

U P f f dα α ε< +∫  

   Hence (i) implies that 

       ( ) 1 2, , 2
b b b

a a a

f d U P f f d f dα α α α ε≤ < + +∫ ∫ ∫  

   ε∵   is arbitrary, we conclude that 

1 2

b b b

a a a

f d f d f dα α α≤ +∫ ∫ ∫  

   Similarly if we consider the lower sums we arrive at  

1 2

b b b

a a a

f d f d f dα α α≥ +∫ ∫ ∫  

   Combining the above two results, we have 

1 2

b b b

a a a

f d f d f dα α α= +∫ ∫ ∫              ¤ 

 
iii)  If  1 2( ) ( )f x f x≤   on  [ , ]a b , then 

                                                     1 2

b b

a a

f d f dα α≤∫ ∫  

Proof 
   Let  ( ) 0f x ≥ ,  then  0iM ≥     ( ), , 0U P f α⇒ ≥  

   and   0
b

a

f dα∴ ≥∫  

            1 2f f≤∵       2 1 0f f∴ − ≥  

    ( )2 1 0
b

a

f f dα⇒ − ≥∫   2 1 0
b b

a a

f d f dα α⇒ − ≥∫ ∫  

1 2

b b

a a

f d f dα α⇒ ≤∫ ∫                ¤ 

 
Ø Note 

(i)     ( )( ) ( ) ( ) sup supf g x f x g x f g+ = + ≤ +  
       sup( ) sup supf g f g⇒ + ≤ +  
 

(ii)    ( )( ) ( ) ( ) inf inff g x f x g x f g+ = + ≥ +  
  inf ( ) inf inff g f g⇒ + ≥ +  
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iv)  If  ( )f α∈R  on  [ , ]a b  and if  a c b< < , then  ( )f α∈R  on  [ , ]a c  and on  [ , ]c b  
and   

                               
b c b

a a c

f d f d f dα α α= +∫ ∫ ∫  

Proof 
   Since  ( )f α∈R  on  [ , ]a b , therefore for  0ε > ,  ∃ a partition  P  such that 

( ) ( ), , , ,U P f L P fα α ε− <  
   Let  P∗   be the refinement of  P  such that   { }P P c∗ = ∪  

         ( ) ( ) ( ) ( ), , , , , , , ,L P f L P f U P f U P fα α α α∗ ∗∴ ≤ ≤ ≤  ….…...... (i) 

       ( ) ( ) ( ) ( ), , , , , , , ,U P f L P f U P f L P fα α α α ε∗ ∗⇒ − ≤ − <  ……….(ii) 

   Let  1 2,P P   denote the sets of points of  P∗  between  [ , ] , [ , ]a c c b   respectively.     
   Clearly  1 2,P P  are partitions of   [ , ] , [ , ]a c c b   respectively and   1 2P P P∗ = ∪ . 
   Also  ( ) ( ) ( )1 2, , , , , ,U P f U P f U P fα α α∗ = +  ……….. (iii) 

   and   ( ) ( ) ( )1 2, , , , , ,L P f L P f L P fα α α∗ = +  ………… (iv) 

    ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , , , , , ,U P f L P f U P f L P fα α α α∴ − + −  

( ) ( ), , , ,U P f L P fα α∗ ∗= − ε<  
   Since each bracket on the left is non-negative, it follows that  

( ) ( )1 1, , , ,U P f L P fα α ε− <  
and  ( ) ( )2 2, , , ,U P f L P fα α ε− <  

( )f α⇒ ∈R   on  [ , ]a c   and on  [ , ]c b . 
   We know that for any functions  1f   and  2f , if  1 2f f f= + , then 

 1 2inf inf inff f f≥ +  
and  1 2sup sup supf f f≤ +  

   Now for any partitions  1 2,P P  of  [ , ] , [ , ]a c c b  respectively, if  1 2P P P∗ = ∪ , then 

( ) ( ) ( )1 2, , , , , ,U P f U P f U P fα α α∗ = +  
   Hence on taking the infimum for all partitions, we get  

cb b

a a c

f d f d f dα α α≥ +∫ ∫ ∫  

   But since  ( )f α∈R   on  [ , ] , [ , ] , [ , ]a c c b a b  
b c b

a a c

f d f d f dα α α∴ ≥ +∫ ∫ ∫  …………. (v) 

   Again  ( ) ( ) ( )1 2, , , , , ,L P f L P f L P fα α α∗ = +  
   and on taking the supremum for all partitions, we get 

    
b c b

a a c

f d f d f dα α α≤ +∫ ∫ ∫  

   But since  ( )f α∈R   on  [ , ] , [ , ] , [ , ]a c c b a b  
b c b

a a c

f d f d f dα α α∴ ≤ +∫ ∫ ∫  ……………(vi) 

   (v) and (vi) imply that  
b c b

a a c

f d f d f dα α α= +∫ ∫ ∫           ¤ 
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v)  If   ( )f α∈R   on  [ , ]a b   and   ( )f x M≤   on  [ , ]a b , then 

                                         [ ]( ) ( )
b

a

f d M b aα α α≤ −∫  

Proof 
   We know that  

( ), ,
b

a

f d U P fα α≤∫  

                    i i iM Mα α= ∆ ≤ ∆∑ ∑  
   But   

( ) ( )i b aα α α∆ = −∑  

  [ ]( ) ( )
b

a

f d M b aα α α⇒ ≤ −∫             ¤ 

 
vi)  If  1( )f α∈R   and  2( )f α∈R ,  then  1 2( )f α α∈ +R   and   

                                         1 2 1 2( )
b b b

a a a

f d f d f dα α α α+ = +∫ ∫ ∫  

and if  ( )f α∈R  and  c  is a positive constant, then  ( )f cα∈R  and 

                                         ( )
b b

a a

f d c c f dα α=∫ ∫  

Proof 
   Since  1( )f α∈R   and  2( )f α∈R , therefore for  0ε > , there exists partitions 

1 2,P P  of  [ , ]a b  such that 

( ) ( )1 1 1 1, , , ,
2

U P f L P f ε
α α− <  

and  ( ) ( )2 2 2 2, , , ,
2

U P f L P f ε
α α− <  

   Let 1 2P P P= ∪  

( ) ( )

( ) ( )

1 1

2 2

, , , ,
2

& , , , ,
2

U P f L P f

U P f L P f

ε
α α

εα α

∴ − < 

− <


 ………….. (i) 

   Let  im  , iM  be bounds of  f   in  [ ]1,i ix x−  
   Take   1 2α α α= +  
        1 2i i iα α α⇒ ∆ = ∆ + ∆  

  ( ), , i iU P f Mα α∴ = ∆∑  

    ( )1 2i i iM α α= ∆ + ∆∑  

    ( ) ( )1 2, , , ,U P f U P fα α= +  
   Similarly 

       ( ) ( ) ( )1 2, , , , , ,L P f L P f L P fα α α= +  
  ( ) ( ), , , ,U P f L P fα α∴ − ( ) ( ) ( ) ( )1 1 2 2, , , , , , , ,U P f L P f U P f L P fα α α α= − + −  

    
2 2
ε ε

ε< + =     by (i) 

   ( )f α⇒ ∈R    where   1 2α α α= +  
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   To prove the second part, we notice that  

( )inf , ,
b

a

f d U P fα α=∫  

   ( ) ( ){ }1 2inf , , , ,U P f U P fα α= +  
   ( ) ( )1 2inf , , inf , ,U P f U P fα α≥ +  

   1 2

b b

a a

f d f dα α= +∫ ∫  ………….... (ii) 

   Similarly by taking the supremum of lower sum of partition we arrive that 

1 2

b b b

a a a

f d f d f dα α α≤ +∫ ∫ ∫  ……...…….. (iii) 

   From (ii) and (iii) 

1 2

b b b

a a a

f d f d f dα α α= +∫ ∫ ∫   

i.e.  1 2 1 2( )
b b b

a a a

f d f d f dα α α α+ = +∫ ∫ ∫   1 2α α α= +∵  

   Now  ( )f α∈∵ R     ∴  for  0ε > , ∃ a partition  P  of  [ , ]a b  such that 
( ) ( ), , , ,U P f L P fα α ε− <  …………. (iv) 

   Let  cα α′ =    then   ( )i icα α′∆ = ∆ ic α= ∆  
   ( ), , i iU P f Mα α′ ′⇒ = ∆∑  

       ( )i iM c α= ∆∑  

       i ic M α= ∆∑  
       ( ), ,c U P f α=  

   Similarly,           ( ) ( ), , , ,L P f c L P fα α′ =   

( ) ( ) ( ) ( ){ }, , , , , , , ,U P f L P f c U P f L P fα α α α′ ′⇒ − = −  cε<         by (iv) 
( )f α ′⇒ ∈R     where  cα α′ =  

   Also  ( )inf , ,
b

a

f d U P fα α′ ′=∫  

  ( )inf , ,c U P f α=  
  ( )inf , ,c U P f α=  

  
b

a

c f dα= ∫  

   and  

( )sup , ,
b

a

f d L P fα α′ ′=∫  

  ( )sup , ,cU P f α=  
  ( )sup , ,c U P f α=  

  
b

a

c f dα= ∫  

   Hence     

                    
b b

a a

f d c f dα α′ =∫ ∫    where  cα α′ =             ¤ 
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Ø Lemma 
   If  M   &  m  are the supremum and infimum of  f  and  M ′ , m′  are the 
supremum & infimum of  f  on  [ , ]a b  then  M m M m′ ′− ≤ − . 
Proof 
   Let  1 2, [ , ]x x a b∈ , then 

1 2 1 2( ) ( ) ( ) ( )f x f x f x f x− ≤ −  ………………(A) 
       M∵   and  m  denote the supremum and infimum of  ( )f x  on  [ , ]a b  
       ( )f x M∴ ≤    &   ( )f x m≥        [ , ]x a b∀ ∈  
       1 2, [ , ]x x a b∈∵  
       1( )f x M∴ ≤     and     2( )f x m≥   
       1( )f x M⇒ ≤    and  2( )f x m− ≤ −  
       1 2( ) ( )f x f x M m⇒ − ≤ −  ……………... (i) 
   Interchanging  1x   &  2x , we get 

[ ]1 2( ) ( )f x f x M m− − ≤ −  ………….. (ii) 
   (i) & (ii)  1 2( ) ( )f x f x M m⇒ − ≤ −  

        1 2( ) ( )f x f x M m⇒ − ≤ −      by eq. (A) …….…..(I) 
   M ′∵   and  m′  denote the supremum and infimum of  ( )f x   on  [ , ]a b  
   ( )f x M ′∴ ≤   and  ( )f x m′≥      [ , ]x a b∀ ∈  
   0ε⇒ ∃ >  such that 

  1( )f x M ε′> −  ………….. (iii) 
  and    2( )f x m ε′< +     2( )f x mε ′⇒ − + > −  ………….. (iv) 

   From (iii) and (iv), we get 
  1 2( ) ( )f x f x M mε ε′ ′− + > − −  

      1 22 ( ) ( )f x f x M mε ′ ′⇒ + − > −  
   ε∵   is arbitrary   ∴  1 2( ) ( )M m f x f x′ ′− ≤ −  …….…..…. (v) 
   Interchanging  1x   &  2x , we get 

     ( )1 2( ) ( )M m f x f x′ ′− ≤ − −  …………… (vi) 
   Combining (v) and (vi), we get 

   1 2( ) ( )M m f x f x′ ′− ≤ −  ……………. (II) 
   From (I) and (II), we have the require result 

M m M m′ ′− ≤ −             ¤ 
 

Ø Theorem 

   If  ( )f α∈R   on  [ , ]a b , then  ( )f α∈R  on  [ , ]a b  and  
b b

a a

f d f dα α≤∫ ∫ . 

Proof 
   ( )f α∈∵ R  
   ∴  given 0ε >   ∃ a partition P  of  [ , ]a b  such that  

( ) ( ), , , ,U P f L P fα α ε− <  
     i.e.     ( )i i i i i i iM m M mα α α ε∆ − ∆ = − ∆ <∑ ∑ ∑  
   Where iM  and im  are supremum and infimum of f  on [ ]1,i ix x−  
   Now if iM ′  and im′  are supremum and infimum of  f  on  [ ]1,i ix x−  then 

i i i iM m M m′ ′− ≤ −  
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( ) ( )i i i i i iM m M mα α′ ′⇒ − ∆ ≤ − ∆∑ ∑  

( ) ( ) ( ) ( ), , , , , , , ,U P f L P f U P f L P fα α α α ε⇒ − ≤ − <  
( )f α⇒ ∈R . 

   Take  1c = +   or  1−   to make  0c f dα ≥∫  

   Then   
b b

a a

f d c f dα α=∫ ∫  …….……… (i) 

   Also     ( ) ( )c f x f x≤      [ , ]x a b∀ ∈  
b b

a a

c f d f dα α⇒ ≤∫ ∫   
b b

a a

c f d f dα α⇒ ≤∫ ∫  ………. (ii) 

   From (i) and (ii), we have 

     
b b

a a

f d f dα α≤∫ ∫                ¤ 

 

Ø Theorem 
   If  ( )f α∈R   on  [ , ]a b , then  2 ( )f α∈R  on  [ , ]a b . 
Proof 
     ∵  ( )f α∈R     ( )f α⇒ ∈R  
    ( )f x M⇒ <        [ , ]x a b∀ ∈  
     ( )f α∈∵ R    ∴ given  0ε > , ∃ a partition P  of  [ , ]a b  such that 

( ) ( ), , , , 2U P f L P f M
εα α− <  ………… (i) 

   If  iM  &  im  denote the sup. & inf. of  f  on [ ]1,i ix x−  then  2
iM   &  2

im   are the 
sup. & inf. of  2f  on [ ]1,i ix x− . 
     ( ) ( ) ( )2 2 2 2, , , , i i iU P f L P f M mα α α⇒ − = − ∆∑  

  ( )( )i i i i iM m M m α= + − ∆∑  
   ( ) ( )f x f x M≤ ≤∵         [ , ]x a b∀ ∈  

   and   22f f=  
   iM M∴ ≤   &  im M≤  
    ( ) ( ) ( )( )2 2, , , , i i iU P f L P f M M M mα α α⇒ − ≤ + − ∆∑  

 ( )2 i i iM M m α= − ∆∑  

 ( ) ( )2 , , , ,M U P f L P fα α= −    2
2

M
M
ε

ε< ⋅ =  

    2 ( )f α⇒ ∈R                  ¤ 
 

Ø Corollary 
   If  ( )f α∈R   &  ( )g α∈R   on  [ , ]a b  then  ( )fg α∈R   on  [ , ]a b . 
Proof 
   ( )f α∈∵ R  ,   ( )g α∈R  
  ( )f g α∴ + ∈R  ,  ( )f g α− ∈R  
  2( ) ( )f g α⇒ + ∈R   ,  2( ) ( )f g α− ∈R  
  2 2( ) ( ) ( )f g f g α⇒ + − − ∈R   4 ( )fg α⇒ ∈R  
and ultimately  

( )fg α∈R   on  [ , ]a b               ¤ 
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Ø Theorem 
   Assume  α  increases monotonically and  α′∈R  on  [ , ]a b . Let  f   be bounded 
real function on  [ , ]a b . Then  ( )f α∈R   iff   f α ′∈R . In that case 

                                                    ( ) ( )
b b

a a

f d f x x dxα α ′= ⋅∫ ∫  

Proof 
   α ′∈∵ R   on  [ , ]a b  
   ∴  given  0ε >   ∃  a partition P  of  [ , ]a b  such that  

( ) ( ), ,U P L Pα α ε′ ′− <  ….……..…. (i) 
   The Mean-value theorem furnishes point  [ ]1,i i it x x−∈   such that 

1( ) ( )i i ix xα α α −∆ = −  
        ( )i it xα ′= ∆     for  1,2,....,i n=     …………. (ii)      

   If   [ ]1,i i is x x−∈ , then form (i) we have 

( ) ( )i i i is x t xα α ε′ ′∆ − ∆ <∑ ∑      | Previously proved at page 6 

      ( ) ( )i i is t xα α ε′ ′⇒ − ∆ <∑  …………… (iii) 
   Put  sup ( )M f x=   and consider 

( ) ( ) ( )i i i i if s f s s xα α ′∆ − ∆∑ ∑  …………….. (A) 

       ( ) ( ) ( ) ( )i i i i i if s t x f s s xα α′ ′= ∆ − ∆∑ ∑       by (ii) 

           ( )( ) ( ) ( )i i i if s t s xα α′ ′= − ∆∑  

       ( )( ) ( )i i iM t s xα α′ ′≤ − ∆∑    
       Mε≤                  …………..…….. (iv)      by (iii) 

       ( ) ( ) ( )i i i i if s f s s x Mα α ε′⇒ ∆ ≤ ∆ +∑ ∑      for all choices of  [ ]1,i i is x x−∈  
       ( ) ( ), , ,U P f U P f Mα α ε′⇒ ≤ +  
   The same arguments leads from (A) to  

    ( ) ( ), , ,U P f U P f Mα α ε′ ≤ +  
   Thus  ( ) ( ), , ,U P f U P f Mα α ε′− ≤  ………..…. (v) 
   ∵  (i)  remains true if  P  is replaced by any refinement 
   ∴  (v) also remains true 

( ) ( )
b b

a a

f d f x x dx Mα α ε′⇒ − ≤∫ ∫  

   ε∵  was arbitrary  

   ( ) ( )
b b

a a

f d f x x dxα α ′∴ =∫ ∫      for any bounded f . 

   Using the same argument, we can prove from ( )iv  by considering the infimum of 
( )f x  that  

     ( ) ( )
b b

a a

f d f x x dxα α ′=∫ ∫  

   Hence     

     
b b

a a

f d f dα α=∫ ∫     ⇔     ( ) ( ) ( ) ( )
b b

a a

f x x dx f x x dxα α′ ′=∫ ∫  

   Equivalently   ( )f α∈R    ⇔    ( )f α α′∈R .            ¤ 
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Ø Theorem (Change of Variable) 
   Suppose ϕ  is a strictly increasing continuous function that maps an interval 
[ ],A B  onto  [ , ]a b . Suppose α  is monotonically increasing on  [ , ]a b  and ( )f α∈R  
on  [ , ]a b . Define  β  and  g  on  [ , ]A B  by 
                               ( )( ) ( )y yβ α ϕ=     ,    ( )( ) ( )g y f yϕ=  

   then  ( )g β∈R   and   
B b

A a

g d f dβ α=∫ ∫ . 

Proof 

[A,B] [a,b]

β 

g 

y 

φ 

α 

f 

R 

φ(y) x =  f(φ(y)) =  g(y) 

α(φ(y)) =  β(y) 

 
    To each partition  { }0 ,....., nP x x=   of  [ , ]a b   corresponds a partition 

{ }0 ,....., nQ y y=   of  [ ],A B   because  ϕ   maps  [ ],A B   onto  [ , ]a b . 
( )i ix yϕ⇒ =  

   All partitions of  [ ],A B   are obtained in this way. 
   ∵ The value taken by  f  on  [ ]1,i ix x−  are exactly the same as those taken by  g  
on  [ ]1,i iy y− , we see that  

 ( ) ( ), , , ,U Q g U P fβ α=     
  and    ( ) ( ), , , ,L Q g L P fβ α=  

   ( )f R α∈∵   on  [ , ]a b  
   ∴  given  0ε > ,  we have 

( ) ( ), , , ,U P f L P fα α ε− <  
    ( ) ( ), , , ,U Q g L Q gβ β ε⇒ − <  

   ( )g β⇒ ∈R   and   
B b

A a

g d f dβ α=∫ ∫               ¤ 

 
 

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ 
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INTEGRATION AND DIFFERENTIATION 
 

Ø Theorem (Ist Fundamental Theorem of Calculus) 

   Let  f ∈R  on  [ , ]a b . For  a x b≤ ≤ , put  ( ) ( )
x

a

F x f t dt= ∫ , then  F  is continuous 

on  [ , ]a b ; furthermore, if  f  is continuous at point  0x  of  [ , ]a b , then  F  is 
differentiable at  0x , and  0 0( ) ( )F x f x′ = . 
Proof 
   f ∈∵ R  
   f∴   is bounded. 
   Let  ( )f t M≤   for  [ , ]t a b∈  
   If   a x y b≤ < ≤ ,  then 

( ) ( ) ( ) ( )
y x

a a

F y F x f t dt f t dt− = −∫ ∫  

  ( ) ( ) ( )
yx x

a x a

f t dt f t dt f t dt= + −∫ ∫ ∫  

  ( )
y

x

f t dt= ∫   ( )
y

x

f t dt≤ ∫   
y

x

M dt≤ ∫   ( )M y x= −  

       

          ( ) ( )F y F x ε⇒ − <    for  0ε >   provided  M y x ε− <  

       i.e.    ( ) ( )F y F x ε− <    whenever   y x
M
ε

− <  

   This proves the continuity (and, in fact, uniform continuity) of  F  on  [ , ]a b . 
   Next, we have to prove that if  f  is continuous at  0 [ , ]x a b∈   then  F  is 
differentiable at  0x   and  0 0( ) ( )F x f x′ =  

            i.e.   
0

0
0

0

( ) ( )lim ( )
t x

F t F x f x
t x→

−
=

−
 

   Suppose  f   is continuous at  0x . Given  0ε > , ∃  0δ >   such that  

0( ) ( )f t f x ε− <    if   0t x δ− <     where  [ , ]t a b∈  
     0 0( ) ( ) ( )f x f t f xε ε⇒ − < < +     if    0 0x t xδ δ− < < +   

          ( ) ( )
0 0 0

0 0( ) ( ) ( )
t t t

x x x

f x dt f t dt f x dtε ε⇒ − < < +∫ ∫ ∫   

     ( ) ( )
0 0 0

0 0( ) ( ) ( )
t t t

x x x

f x dt f t dt f x dtε ε⇒ − < < +∫ ∫ ∫  

     ( ) ( )0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )f x t x F t F x f x t xε ε⇒ − − < − < + −  

     0
0 0

0

( ) ( )( ) ( )F t F xf x f x
t x

ε ε
−

⇒ − < < +
−

 

     0
0

0

( ) ( ) ( )F t F x f x
t x

ε−
⇒ − <

−
 

     
0

0
0

0

( ) ( )lim ( )
t x

F t F x f x
t x→

−
⇒ =

−
 

      0 0( ) ( )F x f x′⇒ =                ¤ 
 

� --------------------------------- � 

a y b x 

a 
t 

x0 x0 +  δ x0 –  δ 
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Ø Theorem (IInd Fundamental Theorem of Calculus) 
   If  f ∈R  on  [ , ]a b   and if there is a differentiable function  F  on  [ , ]a b  such that  
F f′ = ,  then 

                                 ( ) ( ) ( )
b

a

f x dx F b F a= −∫  

Proof 
   f ∈∵ R   on  [ , ]a b  
   ∴  given  0ε > ,  ∃  a partition  P  of  [ , ]a b   such that 

( ) ( ), ,U P f L P f ε− <  
   F∵   is differentiable on  [ , ]a b  
   [ ]1,i i it x x−∴ ∃ ∈   such  that   

1( ) ( ) ( )i i i iF x F x F t x− ′− = ∆  
         1( ) ( ) ( )i i i iF x F x f t x−⇒ − = ∆       for  1,2,....,i n=      F f′ =∵  

        
1

( ) ( ) ( )
n

i i
i

f t x F b F a
=

⇒ ∆ = −∑  

   ( ) ( ) ( )
b

a

F b F a f x dx ε⇒ − − <∫   

   ε∵  is arbitrary 

   ( ) ( ) ( )
b

a

f x dx F b F a∴ = −∫                ¤ 

 

Ø Theorem (Integration by Parts) 
   Suppose  F   and  G   are differentiable function on  [ , ]a b ,  F f′ = ∈R   and 
G g′ = ∈R   then 

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a

F x g x dx F b G b F a G a f x G x dx= − −∫ ∫  

Proof 
   Put ( ) ( ) ( )H x F x G x=  
   ( ) ( ) ( ) ( )H F x G x F x G x h′ ′ ′⇒ = + =  
   Now  H ∈∵ R   and  h∈R  on  [ , ]a b  
   ∴ By applying the fundamental theorem of calculus to H  and its derivative h , 
we have 

 ( ) ( )
b

a

hdx H b H a= −∫  

    [ ]( ) ( ) ( ) ( ) ( ) ( )
b

a

F x G x F x G x dx H b H a′ ′⇒ + = −∫  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a

f x G x dx F x g x dx F b G b F a G a⇒ + = −∫ ∫  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a

F x g x dx F b G b F a G a f x G x dx⇒ = − −∫ ∫          ¤ 
 

� ---------------------------------- � 
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∵    if  ( )f α∈R  then 

( )
b

i i a
f t f dα α ε∆ − <∑ ∫
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Ø Question 
   Show that the function  f  defined on [ ]0,1  by 

                                          
1 ; is rational  

( )
0 ; is irrational

x
f x

x


= 


 

   is not integrable on [ ]0,1  
Solution 
   For any partition P  of  [ ]0,1 ,  0km =  ,  1kM =  

( )
1 1

, 1 0 1
n n

k k k
k k

S P f M x x
= =

⇒ = ∆ = ∆ = − =∑ ∑  

   and        ( )
1

, 0
n

k k
k

L P f m x
=

= ∆ =∑  

   so that       
1

0

1f dx =∫        ,       
1

0

0f dx =∫  

   i.e.   
1 1

0 0

f dx f dx≠∫ ∫   f⇒  is not integrable on  [ ]0,1 .         ¤ 

 

Ø Question 

   Show that  ( ) sinf x x=   is Riemann integrable over  0,
2
π 

  
. 

Solution 

   Take  30, , , ,.....,
2 2 2

nP
n n n n

π π π π =  
 

  by dividing  0,
2
π 

  
 into  n  equal parts. 

   Then  sin
2k
kM

n
π

=  ,  ( 1)sin
2k

km
n

π−
=  

( ) ( ) ( 1), , sin sin
2 2 2
k kS P f L P f

n n n
π π π− ⇒ − = − 

 
∑  

     
2n
π

≤   ε<   for  0 2
n n π

ε
> =  

f⇒   is Riemann integrable over  0,
2
π 

  
.         ¤ 

 

Ø Question 

   Show that  
1 ; is rational , 0 1

( )
; is irrational              0

x xxf x
x

 < ≤= 


  

   is integrable on [ ]0,1 . 
Solution 
   f   is continuous at each irrational. And rational numbers are dense in [ ]0,1 . 

   Also  ( ), 0L P f =   for any partition  P  of  [ ]0,1  so that   
1

0

0f dx =∫  

   0f ≥∵       ( ), 0S P f∴ ≥   
1

0

0f dα⇒ ≥∫  ……..…. (i) 
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   ∵ There are only finite number of points p
q

 (rationals) for which 
2

p qf
q p

ε 
= ≥ 

 
 

   ∴  Suppose  ( )
2

f x ε
≥   for  k  values of  x  in  [ ]0,1  

   Take  1P   such that  1 2
P

k
ε

< .  

   Consider  ( ) ( )1 1
1

,
n

i i i
i

S P f M x x −
=

= −∑   

   There are at most  k  values for which  1
2 iMε

≤ ≤ . For all other values  
2iM ε

> . 

    ( )1 1 1
values values

, ( ) ( )i i i i i i
k other

S P f M x x M x x− −⇒ = − + −∑ ∑  

    1( )
2 2 2 2i ik x x

k
ε ε ε ε

ε−≤ ⋅ + − < + =∑  

   ε∵  is arbitrary 

   ( )1, 0S P f∴ ≤     and    
1

0

0f dx ≤∫  ………… (ii) 

   By (i) and (ii), we have  
1

0

0f dx =∫  

   Hence   
1

0

0f dx =∫                 ¤ 

 

Ø Note 
   If  f  is integrable then  f   is also integrable but the converse is false.  
For example, let  f   be a function defined on  [ , ]a b   by 

1 ; [ , ]
( )

1 ; otherwise      
x a b

f x
∈ ∩

= −

¤
 

   Then  f   is Riemann-integrable but  f   is not. 
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