
 

v Introduction 
   There is the basic difference between the calculus of functions of one variable and 
the calculus of functions of two variables. But there is a slight difference between the 
calculus of two variable and the calculus of functions of three, four or of many 
variables. Therefore we shall emphasise mainly on the study of functions of two 
variables. 
 

v Function of two variables 
If to each point ( ),x y  of a certain part of xy − plane, there is assigned a real number 
z , then z  is known to be a function of two variable x  and y . 

e.g.    2 2z x y= − , 2 2z x y= +  , z xy=  etc. 
 

v Neighbourhood (nhood) 
   A neighbourhood of radius δ  of a point ( )0 0,x y  of the xy − plane is the set of 
points which lies inside a circle with centre at ( )0 0,x y  and has radius δ . 

( ) ( )2 2 2
0 0 0 0( , )N x y x x y yδ δ= − + − <  

   Similarly, a nhood of a radius δ  of a point ( )0 0 0, ,x y z  of a space is a sphere with 
centre at ( )0 0 0, ,x y z  and radius δ . 

   ( ) ( ) ( ) ( )2 2 2 2
0 0 0 0 0 0, ,N x y z x x y y z zδ δ= − + − + − <  

   This definition can be extended to the definition of a nhood of a point of a space of 
any dimension. 
 

v Open Set 
   A set is known to be open set if each point ( )0 0,x y  of the set has a nhood which 
totally lies inside the set. 
 

v Domain 
   A set D  which is not empty and open is known to be a domain, if any two points 
of the set can be joined by a broken line which lies completely with in D . 
 

v Region 
   A domain D  is known to be a region if some or all of the boundary points are 
contained in D . 
 

v Closed Region 
   A region is known to be closed if it contains all the boundary points. 

e.g.   i)  2 2 1x y+ <     (Domain)        ii)   1x y <         (Domain) 
        2 2 1x y+ =     (Boundary)     2x y =        (Boundary) 

     2 2 1x y+ ≤     (Closed region)    1xy ≤          (Closed Region) 
 

v Limit & Continuity 
    Let  ( , )z f x y=  be a function of two variables defined in a domain D . Suppose 
there is a point ( )0 0,x y  D∈  or is a boundary point then 

0

0

lim ( , )
x x
y y

f x y c
→
→

=  

   It means that given 0ε >  ∃ a 0δ >  such that 
              ( , )f x y c ε− <    whenever 0 0( , ) ( , )x y x y δ− <    0 0( , ) ( , )x y N x yδ∀ ∈  
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   If limit of a function is equal to actual value of function then f  is said to be 
continuous at the point ( )0 0,x y  

0

0

0 0lim ( , ) ( , )
x x
y y

f x y f x y
→
→

=  

   If f  is continuous at every point of D , then f  is said to be continuous on D . 
 

v Theorem 
   Let  ( , )f x y   &  ( , )g x y  be defined in a domain D  and suppose that 

0

0

1lim ( , )
x x
y y

f x y u
→
→

=    &   
0

0

1lim ( , )
x x
y y

g x y v
→
→

=  

a)  then  (i)      [ ]
0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

+ = +  

    (ii)     [ ]
0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

⋅ =  

    (iii)    
0

0

1

1

( , )lim
( , )x x

y y

f x y u
g x y v→

→

=  

b)  If  ( , )f x y   &  ( , )g x y  are defined in D , then  

0

0

0 0lim ( , ) ( , )
x x
y y

f x y f x y
→
→

=    &    
0

0

0 0lim ( , ) ( , )
x x
y y

g x y g x y
→
→

=  

   i.e. ( , )f x y  , ( , )g x y  are continuous at  ( )0 0,x y  then so are the functions  

 ( , ) ( , )f x y g x y+  ,  ( , ) ( , )f x y g x y   and  ( , )
( , )

f x y
g x y

,   provided  ( , ) 0g x y ≠ . 

Proof 
a)   (i)    

0

0

1lim ( , )
x x
y y

f x y u
→
→

=∵    ,     
0

0

1lim ( , )
x x
y y

g x y v
→
→

=  

    ∴  given    0
2
ε

>    ∃  a  1 2, 0δ δ >   such that 

 1( , )
2

f x y u ε
− <      

1 0 0( , ) ( , )x y N x yδ∀ ∈  

  &  1( , )
2

g x y v ε
− <       ( )

2 0 0( , ) ,x y N x yδ∀ ∈  

  then  [ ] [ ] [ ] [ ]1 1 1 1( , ) ( , ) ( , ) ( , )f x y g x y u v f x y u g x y v+ − + = − + −  
                  1 1( , ) ( , )f x y u g x y v≤ − + −  

                          
2 2
ε ε

< +    0 0( , ) ( , )x y N x yδ∀ ∈   

        where ( )1 2min ,δ δ δ=  
    Which show that 

 [ ]
0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

+ = +  

 

(ii)  1 1( , ) ( , )f x y g x y u v⋅ − 1 1 1 1( , ) ( , ) ( , ) ( , )f x y g x y u g x y u g x y u v= ⋅ − + −  
       [ ] [ ]1 1 1( , ) ( , ) ( , )g x y f x y u u g x y v= − + −  
       [ ] [ ]1 1 1( , ) ( , ) ( , )g x y f x y u u g x y v≤ − + −  

       1( , )
2 2

g x y uε ε
< +  1ε=      0 0( , ) ( , )x y N x yδ∀ ∈  
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0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

⇒ ⋅ =  

 

iii)    We prove that    
0

0
1

1 1lim
( , )x x

y y
g x y v→

→

=  

1

1 1

1 1 ( , )
( , ) ( , )

v g x y
g x y v v g x y

−
− =  

  1

1

( , )
( , )

g x y v
v g x y

−
=    

1

2
( , )v g x y

ε
<  

                 
1 1 1

2
( , )v g x y v v

ε
<

− +
  ( )1 1 1

2
( , )v g x y v v

ε
<

− +
 

                   
( )1 1

2

2v v

ε

ε
<

+
 1ε=     

2 0 0( , ) ( , )x y N x yδ∀ ∈  

       
0

0
1

1 1lim
( , )x x

y y
g x y v→

→

⇒ =  

  
0

0

1lim ( , )
x x
y y

f x y u
→
→

⇒ =∵    &   
0

0

1lim ( , )
x x
y y

g x y v
→
→

=  

   By (ii) of theorem 

   
0 0

0 0

1

1

1 ( , )lim ( , ) lim
( , ) ( , )x x x x

y y y y

f x y uf x y
g x y g x y v→ →

→ →

⋅ = =  

 

b) Since it is given that the limiting values are the same as the actual values of the 

functions ( , ) ( , )f x y g x y+  ,  ( , ) ( , )f x y g x y⋅   and  ( , )
( , )

f x y
g x y

  at the point 0 0( , )x y  

therefore these function are continuous on 0 0( , )x y . 
 

Note 
   It is to be noted that there is a difference between  

( , ) ( , )
lim ( , )

x y a b
f x y

→
 and lim ( , )

x a
y b

f x y
→
→

 

   i.e.   ( )lim ( , ) lim lim ( , )
x a y b x a
y b

f x y f x y
→ → →
→

=    or     ( )lim ( , ) lim lim ( , )
x a x a y b
y b

f x y f x y
→ → →
→

=  

   Obviously in the two cases limits are taken first w.r.t one variable and then w.r.t 
other variable. These limits are called the repeated limits. Since these are taken along 
the special path, therefore repeated limits are the special cases of limits. 
   

( , ) ( , )
lim ( , )

x y a b
f x y

→
 exists if and only if limiting vales are not depend upon any path 

along which ( , ) ( , )x y a b→ . 
 

v Example 
   Consider  2:f →¡ ¡   given by 

2 2

4 4 , ( , ) (0,0)( , )
, ( , ) (0,0)0

x y x yf x y x y
x y


≠=  +

 =

 

   Now   
0 0
0 0

lim ( , ) lim ( , ) 0
x y
y x

f x y f x y
→ →
→ →

= =  

   However along the straight line y mx= , we have 
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4

4( , ) (0,0)
lim ( , )

1x y

mf x y
m→

=
+

 

   which is different for different values of m . Hence 
( , ) (0,0)

lim ( , )
x y

f x y
→

 does not exist. 
 

v Example 
   Consider 2:f →¡ ¡  given by 

2 2

2 2
cos cos , ( , ) 0( , )

, ( , ) 00

x x y y x yf x y x y
x y

 −
≠=  +

 =

 

   then   
0 0 0

lim lim ( , ) limcos 1
x y x

f x y x
→ → →

  = =  
 

   and    
0 0 0

lim lim ( , ) lim( cos ) 1
y x y

f x y y
→ → →

  = − = −   

      
0
0

lim ( , )
x
y

f x y
→
→

⇒  does not exist. 

 

v Example 
   Consider 2:f →¡ ¡  given by 

2 2

2 2
sin( ) , ( , ) (0,0)( )( , )

, ( , ) (0,0)0

x y x yx yf x y x y
x y

 +
≠+=  +

 =

 

   Use   sin 1x
x

<   to get 

( , ) 0f x y x y x y− ≤ + < +  

   Thus  ( , ) 0f x y ε− <     whenever    
2

x ε
<   ,  

2
y ε

<  

   Take  
2
ε

δ =  , 

    It follows that for given  0ε > , we can find  0δ >  such that 
( , ) (0,0)f x y f ε− <   whenever 2 2( 0) ( 0)x y δ− + − <   

              i.e. ( , ) (0,0)x y Nδ∀ ∈  
   Limit of the function at (0,0)  is equal to actual value of function at (0,0) . 
   Hence f  is continuous at (0,0) . 
 

v Partial Derivative 
   Let  ( , )z f x y=  be defined in a domain D  of  xy -plane and take  0 0( , )x y D∈ , 
then 0( , )f x y  is a function of x  alone and its derivative may exist. If it exists then its 
value at 0 0( , )x y  is known to be the partial derivative of ( , )f x y  at 0 0( , )x y  and is 

denoted as  
0 0( , )x y

f
x

∂
∂

  or   
0 0( , )x y

z
x

∂
∂

 

   The other notations are  xz  , xf  , 1f . 

0 0

0 0
0( , )

( , ) ( , )lim
xx y

f f x x y f x y
x x∆ →

∂ + ∆ −
=

∂ ∆
 

   We can define  f
y

∂
∂

 in the same manner. 
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v Geometrical Interpretation 
   ( , )z f x y=  represents a surface in space. 0y y=  is a plane. ( )0,z x y=  is the curve 

which arises when  0y y=  cuts the surface  ( , )z f x y= . Thus  
0 0( , )x y

f
x

∂
∂

 denotes the 

slope of tangent to the curve  0( , )z f x y=  at  0x x= . Similarly  
0 0( , )x y

f
y

∂
∂

  denotes the 

slope of the tangent to the curve  0( , )z f x y=  at 0y y= .  
   If the point ( )0 0,x y  varies, then xf  & yf  are themselves functions of x  & y . 
In the case of functions of more than three variables it is necessary to indicate the 
variable held constant during the process of differentiation as a suffix to avoid the 
confusion. 

   For example, ( , , , )z f x y u v= , then partial derivatives are written as 
x

z
u

∂ 
 ∂ 

, 
v

z
y

 ∂
 ∂ 

 

and so on. We take an example:  x u v= + , y u v= −  

1
v

x
u

∂  = ∂ 
, 1

u

x
v

∂  = ∂ 
, 1

v

y
u

∂  = ∂ 
, 1

u

y
v

∂  = − ∂ 
 

Also 2x y u+ =  and 2x u y= − , then 

2
y

x
u

∂  = ∂ 
 & 1

u

x
y

 ∂
= − ∂ 

 and so on. 

 

v Total Differential 
   In the case of partial derivative we have considered increments  x∆  & y∆  
separately. 
   Now take ( , )x y  & ( , )x x y y+ ∆ + ∆  two points in the domain of definition of z  
then if ( )z z+ ∆  correspond to the point ( , )x x y y+ ∆ + ∆  we have 

( , ) ( , )z f x x y y f x y∆ = + ∆ + ∆ −  
   If the increment  z∆  can be expressed as  

1 2z a x b y x yε ε∆ = ∆ + ∆ + ∆ + ∆  
   and  1 2, 0ε ε →  as  , 0x y∆ ∆ → , then a x b y∆ + ∆  is known to be the total differential 
of z  denoted by dz , and we write 

1 2z dz x yε ε∆ = + ∆ + ∆  
   In case when z  is differentiable function dz  gives very close approximation of z∆ . 
 

v Theorem 
   If ( , )z f x y=  has a total differential at a point ( , )x y D∈ , then 

za
x

∂
=

∂
   &   zb

y
∂

=
∂

. 

Proof 
   We have  

1 2z dz x yε ε∆ = + ∆ + ∆   where 1 2, 0ε ε →   as  , 0x y∆ ∆ →  
   Let us suppose that  0y∆ =  
   then  1z a x xε∆ = ∆ + ∆  
   Taking the limit as  0x∆ →  

z a
x

∂
=

∂
 

   Similarly we can get   z b
y

∂
=

∂
. 
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v Theorem (Fundamental Lemma) 
   If  ( , )z f x y=  has a continuous first order partial derivative in D  then z  has total 

differential   z zdz x y
x y

∂ ∂
= ∆ + ∆

∂ ∂
  at every point ( , )x y D∈ . 

Proof 
   Take a point ( , )x y  as a fixed point in the domain D . Suppose x  changes alone. 
Then we have 

( , ) ( , )z f x x y f x y∆ = + ∆ −  
     1( , )xf x y x= ∆                 ( )1x x x x< < + ∆   ( It is by M. V. Theorem) 

   ∵  xf  is continuous  
   ∴  1 1( , ) ( , ) 0x xf x y f x yε = − →    as  0x∆ →  
   1( , ) ( , ) ( , )xf x x y f x y f x y x xε⇒ + ∆ − = ∆ + ∆  ………. (i) 
   Now if both  ,x y  changes, we obtain a change  z∆  in z  as 

( , ) ( , )z f x x y y f x y∆ = + ∆ + ∆ −  
     [ ] [ ]( , ) ( , ) ( , ) ( , )f x x y f x y f x x y y f x x y= + ∆ − + + ∆ + ∆ − + ∆  

   that is we have expressed z∆  as the sum of terms representing the effect of a 
change in x  alone and subsequent change in y  alone. 
   Now  1( , ) ( , ) ( , )yf x x y y f x x y f x x y y+ ∆ + ∆ − + ∆ = + ∆ ∆     ( )1y y y y< < + ∆  

 (It is by use of M.V. theorem) 
   yf∵  is given to be continuous 
   2 1( , ) ( , ) 0y yf x x y f x yε∴ = + ∆ − →   as  , 0x y∆ ∆ →  
   2( , ) ( , ) ( , )yf x x y y f x x y f x y y yε⇒ + ∆ + ∆ − + ∆ = ∆ + ∆  ……….. (ii) 
   Using (i) & (ii), we have 
  1 2( , ) ( , )x yz f x y x f x y y x yε ε∆ = ∆ + ∆ + ∆ + ∆    where 1 2, 0ε ε →  as , 0x y∆ ∆ →  
   which shows that the total differential dz  of z  exist & is given by 

( , ) ( , )x ydz f x y x f x y y= ∆ + ∆  ………….. (iii) 
 

Note 
 (a) For reasons to be explained later; x∆  & y∆  can be replaced by  dx  & dy  in (iii). 

Thus we have   z zdz dx dy
x y

∂ ∂
= +

∂ ∂
  

   Which is the customary way of writing the differential. The preceding analysis 
extends at once to functions of three or more variables. For example, if     

            ( , , , )w f x y u v= ,   then    w w w wdw dx dy du dv
x y u v

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
. 

(b)  In the following discussion, the function and their Ist order partial derivatives 
will be considered to be continuous in their respective domain of definition. 
 

Example 
   If 2 2z x y= − , then 2 2dz xdx ydy= − . 
 

Example: 

   If xyw
z

= , then 2
y x xydw dx dy dz
x z z

= + −  
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PROBLEMS 
 

1)   Evaluate z
x

∂
∂

 and z
y

∂
∂

 if 

   a)    2
xz

x y2=
+

          Ans: 
( )

2 2

22 2

z y x
x x y

∂ −
=

∂ +
  ,   

( )22 2

2z xy
x x y

∂ −
=

∂ +
 

   b)    sinz x xy=     Ans: sin cosz xy xy xy
x

∂
= +

∂
, 2 cosz x xy

y
∂

=
∂

 

   c)    3 2 2 3 2 0x xy x z z+ − + − =  Ans: 
2 2

2 2
3 2

3
z x y xz
x x z

∂ + −
=

∂ −
 ,  

2

2 2

x y

x y

z e y
y e y

+

+

∂ −
=

∂ −
 

2) Evaluate the indicated partial derivatives: 

   a)    
y

u
x

∂ 
 ∂ 

 and 
x

v
y

 ∂
 ∂ 

  if  2 2u x y= − , 2v x y= +  

   b)    
y

x
u

∂ 
 ∂ 

 and 
u

y
v

∂ 
 ∂ 

  if  2u x y= −  , 2v u y= +       Ans: 1
y

x
u

∂  = ∂ 
 , 1

2u

y
v

∂  = ∂ 
 

3) Find the differentials of the following functions 

   a)    xz
y

=                Ans: 2
ydx xdy

y
−  

   b)    2 2logz x y= +              Ans: 2 2
xdx ydy

x y
+
+

 

   c)    1tan yz
x

−  =  
 

            Ans: 2 2
ydx ydy
x y

− +
+

  

   d)    
2 2 2

1u
x y z

=
+ +

            Ans: 3
22 2 2

( )
( )
xdx ydy zdz
x y z

− + +

+ +
 

4) If  2 2z x xy= + ,  find z∆  in terms of  x∆ , y∆   for 1x = , 1y = . 

Ans:  24 2 2z x y x x y∆ = ∆ + ∆ + ∆ + ∆ ∆   ,   4 2dz x y= ∆ + ∆   ,   4 2dz x y= ∆ + ∆ . 
 
 

………………………………….. 
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v Derivative and Differential of functions of functions 
    In the following discussion, the function and their first order partial derivatives 
will be considered to be continuous in their respective domain of definitions. 
 

v Theorem (Chain Rule I) 
   Let  ( , )z f x y=  ,  ( )x g t=   &  ( )y h t=   be defined in a domain D , then 

   dz z dx z dy
dt x dt y dt

∂ ∂
= ⋅ + ⋅

∂ ∂
 

Proof 
   ∵  ( , )z f x y= , ( )x g t= , ( )y h t=  are defined in D , are continuous and have Ist 
order partial derivatives. 
   ∴  By using the fundamental lemma we have 

1 2
z zz x y x y
x y

ε ε
∂ ∂

∆ = ∆ + ∆ + ∆ + ∆
∂ ∂

 ………… (i) 

where 1 2, 0ε ε →   as  , 0x y∆ ∆ →  
   Also  ( ) ( )x g t t g t∆ = + ∆ −  

  ( ) ( )y h t t h t∆ = + ∆ −  
   Dividing (i) by t∆ , we get 

  1 2
z z x z y x y
t x t y t t t

ε ε
∆ ∂ ∆ ∂ ∆ ∆ ∆

= ⋅ + ⋅ + +
∆ ∂ ∆ ∂ ∆ ∆ ∆

 

   Take the limit as 0t∆ → , we get 
dz z dx z dy
dt x dt y dt

∂ ∂
= ⋅ + ⋅

∂ ∂
    as desired. 

 

v Theorem (Chain Rule II) 
    Let ( , )z f x y= , ( , )x g u v= , ( , )y h u v=  be defined in a domain D  and have 
continuous first order partial derivative in D , then 

z z x z y
u x u y u

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

      and  z z x z y
v x v y v

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

Proof 
   ∵  the functions are continuous having first order partial derivatives in D , 
therefore by the fundamental lemma, we have 

1 2
z zz x y x y
x y

ε ε
∂ ∂

∆ = ∆ + ∆ + ∆ + ∆
∂ ∂

 ………… (i) 

   where   ( , ) ( , )x g u u v g u v∆ = + ∆ − ,  ( , ) ( , )y h u u v h u v∆ = + ∆ −     
                and  1 2, 0ε ε →  as  , 0x y∆ ∆ →   i.e. 0u∆ →  
   Dividing (i) by u∆  throughout to have 

         1 2
z z x z y x y
u x u y u u u

ε ε
∆ ∂ ∆ ∂ ∆ ∆ ∆

= ⋅ + ⋅ + +
∆ ∂ ∆ ∂ ∆ ∆ ∆

 

   Taking the limit as 0u∆ →   i.e. , 0x y∆ ∆ → , we have 
z z x z y
u x u y u

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

   Similarly if  ( , ) ( , )x g u v v g u v∆ = + ∆ −  
   ( , ) ( , )y h u v v h u v∆ = + ∆ −  

   Then dividing (i) by v∆  throughout, we obtain 
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1 2
z z x z y x y
v x v y v v v

ε ε
∆ ∂ ∆ ∂ ∆ ∆ ∆

= ⋅ + ⋅ + +
∆ ∂ ∆ ∂ ∆ ∆ ∆

 

   Taking the limit as 0v∆ → , we have 
z z x z y
v x v y v

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

 

v Note 
We have proved in chain rule I, that if  ( , )z f x y=  , ( )x g t=  , ( )y h t= , then  

dz z dx z dy
dt x dt y dt

∂ ∂
= ⋅ + ⋅

∂ ∂
 ……….. (i) 

   The three functions of t  considered here:  ( )x g t=  ,  ( )y h t=  ,  ( )( ), ( )z f g t h t=  

have differentials  dxdx t
dt

= ∆  ,  dydy t
dt

= ∆ ,  dzdz t
dt

= ∆ . 

   From (i) we conclude that 
dz z dx z dyt t t
dt x dt y dt

∂ ∂   ∆ = ∆ + ∆   ∂ ∂   
 

                  z zdz dx dy
x y

∂ ∂
⇒ = +

∂ ∂
 ………… (ii) 

   Similarly,     x xdx u v
u v

∂ ∂
= ∆ + ∆

∂ ∂
 

    y ydy u v
u v

∂ ∂
= ∆ + ∆

∂ ∂
 

    z zdz u v
u v

∂ ∂
= ∆ + ∆

∂ ∂
  

   are the corresponding differentials when ( , )z f x y= , ( , )x g u v= , ( , )y h u v=  
z x z y z x z ydz u v
x u y u x v y v

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⇒ = ⋅ + ⋅ ∆ + ⋅ + ⋅ ∆   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

z x x z y yu v u v
x u v y u v

∂ ∂ ∂ ∂ ∂ ∂   = ∆ + ∆ + ∆ + ∆   ∂ ∂ ∂ ∂ ∂ ∂   
 

z zdx dy
x y

∂ ∂
= +

∂ ∂
 

   which is again (ii) 
   The generalization of this permits to conclude that: 
   The differential formula  

......z z zdz dx dy dt
x y t

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

   which holds when ( , , ,....)z f x y t=  and dx x= ∆ , dy y= ∆ , dt t= ∆ ,…..., remain the 
true when , , ,.....x y t , and hence z , are all functions of other independent variables 
and , , ,.....,dx dy dt dz  are the corresponding differentials. 
   As a consequence we can conclude: 
   Any equation in differentials which is correct for one choice of independent 
variables remains true for any other choice. Another way of saying this is that any 
equation in differentials treats all variables on an equal basis. 

   Thus, if  2 3dz dx dy= −  at a given point, then 1 3
2 2

dx dz dy= +  is the 

corresponding differentials of x  in terms of y  and z . 
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v Example 

   If  
2 1xz
y
−

=  ,  then  
2

2
2 ( 1)xy dx x dydz

y
− −

=  

   Hence   2z x
x y

∂
=

∂
   ,    

2

2
1z x

y y
∂ −

=
∂

 
 

v Example 
   If  2 2 2r x y= + , then rdr xdx ydy= +   

   and  
y

r x
x r

∂  = ∂ 
  ,  

x

r y
y r

 ∂
= ∂ 

 ,  
y

x r
r x

∂  = ∂ 
 ,  etc. 

 

v Example 

   If  1tan yz
x

−  =  
 

  ( 0)x ≠ , then 

    2
1 .

1

ydz d
xy

x

 =  
  +  

 

  2 2
xdy ydx

x y
−

=
+

 

   and hence 

2 2
z y
x x y

∂
= −

∂ +
  ,     2 2

z x
y x y

∂
=

∂ +
  

 
………………………………….. 
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v Implicit Function 
   If  ( , , )F x y z  is a given function of ,x y  & z , then the equation ( , , ) 0F x y z =  is a 
relation which may describe one or several functions z  of x  & y .  
Thus if  2 2 2 1 0x y z+ + − = , then 

2 21z x y= − −    or    2 21z x y= − − −  
   Where both functions being defined for 2 2 1x y+ ≤ . Either function is said to be 
implicitly defined by the equation 2 2 2 1 0x y z+ + − = . 
   Similarly, an equation ( , , , ) 0F x y z w =  may define one or more implicit functions 
w  of  , ,x y z . If two such equations are given; 

( , , , ) 0F x y z w =   ,  ( , , , ) 0G x y z w =  , 
   It is in general possible (at least in theory) to reduce the equations by elimination to 
the form 

( , )w f x y=   ,   ( , )z g x y=  
   i.e. to obtain two functions of two variables. In general, if m  equations in n  
unknown are given ( )m n< , it is possible to solve for m  of the variables in terms of 
the remaining n m−  variables; the number of dependent variables equals the number 
of equations 
 

v Example 
   If   3 2 2 0x y z w+ + + =  

2 3 0x y z w+ − − =  
   then ( , ) 5 5w f x y x y= = − −     &   ( , ) 7 8z g x y x y= = +  
 

v Example 
   Suppose that the functions ( , )w f x y=  & ( , )z g x y=  are implicitly defined by  

2 2 22 0x y z zw+ + − =  
2 2 22 8 0x y z zw+ + − + =  

   Then taking the differentials, we obtain 
4 2 2 0xdx ydy zdz wdz zdw+ + − − =  ……… (i) 

2 2 4 0wdz zdw xdx ydy zdz+ + + + =  ……… (ii) 
   Eliminate dw  between ( )i  and ( )ii  to have 

6 4 6 0xdx ydy zdz+ + =  

     2
3

x ydz dx dy
z x

⇒ = − −  

     z x
x z

∂
⇒ = −

∂
   ,    2

3
z y
y z

∂
= −

∂
 

   Eliminating of dz  from ( )i  and ( )ii  gives 

( ) ( ) 26 2 4 6 0x z w dx y z w dy z dw+ + + − =  

    ( ) ( )
2 2

2 2
3

x z w y z w
dw dx dy

z z
+ +

⇒ = +  

2
(2 )w x x w

x x
∂ +

=
∂

   ,    2
2 ( )w y z w

y z
∂ +

=
∂
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v Examples 
Suppose that the functions ( , )w f x y=  & ( , )z g x y=  are implicitly define by  

( , , , ) 0F x y z w =    and   ( , , ) 0G x y z = , then 
   0x y z wF dx F dy F dz F dw+ + + =  

   and    0x y z wG dx G dy G dz G dw+ + + =  

       z w x yF dz F dw F dx F dy ⇒ + = − +   

   and    z w x yG dz G dw G dx G dy + = − +   
   Then by crammer rule, we have 

x y w

x y w

z w

z w

F dx F dy F
G dx G dy G

dz
F F
G G

+
−

+
=     

y wx w

y wx w

z w z w

z w z w

F FF F
G GG G

dx dy
F F F F
G G G G

= − −  

        ⇒    

x w

x w

z w

z w

F F
G Gz
F Fx
G G

∂
= −

∂
     ,     

y w

y w

z w

z w

F F
G Gz
F Fy
G G

∂
= −

∂
 

      ⇒   

( , )
( , )
( , )
( , )

F G
z x w

F Gx
z w

∂
∂ ∂= −

∂∂
∂

  ,   

( , )
( , )
( , )
( , )

F G
z y w

F Gy
z w

∂
∂ ∂= −

∂∂
∂

        provided  ( , ) 0
( , )
F G
z w

∂
≠

∂
 

   Similarly, we have 
z x y

z x y

z w

z w

F F dx F dy
G G dx G dy

dw
F F
G G

+
+

= −  

   and we can find w
x

∂
∂

 and w
y

∂
∂

 in the same manner. 

v Particular Cases 
   i) One equation in 2 unknowns  i.e.  ( , ) 0F x y =  

0x yF dx F dy⇒ + =  

x

y

dy F
dx F

⇒ = −    ( )0yF ≠  

   ii) One equation in 3 unknowns  i.e. ( , , ) 0F x y z =  
     0x y zF dx F dy F dz+ + =  

  x

z

z F
x F

∂
⇒ = −

∂
   ,   y

z

Fz
y F

∂
= −

∂
    ( 0)zF ≠  

   iii)  2 equations in 3 unknown 
    ( , , ) 0F x y z =   ,  ( , , ) 0G x y z =  

      

( , )
( , )
( , )
( , )

F G
z y x

F Gx
y z

∂
∂ ∂= −

∂∂
∂

    ,    

( , )
( , )
( , )
( , )

F G
z w y

F Gy
z w

∂
∂ ∂= −

∂∂
∂

 

 

……………………………… 
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v Example 
   Find the partial derivatives w.r.t x  & y , when  

2 22 0u v x y+ − + =  
2 2 0u v xy− − =  

Solution 
   Take the differentials 

2 2 2 0du dv xdx y dy+ − + =  ………… (i) 
2 2 2 0du dv xdy y dx− − − =  …………. (ii) 

   Eliminating  dv  between ( )i  and ( )ii , we have 
5 (2 4 ) (2 4 ) 0du x y dx y x dy− + + − =  

     ( ) ( )1 12 4 2 4
5 5

du x y dx y x dy⇒ = + − −  

( )1 2 4
5

u x y
x

∂
⇒ = +

∂
   &   ( )1 2 4

5
u y x
y

∂
= − −

∂
 

   Eliminating du  between ( )i  and ( )ii , we get 
( ) ( )5 4 2 4 2 0dv x y dx y x dy− − + + =  

     ( ) ( )1 14 2 4 2
5 5

dv x y dx y x dy⇒ = − − +  

( )1 4 2
5

v x y
x

∂
⇒ = −

∂
   &   ( )1 4 2

5
v y x
y

∂
= − +

∂
 

 

v Question 
    Give that 

2 3 2 0x y z u+ − − =  
    &    2 0x y z u+ + + =  

    Find   
z

x
y

 ∂
 ∂ 

, 
u

y
x

∂ 
 ∂ 

 , 
x

z
u

∂ 
 ∂ 

 , 
x

y
z

∂ 
 ∂ 

 

Solution 
   Take the differentials 

2 3 2 0dx dy dz du+ − − =  ………… (i) 
2 0dx dy dz du+ + + =  ………...… (ii) 

   Eliminating du  between (i) and (ii), we have 
4 5 0dx dy dz+ − =  ………. (iii) 

      5 1
4 4

dx dy dz⇒ = − +  

      5
4z

x
y

 ∂
⇒ = − ∂ 

 

   From (iii), we have   
5 4dy dz dx= −  

    1 4
5 5

dy dz dx⇒ = −  

    1
5x

y
z

∂ ⇒ = ∂ 
 

   Eliminating dz  between ( )i  & ( )ii , we get 
5 7 0dx dy du+ + =  
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     5 1
7 7

dy dx du⇒ = − −  

5
7u

y
x

∂ ⇒ = − ∂ 
 

Now eliminating dy  between ( )i  & ( )ii , we get 
   3 5 3 0dx dz du− − − =  

3 3
5 5

dz dx du⇒ = − −  

         3
5x

z
u

∂ ⇒ = − ∂ 
 

 

v Question 
   Given that   

2 2 2 2 2 1x y z u v+ + − + =  …………... (i) 
2 2 2 2 22 2x y z u v− + + + =  ………… (ii) 

   a) Find du  & dv  in terms of ,dx dy  & dz  at the point  
1x =  , 1y =  , 2z =  , 3u =   &  2v = . 

   b) Find  
( , )y z

u
x

∂ 
 ∂ 

, 
( , )x z

v
y

 ∂
 ∂ 

 at the point given above. 

   c) Find approximately the values of u  & v  for 1 1x = ⋅  , 1.2y =  , 1.8z =  
Solutions 
   Differential gives 

2 2 2 2 2 0xdx ydy zdz udu vdv+ + − + =  ……… (iii) 
2 2 2 2 2 0xdx ydy zdz udu vdv− + + + =  ……… (iv) 

   a) Putting 1x = , 1y = , 2z = , 3u =  & 2v =  in (iii) & (iv), we obtain 
2 2 4 6 4 0dx dy dz du dv+ + − + =  ………… (v) 

  &     2 2 4 6 8 0dx dy dz du dv− + + + =  ………… (vi) 
   Adding gives  

( )12 4 8dv dx dz= − +  

    ( )1 0 2
3

dv dx dy dz⇒ = − + ⋅ +  

   Similarly eliminating dv  between ( )v  and ( )vi , we get 

   ( )1 3 2
9

du dx dy dz= + +  

   b)           ( )1 3 2
9

du dx dy dz= + +∵  

         
,

1
9y z

u
x

∂ ∴ = ∂ 
 

  &    ( )1 0 2
3

dv dx dy dz= − + ⋅ +∵  

         
,

0
x z

v
y

 ∂
∴ = ∂ 

 

 
………………………………….. 
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v Question 
   Find the transformation of cosx r θ= , siny r θ=   from rectangular to polar 
coordinates. Verify the relations 

a)  cos sindx dr r dθ θ θ= −  
sin cosdy dr r dθ θ θ= +  

b)  cos sindr dx dyθ θ= +  
sin cosd dx dy

r r
θ θ

θ = − +  

c)  cosx
r θ

θ∂  = ∂ 
  ,   sec

y

x
r

θ
∂  = ∂ 

   ,    ( , ) 1
( , )
r
x y r

θ∂
=

∂
 

Solutions 
   Given that  cosx r θ=   &   siny r θ=  
   a) Differential gives 

cos sindx dr r dθ θ θ= −  ………. (i) 
sin cosdy dr r dθ θ θ= +  ………. (ii) 

   b) Multiplying (i) by cosθ  & (ii) by sinθ  and adding, we get 
cos sindr dx dyθ θ= +  

   Now multiply (i) by sinθ  & (ii) by cosθ  and subtract to obtain 
sin cosd dx dy

r r
θ θ

θ = − +  

   c) Given   cosx r θ=  

  cosx
r θ

θ∂ ⇒ = ∂ 
 

   We have already shown that  cos sindr dx dyθ θ= +  

   Which can be written as  tan
cos

drdx dyθ
θ

= −  

    sec
y

x
r

θ
∂ ⇒ = ∂ 

 

( , )
( , )

x x
x y r

y yr
r

θ
θ

θ

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

 
cos sin
sin cos

r
r

θ θ
θ θ

−
=  2 2cos sinr rθ θ= +  r=  

 and  ( , )
( , )

r r
x yr

x y
x y

θ
θ θ

∂ ∂
∂ ∂∂

=
∂ ∂∂
∂ ∂

 
cos sin
sin cos

r r

θ θ
θ θ=

−
 2 21 1cos sin

r r
θ θ= +  1

r
=  

 

v Question 
    Given that  2 2 2cos 0x y uv z− + =  

2 2 2sin 2 2x y uv z+ − + =  
and  sin cos 0xy u v z− + =  

   Find  
v

x
u

∂ 
 ∂ 

 ,  
u

x
v

∂ 
 ∂ 

 at  1x = , 1y = , 
2

u π
= , 0v = , 0z =  

Solution 
   Differential gives 

2 22 2 cos sin sin 2 0xdx y uvdy y uv udv y uv vdu zdz− + ⋅ + ⋅ + =  ……. (i) 
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2 2 cos cos 4 0xdx y dy uv udv uv vdu zdz+ − ⋅ − ⋅ + =  ……… (ii) 
    &  cos cos sin sin 0xdy y dx u vdu u vdv dz+ − ⋅ + ⋅ + =  ……... (iii) 
   At the given point, these equations reduce to  

2 2 0dx dy− =  …………..…. (iv) 

2 2 0
2

dx dy dvπ
+ − =  ……… (v) 

        &  0dx dy dz+ + =  …………... (vi) 
   Adding (iv) & (v), we have 

4 0
2

dx dvπ
− =  

     0
8

dx dv duπ
⇒ = + ⋅     0

v

x
u

∂ ⇒ = ∂ 
  ,  

8u

x
v

π∂  = ∂ 
 

 

v Question 

   Find  
y

u
x

∂ 
 ∂ 

 if  2 2 2 22 1x y u v− + + =  

        2 2 2 2 2x y u v+ − − =  
Solution 
   Taking the differentials, we have 

2 2 2 4 0xdx y dy u du vdv− + + =  
2 2 2 2 0xdx y dy u du v dv+ − − =  

   Eliminating dv , we get 
6 2 2 0xdx y dy u du+ − =  

    3x ydu dx dy
u u

⇒ = +  

    3

y

u x
x u

∂ ⇒ = ∂ 
 

 

v Question 
   Given the transformation   

2x u v= −     
2y u v= +  

  a) Write the equations of the inverse transformation 
  b) Evaluate the Jacobian of the transformation and that of the inverse  
      transformation. 
Solution 
   a) From the equations, we have 

1 2
5 5

u x y= +  

2 1
5 5

v x y= − +  

   which are the equations of the inverse transformation. 

   b) Jacobian of the given transformation  ( , )
( , )
x y
u v

∂
=

∂
 

x x
u v
y y
u v

∂ ∂
∂ ∂=
∂ ∂
∂ ∂

 

       
1 2
2 1

−
= 5=  
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   Jacobian of the inverse transformation ( , )
( , )
u v
x y

∂
=

∂
 

u u
x y
v v
x y

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

 

    

1 2
5 5
2 1
5 5

=
−

 1
5

=  

 

v Question 

   Given the transformation ( , )x f u v= , ( , )y g u v=  with Jacobian ( , )
( , )
x yJ
u v

∂
=

∂
, show 

that for the inverse transformation one has  
1u y

x J v
∂ ∂

=
∂ ∂

   ,  1u x
y J v

∂ ∂
= −

∂ ∂
  ,  1v y

x J u
∂ ∂

= −
∂ ∂

  ,   1u x
y J u

∂ ∂
=

∂ ∂
 

Solution 
   The given equations are 

( , ) 0f u v x− =  ………. (i) 
( , ) 0g u v y− =  ………. (ii) 

   Differentiating w.r.t. x , we get 

1 0u v
u vf f
x x

∂ ∂
+ − =

∂ ∂
 

0 0u v
u vg g
x x

∂ ∂
+ − =

∂ ∂
 

   Solving these equations by Crammer’s rule, we have 
1

0
v

v

u v

u v

f
gu

f fx
g g

−

∂
= −

∂
 vg

J
=  1 y

J v
∂

=
∂

   v
y g
v

∂ = ∂ 
∵  

1
0

u

u

f
gv

x J

−

∂
= −

∂
  ug

J
= −  1 y

J u
∂

= −
∂

 

   Differentiating (i) & (ii)  w.r.t. y , we have 

0 0u v
u vf f
y y

∂ ∂
+ − =

∂ ∂
 

1 0u v
u vg g
y y

∂ ∂
+ − =

∂ ∂
 

   Solving these equations by Crammer’s rule, we get 
0
1

v

v

f
gu

y J
−∂

= −
∂

   vf
J

= −    1 x
J v

∂
= −

∂
 

0
1

u

u

f
gv

y J
−∂

= −
∂

   uf
J

=    1 x
J u

∂
=

∂
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v Question 
   Given the transformation    

2 2x u v= −   
2y uv=  

   a) Compute its Jacobian. 

   b) Evaluate  
y

u
x

∂ 
 ∂ 

 &  
y

v
x

∂ 
 ∂ 

 

Solution 
   The given equations can be written as  

2 2 0u v x− − =  ……….. (i) 
2 0uv y− =  ……...…… (ii) 

   Differentiating (i) & (ii) partially w.r.t. x , we have 

2 2 1 0u vu v
x x

∂ ∂
− − =

∂ ∂
 …………. (iii) 

2 2 0 0u vv u
x x

∂ ∂
+ − =

∂ ∂
 …………. (iv) 

   ( , )
( , )

x x
x y u vJ

y yu v
u v

∂ ∂
∂ ∂ ∂= =

∂ ∂∂
∂ ∂

   
2 2
2 2
u v
v u

−
=    2 24( )u v= +  

   Solving (iii) & (iv) by Crammer’s rule, we have 
1 2

0 2

y

v
uu

x J

− −

∂  = − ∂ 
   2 2

2
4( )

u
u v

=
+

   2 22( )
u

u v
=

+
 

2 1
2 0

y

u
vv

x J

−

∂  = − ∂ 
  2 2

2
4( )

v
u v
−

=
+

   2 22( )
v

u v
−

=
+

 

 

Note 

x

u
y

 ∂
 ∂ 

 & 
x

v
y

 ∂
 ∂ 

 can be determined in the same manner. 

  

v Question 
   Prove that if ( , , ) 0F x y z = , then 

1
y xz

z x y
x y z

 ∂ ∂ ∂   ⋅ ⋅ = −    ∂ ∂ ∂    
 

Solution 
( , , ) 0F x y z =  

     0x y zF dx F dy F dz⇒ + + =  

     y z

x x

F Fdx dy dz
F F

⇒ = − −  y

xz

Fx
y F

 ∂
⇒ = − ∂ 

 

               &   x z

y y

F Fdy dx dz
F F

= − −   z

x y

y F
z F

∂ ⇒ = − ∂ 
 

           yx

z z

FFdz dx dy
F F

= − −   x

y z

z F
x F

∂ ⇒ = − ∂ 
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   Hence  

yx z

y x z x yz

Fz x y F F
x y z F F F

    ∂ ∂ ∂   ⋅ ⋅ = − ⋅ − ⋅ −         ∂ ∂ ∂          
 1= −  

 

v Question 
Prove that, if ( , )x f u v= , ( , )y g u v= , then 

v y u x

x u y v
u x v y

 ∂ ∂ ∂ ∂     =       ∂ ∂ ∂ ∂       
 

and     
u y vx

x v u y
v x y u

 ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂      
 

also that  1
uu

x y
y x

 ∂ ∂  =  ∂ ∂  
 

Solution    
( , ) 0f u v x− =∵  

     ( , ) 0g u v y− =  

v

y

u g
x J

∂ ∴ = ∂ 
   ,    u

y

v g
x J

∂  = − ∂ 
 

     v

x

u f
y J

 ∂
= − ∂ 

  ,   u

x

v f
y J

 ∂
= ∂ 

   as already shown 

   Taking differentials of the given equations, we have 
      0u vf du f dv dx+ − =  
      0u vg du g dv dy+ − =  

u vdx f du f dv⇒ = +  ………… (i) 
      u vdy g du g dv= +  ……..…. (ii) 

          u
v

x f
u

∂ ⇒ = ∂ 
   ,    v

u

x f
v

∂  = ∂ 
 

      u
v

y g
u

∂  = ∂ 
   ,    v

u

y g
v

∂  = ∂ 
 

  Now  
v y u x

x u y v
u x v y

 ∂ ∂ ∂ ∂     ⋅ = ⋅       ∂ ∂ ∂ ∂       
 

                v u
u v

g ff g
J J

⇒ ⋅ = ⋅ ,   which is true 

   Similarly, we have the second relation. 
   Eliminating dv  between ( )i  & ( )ii , we get 

( ) 0u v v u v vf g f g du g dx f dy⋅ − ⋅ − + =  

    u v v u v

v v

f g f g fdx du dy
g g
−

⇒ = ⋅ +  

and     u v v uv

v v

f g f ggdy dx du
f f

−
= −  

   v

vu

x f
y g

 ∂
⇒ = ∂ 

    &   v

u v

y g
x f

∂  = ∂ 
 

   1v v

u v vu

x y f g
y x g f

 ∂ ∂ ⇒ ⋅ = ⋅ =  ∂ ∂  
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v Question 
Given that ( , , )x f u v w= ,  ( , , )y g u v w= , ( , , )z h u v w=   with the Jacobian 
( , , )
( , , )
x y zJ
u v w

∂
=

∂
, show that for the inverse transformation one has 

i)  1 ( , )
( , )

u y z
x J v w

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
u z x
y J v w

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
u x y
z J v w

∂ ∂
=

∂ ∂
 

ii)  1 ( , )
( , )

v y z
x J w u

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
v z x
y J w u

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
v x y
z J w u

∂ ∂
=

∂ ∂
 

iii)  1 ( , )
( , )

w y z
x J u v

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
w z x
y J u v

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
w x y
z J u v

∂ ∂
=

∂ ∂
 

Solution 
   We have    ( , , ) 0f u v w x− =  

( , , ) 0g u v w y− =  
( , , ) 0h u v w z− =  

   Differentiating w.r.t. to x , we get 

1 0u v w
u v wf f f
x x x

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 

0 0u v w
u v wg g g
x x x

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 

0 0u v w
u v wh h h
x x x

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 

   By Crammer’s rule, we have 
1

0
0

v w

v w

v w

f f
g g
h hu

x J

−

∂
= −

∂
 

v w

v w

g g
h h

J
=  1 ( , )

( , )
g h

J v w
∂

=
∂

 1 ( , )
( , )
y z

J v w
∂

=
∂

 

1
0
0

u w

u w

u w

f f
g g
h hv

x J

−

∂
= −

∂
 

u w

u w

g g
h h

J
= −  1 ( , )

( , )
g h

J w u
∂

=
∂

 1 ( , )
( , )

y z
J w u

∂
=

∂
 

1
0
0

u v

u v

u v

f f
g g
h hw

x J

−

∂
= −

∂
 

u v

u v

g g
h h

J
=  1 ( , )

( , )
g h

J u v
∂

=
∂

 1 ( , )
( , )
y z

J u v
∂

=
∂

 

   We can find the other relations in the same way by differentiating given relation 
w.r.t. y  and w.r.t. z  respectively. 
 
 

…………………………………. 
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v Partial Derivative of Higher Order 

   Let a function ( , )z f x y=  be given. Then its two partial derivatives  z
x

∂
∂

  &  z
y

∂
∂

  

are themselves functions of x  & y . 

i.e.   ( , )x
z f x y
x

∂
=

∂
  ,   ( , )y

z f x y
y

∂
=

∂
 

   Hence each can be differentiable w.r.t. x  & y . 
   Thus, we obtain four partial derivatives 

       
2

2 ( , )xx
z f x y

x
∂

=
∂

   ,    
2

( , )xy
z f x y

x y
∂

=
∂ ∂

 

      
2

( , )yx
z f x y

y x
∂

=
∂ ∂

 ,     
2

2 ( , )yy
z f x y

y
∂

=
∂

 

   
2

2
z

x
∂
∂

  is the result of differentiating  z
x

∂
∂

  w.r.t. x , where  
2z

y x
∂

∂ ∂
  is the result of 

differentiating  z
x

∂
∂

  w.r.t. y . If all the derivatives concerned are continuous in the 

domain considered, then 
2 2z z

x y y x
∂ ∂

=
∂ ∂ ∂ ∂

   i.e. order of differentiation is immaterial. 

   Third and higher order partial derivatives are defined in the same manner and 
under appropriate assumptions of continuity the order of differentiation does not 
matter. 
 

v Laplacian of z 
   If ( , )z f x y= , then the Laplacian of z  is denoted by 2z∇  is the expression 

2 2
2

2 2
z zz

x y
∂ ∂

∇ = +
∂ ∂

 

   if ( , , )w f x y z= , the Laplacian of w  is the expression 
2 2 2

2
2 2 2
w w ww

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

   The symbol “∇” is a vector differential operator define as 
ˆˆ ˆi j k

x y x
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

   We then have symbolically 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = ∇ ⋅ ∇ = + +

∂ ∂ ∂
 

 

v Harmonic Function 
   If ( , )z f x y=  has continuous second order derivatives in a domain D  and 2 0z∇ =  
in D , then z  is said to be Harmonic in D . The same term is used for the function of 
three variables which has continuous 2nd derivatives in a domain D  in space and 
whose Laplacian is zero in D . The two equations for harmonic functions 

2 2
2

2 2 0z zz
x y

∂ ∂
∇ = + =

∂ ∂
 

2 2 2
2

2 2 2 0w w ww
x y z

∂ ∂ ∂
∇ = + + =

∂ ∂ ∂
 

   are known as the Laplace equations in two and three dimensions respectively. 
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v Bi-Harmonic Equations 
   Another important combination of derivatives occurs in the equation 

4 4 4

4 2 2 42 0z z z
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

   which is known to be the Bi-harmonic equation. This combination can be 
expressed in terms of Laplacian as 

( )2 2 4 0z z∇ ∇ = ∇ =  

   The solutions of 4 0z∇ =  are termed as Pri-harmonic functions. 
 

v Higher Derivatives of Functions of Functions 
   (1) Let ( , )z f x y=  and ( )x g t= , ( )y h t=  so that z  can be expressed in terms of t  
alone. Then  

dz z dx z dy
dt x dt y dt

∂ ∂
= +

∂ ∂
 ……….. (i) 

2 2 2

2 2 2
d z d dz z d x dx d z z d y dy d z
dt dt dt x dt dt dt x y dt dt dt y

 ∂ ∂ ∂ ∂   = = + + +     ∂ ∂ ∂ ∂     
  ……… (ii) 

   Using (i), we have 
2 2

2
d z z dx z dy
dt x x dt y x dt

∂ ∂ ∂  = + ∂ ∂ ∂ ∂ 
 

   &  
2 2

2
d z z dx z dy
dt y x z dt y dt

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

 

   Putting these values in ( )ii , we have 
2 22 2 2 2 2 2

2 2 2 2 22d z z d x z dx z dx dy z dy z d y
dt x dt x dt x y dt dt y dt y dt

∂ ∂ ∂ ∂ ∂   = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂   
 

 

   (2)  If  ( , )z f x y=  and  ( , )x g u v=  , ( , )y h u v= , then  
z z x z y
u x u y u

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 ……….. (iii) 

z z x z y
v x v y v

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 ……….. (iv) 

2 2 2

2 2 2
z z x z x z y y z

u x u u x u y u u u y
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ + + ⋅    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 …………. (iv) 

   Using (iii), we have 

 
2 2

2
z z x z y

u x x u y x u
∂ ∂ ∂ ∂ ∂ ∂  = ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

   and   
2 2

2
z z x z y

u y x y u y u
 ∂ ∂ ∂ ∂ ∂ ∂

= + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

   Putting these values in ( )iv , we get 
22 2 2 2 2 2

2 2 2 2 22z z x z x z x y z y z y
u x u x u x y u u y u y u

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + ⋅ + + ⋅   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

   We can find the values of  
2z

u v
∂

∂ ∂
  &  

2

2
z

v
∂
∂

 in the same manner. 

 
 

……………………………………….. 
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v The Laplacian in Polar, Cylindrical and Spherical Co-ordinate 
   We consider first the two-dimensional Laplacian 

2 2
2

2 2
w ww

x y
∂ ∂

∇ = +
∂ ∂

  

   and its expression in terms of polar co-ordinates r  & θ .  
   Thus we are given ( , )w f x y=  and cosx r θ= , siny r θ=  and we wish to express 

2w∇  in terms of r , θ  and derivatives of w  with respect to r  and θ . The solution is 
as follows. One has 

w w r w
x r x x

θ
θ

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

w w r w
y r y y

θ
θ

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
  by chain rule 

   To evaluate  r
x

∂
∂

,  
x
θ∂

∂
, r

y
∂
∂

, 
y
θ∂

∂
 , we use the equations  

cos sindx dr r dθ θ θ= −  
sin cosdy dr r dθ θ θ= +  

   These can be solved for dr  and dθ  by determinants or by elimination to give 
cos sindr dx dyθ θ= +  

sin cosd dx dy
r r
θ θ

θ = − +  

   Hence   cosr
x

θ
∂

=
∂

,  sinr
y

θ
∂

=
∂

,  sin
x r
θ θ∂

= −
∂

   and   cos
y r
θ θ∂

=
∂

 

   Putting these values above in expressions of  w
x

∂
∂

  &  w
y

∂
∂

,  we have 

sincos
.............. ( )

cossin

w w w
x r r i
w w w
y r r

θ
θ

θ
θθ

θ

∂ ∂ ∂ = − ∂ ∂ ∂ 
∂ ∂ ∂ = +

∂ ∂ ∂ 

 

   These equations provide general rules for expressing derivatives w.r.t. x  or y  in 
terms of derivatives w.r.t. r  and θ . By applying the first equation to the function 

w
x

∂
∂

, one finds that 
2

2
w w

x x x
∂ ∂ ∂ =  ∂ ∂ ∂ 

 sincos w w
r x r x

θθ
θ

∂ ∂ ∂ ∂   = −   ∂ ∂ ∂ ∂   
 

   By (i) this can be written as follows: 
2

2
sin sin sincos cos cosw w w w w

x r r r r r r
θ θ θθ θ θ

θ θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂   = − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

   The rule for differentiation of a product gives finally 
2 2 2 2 2

2
2 2 2 2

2sin cos sincosw w w w
x r r r r

θ θ θθ
θ θ

∂ ∂ ∂ ∂
= ⋅ − ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

        
2

2
sin 2sin cosw w

r r
θ θ θ

θ θ
∂ ∂

+ ⋅ + ⋅
∂ ∂

 ……. (ii) 

   In the same manner one finds 

    
2

2
cossin sinw w w w

y y y r r r
θθ θ

θ
 ∂ ∂ ∂ ∂ ∂ ∂ = = +  ∂ ∂ ∂ ∂ ∂ ∂  

cos cossin w w
r r r

θ θθ
θ θ
∂ ∂ ∂ + + ∂ ∂ ∂ 
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2 2 2 2

2
2 2 2

2sin cos cossin w w w
r r r r

θ θ θθ
θ θ

∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂
 

   
2

2
cos 2sin cosw w

r r r
θ θ θ

θ
∂ ∂

+ ⋅ − ⋅
∂ ∂

 …… (iii) 

   Adding (ii) & (iii), we conclude 
2 2

2
2 2
w ww

x y
∂ ∂

∇ = +
∂ ∂

2 2

2 2 2
1 1w w w

r r r rθ
∂ ∂ ∂

= + +
∂ ∂ ∂

 ………. (iv) 

   This is the desired result. 
   Equation (iv) at once permits one to write the expression for the 3-demensional 
Laplacian in cylindrical co-ordinates for the transformation of coordinates 

cosx r θ=   ,   siny r θ=    ,   z z=  
   involves only x  & y . In the same way as above, we have 

2 2 2
2

2 2 2
w w ww

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

        
2 2 2

2 2 2 2
1 1w w w w

r r r r zθ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

 
 

v Laplacian in Spherical Polar Coordinates 
   The transformation form rectangular to spherical polar coordinates is  

sin cosx ρ ϕ θ=  ,  sin siny ρ ϕ θ=  ,  cosz ρ ϕ=  
   Writing  sinr ρ ϕ= , we have 

cosx r θ=  ,  siny r θ=  ,  z z=  
   Which can be considered as a transformation from rectangular to cylindrical 
coordinates ( , , )r zθ  
   We have 

2 2 2
2

2 2 2 2
1 1w w w ww

r r r r zθ
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂

 ……….. (i) 

    
where cos

sin
z
r

ρ ϕ
ρ ϕ

= 
= 

 ………. (ii) 

   We have transformation from ( , )x y  to ( , )r θ  as 
2 2 2 2

2 2 2 2 2
1 1w w w w w

x y r r rθ θ
∂ ∂ ∂ ∂ ∂

+ = + +
∂ ∂ ∂ ∂ ∂

 

   Now if we take transformation from ( ),z r  to ( ),ρ ϕ , then 

   
2 2 2 2

2 2 2 2 2
1 1w w w w w

z r ρ ρ ϕ ρ ϕ
∂ ∂ ∂ ∂ ∂

⇒ + = + +
∂ ∂ ∂ ∂ ∂

 

                  Also    w w w
r r r

ρ ϕ
ρ ϕ

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

   Where   2 2 2z rρ = +   ,   tan r
z

ϕ =  

          2 2r
r
ρ

ρ
∂

⇒ =
∂

  sin sinr
r
ρ ρ ϕ

ϕ
ρ ρ

∂
⇒ = = =

∂
 

          &   2 1sec
r z
ϕ

ϕ
∂

⋅ =
∂

   
2 2cos cos

cosr z
ϕ ϕ ϕ

ρ ϕ
∂

⇒ = =
∂

cosϕ
ρ

=  

    cossinw w w
r

ϕ
ϕ

ρ ϕ ρ
∂ ∂ ∂

⇒ = ⋅ + ⋅
∂ ∂ ∂

 ………… (iv) 

   Substituting (iii) & (iv) in (i), we have 
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2 2 2
2

2 2 2 2
1 1w w w ww

z r r r rθ
 ∂ ∂ ∂ ∂

∇ = + + + ∂ ∂ ∂ ∂ 
 

        
2 2 2

2 2 2 2 2 2
1 1 1

sin
w w w w

ρ ρ ϕ ρ ρ ρ ϕ θ
∂ ∂ ∂ ∂

= + + + ⋅
∂ ∂ ∂ ∂

1 cossin
sin

w w ϕϕ
ρ ϕ ρ ϕ ρ

 ∂ ∂
+ + ∂ ∂ 

 

        
2 2 2

2 2 2 2 2 2 2
1 1 1 1 cot

sin
w w w w w wϕ

ρ ρ ϕ ρ ρ ρ ϕ θ ρ ρ ρ ϕ
∂ ∂ ∂ ∂ ∂ ∂

= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

 

        
2 2 2

2 2 2 2 2 2 2
1 2 1 cot

sin
w w w w wϕ

ρ ρ ϕ ρ ρ ρ ϕ θ ρ ϕ
∂ ∂ ∂ ∂ ∂

= + ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 

 
v Question  
   If u  & v  are functions of x  & y  defined by the equations 

1xy uv+ =  ,  1xu yv+ =  

   then find  
2

2
u

x
∂
∂

. 

Solution 
0y dx xdy vdu u dv+ + + =  ……… (i) 
0u dx vdy x du y dv+ + + =  ……... (ii) 

   Eliminating dv  between (i) & (ii) 
( ) ( ) ( )2 2 0y u dx xy uv dy vy ux du− + − + − =  

     
2 2u y uv xydu dx dy

vy ux vy ux
− −

⇒ = +
− −

 

     
2 2 2 2

1 2
u u y u y
x vy ux ux

∂ − −
⇒ = =

∂ − −
      ( using given eq. ) 

     
( )

2 2
2

22

(1 2 ) 2 ( ) ( 2 ) 2

1 2

u uux u u y u x
u x x

x ux

∂ ∂ − ⋅ ⋅ − − − − ∂ ∂ ∂ ⇒ =
∂ −

 

 

v Question 

   Find  
2

2
w

x
∂
∂

,  
2

2
w

y
∂
∂

  when 

i)   
2 2

1w
x y

=
+

 

ii)  1tan yw
x

−=  

iii) 
2 2x yw e −=  

 

v Question 
   Show that the following functions are harmonic in x  & y  

i)    cosxe y  
ii)   3 23x xy−  

iii)  2 2log x y+  
 

……………………………………… 
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v Sufficient Condition for the Validity of Reversal in the Order 
    of Derivation 
   We now prove two theorems which lay sufficient conditions for the equality of xyf  
and yxf . 
 

v Schawarz’s Theorem 
   If ( , )a b  be a point of the domain of a function ( , )f x y  such that 
   i) ( , )xf x y  exists in a certain nhood of ( , )a b . 
   ii) ( , )xyf x y  is continuous at ( , )a b . 
   then ( , )yxf a b  exists and is equal to ( , )xyf a b . 
Proof 
   The given conditions imply that there exists a certain nhood of ( , )a b  at every point 
( , )x y  of which ( , )xf x y , ( , )yf x y  and ( , )xyf x y  exist. Let ( , )a h b k+ +  be any point 
of this nhood. We write 

( , ) ( , ) ( , ) ( , ) ( , )h k f a h b k f a h b f a b k f a bφ = + + − + − + +  
( ) ( , ) ( , )g y f a h y f a y= + −  

      so that    ( , ) ( ) ( )h k g b k g bφ = + −  ……….. (i) 
   yf∵  exists in a nhood of ( ),a b , the function ( )g y  in derivable in [ ],b b k+ , and, 
therefore, by applying the M.V. theorem to the expression on R.H.S of ( )i , we have 

( , ) ( )h k kg b kφ θ′= +    ( )0 1θ< <  
                                ( )( , ) ( , )y yk f a h b k f a b kθ θ= + + − +  ……….. (ii) 
   Again since xyf  exists in a nhood of ( , )a b , the function ( , )yf x b kθ+  of x  is 
derivable w.r.t. x  in interval ( , )a a h+  and, therefore, by applying the M.V. theorem 
to the right of ( )ii , we have 

( , ) ( , )xyh k hk f a h b kφ θ θ′= + +    ( )0 1θ ′< <  

   or     1 ( , ) ( , ) ( , ) ( , ) ( , )xy
f a h b k f a b k f a h b f a b f a h b k

k h h
θ θ+ + − + + −  ′− = + + 

 
 

   Since ( , )xf x y  exists in a nhood of ( , )a b , this gives when 0h → , 

0

( , ) ( , ) lim ( , )x x
xyh

f a b k f a b f a h b k
k

θ θ
→

+ − ′= + +  

   Let, now, 0k → . Since ( , )xyf x y  is continuous at ( , )a b , we obtain 

0 0
( , ) limlim ( , ) ( , )yx xy xyk h

f a b f a h b k f a bθ θ
→ →

′= + + =  
 

v Young’s Theorem 
   If ( , )a b  be a point of the domain of definition of a function ( , )f x y  such that 

( , )xf x y  and ( , )yf x y  are both differentiable at ( , )a b , then 
( , ) ( , )xy yxf a b f a b=  

Proof 
   The differentiability of xf  and yf  at ( , )a b  implies that they exist in a certain 
nhood of ( , )a b  and that xxf , yxf , xyf , yyf  exist at ( , )a b .  
   Let ( , )a h b h+ +  be a point of this nhood. We write 

( , ) ( , ) ( , ) ( , ) ( , )h h f a h b h f a h b f a b h f a bφ = + + − + − + +  
( ) ( , ) ( , )g y f a h y f a y= + −  

     so that     ( , ) ( ) ( )h h g b h g bφ = + −  ………. ( )i  
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   Since yf  exists in a nhood of ( , )a b , the function ( )g y  is derivable in ( , )b b h+ , 
and, therefore, by applying the M.V. theorem to the expression on the right of ( )i , 
we have 

( , ) ( )h h h g b hφ θ′= +       ( )0 1θ< <  
 ( )( , ) ( , )y yh f a h b h f a b hθ θ= + + − +  ……….. ( )ii  

   Since ( , )yf x y  is differentiable at ( , )a b , we have, by definition, 
   ( , ) ( , ) ( , ) ( , )y y xy yyf a h b h f a b h f a b h f a bθ θ+ + − = +  

        1 1( , ) ( , )h h h h h hϕ θ ψ+ +  …… (iii) 
   and    2( , ) ( , ) ( , ) ( , )y y yyf a b h f a b h f a b h h hθ θ θ ψ+ − = +  ….….. ( )iv  
   where 1ϕ , 1ψ , 2ψ  all 0→  as 0h →  
   From ( )ii , ( )iii  and ( )iv , we obtain 

1 1 22
( , ) ( , ) ( , ) ( , ) ( , )xy
h h f a b h h h h h h
h

φ
φ θψ θψ= + + −  …..…. ( )v  

   By a similar argument and on considering  
( ) ( , ) ( , )g x f x b k f x b= + −  

   We can show that 

3 2 32
( , ) ( , ) ( , ) ( , ) ( , )yx
h h f a b h h h h h h
h

φ
ψ θ ϕ θ ϕ′ ′= + + −  ……….. ( )vi  

   where 2 3 3, ,ϕ ϕ ψ  all 0→  as 0h →   
   Equating the right hand side of ( )v  and ( )vi  and making 0h → , we obtain 

( , ) ( , )xy yxf a b f a b=  
 

…………………………………. 
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v Maxima and Minima for Functions of Two Variables 
   Let 0 0( . )x y  be the point of the domain of a function ( , )f x y , then 0 0( , )f x y  said to 
an extreme value of the function ( , )f x y , if the expression 

0 0 0 0( , ) ( , )f f x h y h f x y∆ = + + −  
   preserves its sign for all h  and k . 
   The extreme value of 0 0( , )f x y  being called a maximum or a minimum value 
according as this difference is positive or negative respectively. 
 

Necessary Condition 
   The Necessary Condition for 0 0( , )f x y  to be an extreme value of function ( , )f x y  
is that 0 0 0 0( , ) 0 ( , )x yf x y f x y= = ,  provided that these partial derivatives exist. 
   It is to be noted that it is impossible to determine the nature of a critical point by 
studying the function 0( , )f x y  and 0( , )f x y . 
   e.g.  Let   2 2( , ) 1f x y x y= + −    
   then  2(0, ) 1f y y= −     (0, ) 2 0f y y′⇒ = − =    (0,0)⇒  is a turning point. 
   Now (0, ) 2f y′′ = −    (0,0)⇒  is a point of maximum value. 
   But  2( ,0) 1f x x= +  
    ( ,0) 2 0f x x′⇒ = =    0x⇒ =    (0,0)⇒  is the critical point 
    ( ,0) 2 0f x′′⇒ = >    (0,0)⇒  is the maximum value 
   Hence we fail to decide the nature of the critical point in this way. 
 

Sufficient Condition 
   Let ( , )z f x y=  be defined and have continuous 1st and 2nd order partial derivatives 
in a domain D . Suppose 0 0( , )x y  is a point of D  for which xf  and yf  are both zero. 
   Let  0 0( , )xxA f x y= , 0 0( , )xyB f x y= , 0 0( , )yyC f x y=  ,  
   then we have the following cases 
   i) 2 0B AC− <  and 0A C+ <    ⇒   relative maximum at 0 0( , )x y . 
   ii) 2 0B AC− <  and 0A C+ >   ⇒   relative minimum at 0 0( , )x y  
   iii) 2 0B AC− >    ⇒   saddle point at 0 0( , )x y  
   iv) 2 0B AC− =    ⇒   nature of the critical point is undetermined 
Proof 
   By the application of M.V. theorem for function of two variables we have 

0 0 0 0( , ) ( , )x yf hf x h y k kf x h y kθ θ θ θ∆ = + + + + +     (0 1)θ< <  

                [ ]0 0 0 0( , ) ( , )x xh f x h y k f x yθ θ= + + − 0 0 0 0( , ) ( , )y yk f x h y k f x yθ θ + + + −   
     (it is because 0 0 0 0( , ) ( , ) 0x yf x y f x y= = , a turning point) 

     0 0 0 0 1 2( , ) ( , )xx yxh hf x y kf x y h kθ θ ε θ ε θ = + + +   

                             0 0 0 0 3 4( , ) ( , )xy yyk hf x y kf x y h kθ θ ε θ ε θ + + + +   
   where 1 2 3, ,ε ε ε  & 4 0ε →  as , 0h k →  

2 2
0 0 0 0 0 0( , ) 2 ( , ) ( , )xx xy yyf h f x y hk f x y k f x y∆ = + + 2 2

1 2 3 4( )h hk kε ε ε ε+ + + +  
    2 2 2 2

1 2 3 42 ( )f h A hkB k C h hk kε ε ε ε⇒ ∆ = + + + + + +  
   The sign of f∆  depends upon the quadratic 2 2 22d f h A hk B k C= + +  
   i & ii) Let   2 0B AC− <  ,  ( 0)A ≠   

( )2 2 21 2d f h A hk AB k AC
A

⇒ = + +  



Chap 5 – Function of several variables 29 

             ( )2 2 2 2 2 2 21 2 ( )h A hk AB k B k AC k B
A

= + + + −  

   ( )2 2 21 ( ) ( )hA kB k AC B
A

= + + −  

   Since 2( )hA kB+  is positive and 2AC B−  (supposed) is  +ive, therefore the sign of 
2d f  depends upon the sign of A . 

   0f⇒ ∆ >   if  0A >   &  0f∆ <   if  0A <  
   Again, since 2 0B AC− <     2B AC⇒ <     0AC⇒ >  
   A⇒  and C  are either both  +ive or both  –ive. 
   If  0A >  ,  0C >   then  0A C+ >   and if  0A <  ,  0C <   then  0A C+ < . 
   Hence we have the following result 
   a)   0f∆ >   when 0A C+ >    0 0( , )x y⇒  is a point of minimum value. 
   b)   0f∆ <   when 0A C+ <    0 0( , )x y⇒  is a point of maximum value. 
   iii)  Let 2 0B AC− > , then 

  ( )2 2 2 21 ( ) ( )d f hA kB k AC B
A

= + + −  

( )2 2 21 ( ) ( )hA kB k B AC
A

= + − −  

   which may be  +ive or  –ive for certain value of h  & k , therefore 0 0( , )x y  is a 
saddle point.  
   iv)  Let 2 0B AC− =  ,  0A ≠  

      ( )22 1d f hA kB
A

⇒ = +  

   which may vanish for certain values of h  and k , implies that nature of the point 
remain undetermined. 
 

v Question 
   Test for maxima and minima 

2 21z x y= − −  
Solution 

2 0z x
x

∂
= − =

∂
   0x⇒ =  

2 0z y
y

∂
= − =

∂
   0y⇒ =  

     (0,0)⇒  is the only critical point. 
2

2 2zA
x

∂
= = −

∂
   ,  

2

0zB
x y
∂

= =
∂ ∂

   ,   
2

2 2zC
y

∂
= = −

∂
 

   2 0 4 4 0B AC− = − = − <    and   2 2 4 0A C+ = − − = − <  
   ⇒ the function has maximum value at (0,0) . 
 

v Question 
   Test for maxima and minima  

3 23z x xy= −  
Solution 

    2 23 3 0z x y
y

∂
= − =

∂
   x y⇒ = −   &   x y=  

          6 0z xy
y

∂
= − =

∂
   0xy⇒ =  
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   (0,0)⇒  is the critical point. 

   
2

2 6 0zA x
x

∂
= = =

∂
   at (0,0)  

   
2

6 0zB y
x y
∂

= = − =
∂ ∂

   at (0,0)  

   
2

2 6 0zC x
y

∂
= = − =

∂
   at (0,0)  

   2 4 0B AC− =    also   0A C+ =  
   Therefore we need further consideration for the nature of point 

     (0 ,0 ) (0,0)z z h k z∆ = + + −  
( , ) (0,0)z h k z= −  
3 22h hk= −  

   For h k=  
     3 3 33 2z h h h∆ = − = −  

0z⇒ ∆ >   if  0h <    &   0z∆ <   if  0h >  
   Hence (0,0)  is a saddle point. 
 

v Question 
   Examine the function 

2 2( , )z f x y x y= =  
Solution 
   0xf =    22 0xy⇒ =  
   0yf =    22 0yx⇒ =  
   implies that (0,0)  is the critical point  
   22 0xxA f y= = =     at (0,0)  
   4 0xyB f xy= = − =     at (0,0)  

   22 0yyC f x= = =     at (0,0)  
   Since  2 4 0B AC− =   and also  0A C+ =  
   Therefore we need further consideration for the nature of point. 

( , ) (0,0)f f h k f∆ = −  
     2 2h k=  

          0f∆ >    for all  h  & k  
   Hence (0,0)  is the point where function has minimum value. 
 
 

…………………………………….. 
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v Lagrange’s Multiplier  
   (Maxima & Minima for Function with Side Condition) 
   A problem of considerable importance for application is that of maximizing and 
minimizing of function (optimization) of several variables where the variables are 
related by one or more equations, which are turned as side condition. e.g. the 
problem of finding the radius of largest sphere inscribable in the ellipsoid 

2 2 22 3 6x y z+ + =  is equivalent to minimizing the function 2 2 2w x y z= + +  with the 
side condition 2 2 22 6x y z+ + = . 
   To handle such problem, we can, if possible, eliminate some of the variables by 
using the side conditions and reduce the problem to an ordinary maximum and 
minimum problem such as that consider previously. 
This procedure is not always feasible and following procedure often is more 
convenient which treat the variable in more symmetrical manner, so that various 
simplifications may be possible. 
   Consider the problem of finding the extreme values of the function 1 2( , ,...., )nf x x x  
when the variable are restricted by a certain number of side conditions say 

1 1 2( , ,...., ) 0ng x x x =  
2 1 2( , ,...., ) 0ng x x x =  

……………………   
………………….... 
…………………… 

1 2( , ,...., ) 0m ng x x x =  
   We then form the linear combination   
       1 1 1 1 1 2 2 2( ,..., ) ( ,..., ) ( ,..., ) ( ,..., )n n n nx x f x x g x x g x xϕ λ λ= + + + 1....... ( ,..., )m m ng x xλ+  
   where 1 2, ,...., mλ λ λ  are m  constants. 
   We then differentiate ϕ   w.r.t. each coordinate and consider the following system 
of n m+  equations. 

1 2( , ,...., ) 0r nD x x xϕ =    ,    1,2,....,r n=  
1 2( , ,...., ) 0k ng x x x =       ,    1,2,....,k m=  

   Lagrange discovered that if the point 1 2( , ,...., )nx x x  is a solution of the extreme 
problem then it will also satisfy the system of n m+  equation. 
   In practise, we attempt to solve this system for n m+  unknowns, which are 

1 2, ,...., mλ λ λ  & 1 2, ,...., nx x x  
   The point so obtain must then be tested to determine whether they yield a 
maximum, a minimum or neither. 
   The numbers 1 2, ,...., mλ λ λ , which are introduced only to help to solve the system 
for 1 2, ,...., nx x x  are known as Lagrange’s multiplier. One multiplier is introduced for 
each side condition. 
 

v Question 
   Find the critical points of  w xyz= , subject to condition 2 2 2 1x y z+ + = . 
Solution 
   We form the function 

2 2 2( 1)xyz x y zϕ λ= + + + −  
   then  

2 0yz x
x
ϕ

λ
∂

= + =
∂

 

2 0xz y
y
ϕ

λ
∂

= + =
∂
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   2 0xy z
z
ϕ

λ
∂

= + =
∂

 

  &     2 2 2 1 0x y z+ + − =  
   Multiplying the first three equations by ,x y  & z  respectively, adding and using 
the fourth equation, we find 

3
2

x y z
λ = −  

using this relation we find that ( )0,0, 1± , ( )0, 1,0± , ( )1,0,0±  and 
1 1 1, ,
3 3 3

 ± ± ± 
 

 are the critical points. 
 

v Question  
   Find the critical points of w xyz= , where 2 2 1x y+ =  & 0x z− = . Also test for 
maxima and minima. 
Solution 
   Consider ( ) ( )2 2

1 21F xyz x y x zλ λ= + + + + −  
   For the critical points, we have 

1 22 0xF yz xλ λ= + + =  ……….. (i) 
12 0yF xz yλ= + =  ………...….. (ii) 

2 0zF xy λ= − =  …………...….. (iii) 
  and          2 1x y2+ =  ………...….…. (iv) 

       0x z− =  …………………. (v) 

   From ( )iii , 2 xyλ =   &   from ( )ii  1 2
xz
y

λ = −  

   Use these values in equation ( )i  to have 
2

0x zyz xy
y

− + =  

    2 2 2 0y z x z xy⇒ − + =  
   ∵   x z=   from ( )v  
   2 3 2 0y x x xy∴ − + =     2 32 0xy x⇒ − =  
   But 2 21y x= − , from ( )iv  

   ( )2 32 1 0x x x∴ − − =     32 3 0x x⇒ − =     0x⇒ =  , 2
3

±  

   This implies the critical points are 2 1 2, ,
3 33

 
± ± 

 
, 2 1 2, ,

3 33
 

± − ± 
 

, 

( )0,1,0 , ( )0, 1,0−  

12xxA F λ= =  
xyB F z= =  

12yyC F λ= =  
2 2 2

14B AC z λ− = −  

                         
2 2

2
24

4
x zz

y
= −  

( )2 2 2

2

z y x
y

−
=  

   (i)  At 2 1 2, ,
3 33

 
± ± 

 
, we have 
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2

2 1 2
3 3 3

1
3

B AC

 − 
 − = 0<  

    &  12xxA F λ= =
xz
y

= −
2

3
1

3

 
 = −  
 

0<  

   ⇒ function has maximum value at 2 1 2, ,
3 33

 
± ± 

 
 

   Similarly, we can show that F  is also maximum at (0, 1,0)−  and is minimum at 
remaining points. (Check yourself) 
 

v Question 
   Find the point of the curve 

2 2 2 1x xy y z− + − =  ,  2 2 1x y+ =  
   which is nearest to the origin. 
Solution 
   Let a point on a given curve be ( ), ,x y z  
   Implies that we are to minimize the function  

2 2 2 2f d x y z= = + +  
   subject to the conditions 

2 2 2 1x xy y z− + − =  
2 2 1x y+ =  

   Consider 
( )2 2 2 2 2 2

1 1F x y z x xy y zλ= + + + − + − − ( )2 2
2 1x yλ+ + −  

   For the critical points 
( )1 2 12 1 0xF x yλ λ λ= + + − =  ……….. ( )i  
( )1 2 12 1 0yF y xλ λ λ= + + − =  ……….. ( )ii  
( )12 1 0zF z λ= − =  ………… ( )iii  

       2 2 2 1x xy y z− + − =  ………… ( )iv  
       2 2 1x y+ =  ………….. ( )v  

   From equation ( )iii , we have    
0z =   and  1 1λ =  

   Put 0z =  in equation ( )iv , gives 
2 2 1 0x xy y− + − =  

    2 2 1xy x y⇒ = + −  
    0xy⇒ =    by  ( )v  
    0x⇒ =   or  0y =   or  both are zero. 

   0z = , 0x =  in ( )v  gives,  2 1y =     1y⇒ = ±  
   ( )0, 1,0⇒ ±  are the critical points. 
   0z = , 0y =     1x⇒ = ±    ( )1,0,0⇒ ±  are the critical points. 
   We can not take 0x = , 0y =  at the same time, because it gives ( )0,0,0  which is 
origin itself as a critical point. 
   2 1d =∵  at all these four points. 
   ∴ these are the required point at which function is nearest to origin. 
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v Question 
   Find the point on the curve 

2 2 2 1x y z+ + =  
   which is farthest from the point ( )1,2,3  
Solution 
   We are the maximize the function 

( ) ( ) ( )2 2 21 2 3f x y z= − + − + −   
   subject to the condition 

2 2 2 1x y z+ + =  
   Let  

( ) ( ) ( ) ( )2 2 2 2 2 21 2 3 1F x y z x y zλ= − + − + − + + + −  
   For the critical points, we have 

1 0x xλ− + =  …………. ( )i  
2 0y yλ− + =  …..…..… ( )ii  
3 0z zλ− + =  ………… ( )iii  

   &    2 2 2 1x y z+ + =  ……….. ( )iv  
1

1
x

λ
⇒ =

+
 ,  2

1
y

λ
=

+
 ,  1

3
z

λ
=

+
 

   Putting in ( )iv  

   ( )
21 1 4 9 1

1 λ
  + + = + 

   ( )21 14λ⇒ + =    1 14λ⇒ = − ±  

1
14

x⇒ =
±

 ,  2
14

y =
±

 ,  3
14

z =
±

 

   ⇒  critical points are  
1 2 3, ,
14 14 14

 ± ± ± 
 

 

   Its clear that the required point which is farthest from the point (1,2,3)  is 
1 2 3, ,
14 14 14

 − − − 
 

 

 
……………………………………… 
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v Directional Derivative 
   i) Let :f V → ¡ , where nV ⊂ ¡ , is nhood of na ∈¡ . Then the directional 
derivative D fβ  at a  in the direction of nβ ∈¡ , is defined by the limit, if it exists, 

( )
0

( )
( ) lim

h

f a h f a
D f a

hβ

β
→

+ −
=   

   ii) The directional derivative of ( )1 2, ,..., ,...,i nf x x x x  at ( )1 2, ,..., ,...,i na a a a a=  in 
the direction of the unit vector ( )0,0,...,1,0,0,...,0  is called partial derivative of f  at 
a   w.r.t. the ith component ix  and is denoted by 

( )iD f a    or   ( )f a
x

∂
∂

   or   ( )
ixf a  

    where ( ) ( )1 2 1 2

0

, ,..., ,..., , ,..., ,...,
( ) lim i n i n

i h

f a a a h a f a a a a
D f a

h→

+ −
=  

 

v Example 
   Let 2 2( , )f x y x y x y= + + + , then f  has a directional derivative in every direction 
and at every point in 2¡ . 
   Since, if ( ) 2,a bβ = ∈¡ , we have 

   ( ) ( ) ( ) ( ) ( )2 2 2 2

0
, lim

h

x ha y hb x ha y hb x y x y
D f x y

hβ →

+ + + + + + + − − − −
=  

( )2 2

0
lim 2 2
h

ax by ha hb a b
→

= + + + + +  

( )2 ax by a b= + + +  
 

v Exercise 

   Let   
( )

( )

2 2
4 4

4 4
; 0

( , )
; , (0,0)

0

xy x y
x y

f x y x y x y

 −
+ ≠=  + ≠



 

   Note that if ( ) 2,a bβ = ∈¡ ,  

( )( ) ( ) ( )
( ) ( )

2 2

4 40

0 0 0 0
(0,0) lim

0 0h

ah bh ah bh
D f

h ah bh
β →

 + + + − + =
 + + + 

 

      
( )

( )
2 2

4 40
lim
h

ab a b

h a b→

−
=

+
 

   This limit obviously exists only if ( )1,0β =  or ( )0,1 . Hence the directional 
derivatives of f  at ( )0,0  that exists are the partial derivatives xf  and yf  given by 

0xf = , 0yf = . 
 

v Example 
   Let  

   
( ) ( )
( ) ( )

2

4 4 ; , 0,0
( , )

; , 0,0
0

xy x y
f x y x y

x y


== + ≠



 

   It is discontinuous at ( )0,0 . To see it, note that 

( )
( , ) (0,0)

lim ,
x y

f x y
→

  is zero along  0y =  and is  1
2

 along  2y x= . 
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   However, if  ( ),a bβ = , then 

( ) ( )( )
( ) ( )

2

2 40

0 0
0,0 lim

0 0h

ah bh
f

h ah bh
β →

+ +
=

 + + + 

 

   
2 2

2 2 4 40
lim
h

ah b h
h a h b h→

⋅
=

 + 
  

2

2 2 40
lim
h

ab
a h b→

=
+

 

   
2 , 0

, 00

b aa
a

 ≠=  =
 

   Hence the directional derivative of f  at ( )0,0  exists in every direction. 
 

v Question 
   Let  ( , )z f x y=  ,  2 2x u v= − ,  2y uv= . Then show that 

( )
22 2 2

2 2

1
4

z z z z
x y u vu v

  ∂ ∂ ∂ ∂      + = +       ∂ ∂ ∂ ∂+         
 

Solution 
   We have 

2x u
u

∂
=

∂
  ,    2x v

v
∂

= −
∂

   ,    2y v
u

∂
=

∂
   ,   2y v

v
∂

=
∂

 

   Also 

1 2 2u vu v
x x

∂ ∂
= −

∂ ∂
    ,    0 2 2u vu v

y y
∂ ∂

= −
∂ ∂

 

   and   0 2 2u vv u
x x

∂ ∂
= +

∂ ∂
   ,     1 2 2u vv u

y y
∂ ∂

= +
∂ ∂

 

   Solving these four equations for  u
x

∂
∂

, v
x

∂
∂

, u
y

∂
∂

 & v
y

∂
∂

, we get 

( )2 22
u u
x u v

∂
=

∂ +
   ,    

( )2 22
v v
x u v

∂ −
=

∂ +
 

( )2 22
u v
y u v

∂
=

∂ +
   ,    

( )2 22
v u
y u v

∂
=

∂ +
 

   And  
z z u z v
x u x v x

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

     
( )2 2

1
2

z zu v
u vu v

∂ ∂ = ⋅ − ⋅ ∂ ∂+  
 

     &   z z u z v
y u y v y

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

     
( )2 2

1
2

z zv u
u vu v

∂ ∂ = ⋅ + ⋅ ∂ ∂+  
 

   Hence  

( )
22 2 2

2 2

1
4

z z z z
x y u vu v

  ∂ ∂ ∂ ∂      + = +       ∂ ∂ ∂ ∂+         
 

 

………………………………………………….. 
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v Question 
   Let 2:f →¡ ¡  be given by 

( ) ( )
( ) ( )

2 2 ; , 0,0
( , )

; , 0,0
0

xy
x y

x yf x y
x y

 ≠ +=  =

 

   Show that xf , yf  exist at ( )0,0  but f  is discontinuous at ( )0,0 . 
Solution  

( ) ( )( )
( ) ( )2 20

0,0 lim
h

ah bh
f

h ah bh
β →

=
 + 

  where ( ),a bβ =  

   
( )2 20

lim
h

ab
h a b→

=
+

 

   Which exists only when  ( )1,0β =   or  ( )0,1 . 
   xf⇒  & yf  exist at ( )0,0  
   Now   

( ) 2 2( , ) (0,0) ( , ) (0,0)
lim , lim

x y x y

xyf x y
x y→ →

=
+

 

   Let  y mx=  , then 
2

2 2 2 2 2( , ) (0,0) 0
lim lim

x y x

xy mx
x y x m x→ →

=
+ +

 

                20
lim

1x

m
m→

=
+

 

   Which is different for different m . 
   ( ),f x y⇒  is discontinuous at ( )0,0 . 
 

v Question 
   Let 2:f →¡ ¡  be given by 

( ) ( )
( ) ( )

2

4 2 ; , 0,0
( , )

; , 0,0
0

x y x y
f x y x y

x y


≠= + =



 

   Show that xf , yf  exist at ( )0,0  but f  is discontinuous at ( )0,0 . 
Solution 

( ) ( )( )2 2

4 4 2 20
0,0 lim

h

a h bh
f

h a h b hβ →
=

 + 
 ,   ( ),a bβ =  

  
2

4 2 20
lim
h

a b
a h b→

=
+

 

  

2
, 0
, 0

0

a b
b b

 ≠=  =

 

   Now ( )
( , ) (0,0)

lim ,
x y

f x y
→

 is zero along 0x =  and is 1
2

 along 2y x=  

   ⇒    it is discontinuous at (0,0) . 
………………………………….. 
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v Question 
   Find the greatest volume of the box contained in the ellipsoid 2 2 23 2 18x y z+ + = , 
when each of its edges is parallel to one of the coordinate axes. 
Solution 
    V = volume of the box ( )( )( )12 2 2x y z= 8xyz=  
   We need to find maximum of V  subject to 2 2 23 2 18 0x y z+ + − =  
   Consider ( ) ( )2 2 2, , 8 3 2 18 0x y z xyz x y zϕ λ= + + + − =  
   Then  

  8 6 0x yz xϕ λ= + =  
  8 4 0y xz yϕ λ= + =  
  8 2 0z xy zϕ λ= + =  

24 3 0xyz xλ⇒ + =  
        22 0xyz yλ+ =  
        24 0xyz zλ+ =  

      ( )2 23 2 0x yλ⇒ − =  

      ( )2 23 0x zλ − =  
2 2

2 2
3 3
y zx⇒ = =  

   Substituting these values in  
      2 2 23 2 18 0x y z+ + − =  

   We get 
      2 2 23 3 3 18x x x+ + =     29 18x⇒ =  

2x⇒ =  ,  3y =   and  6z =   
   Which gives 

( ), , 8f x y z xyz= 48=  
 

…………………………………….. 
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v Definition 
   If : nf →¡ ¡  ,  na ∈¡  then  

    
1

( )( )
n

k k

f af a
x=

∂
∇ =

∂∑  
1 2

( ) ( ) ( )....
n

f a f a f a
x x x

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

 

v Definition 
   Let :f G → ¡ , G  is an open set in n¡ . 
i)   f  is said to have a local maximum at a G∈ , if there is a nhood  ( )V aε  such that  
     ( ) ( )f x f a≤  x Vε∀ ∈ . 
ii)  f  is said to have a local minimum at a G∈ , if there is a nhood  ( )V aε  such that  
     ( ) ( )f x f a≥  x Vε∀ ∈ . 
 

v Theorem 
   Let  :f G → ¡ , G  is an open set in n¡ . If f  has a local extremum at a G∈ , then 

( ) 0f a∇ = . 
Proof 

   It is clear that  ( ) 0f a∇ =   iff   ( ) 0
i

a
x

∂
=

∂
 ,  1,2,3,....,i n=  

   Write   ( ) ( )1 2, ,...., ,....,i i nf x t f x x x t x+ = +  ( )f x=  
   If f  has a local maximum at a , then 

( ) ( ) 0i if a t f a
t

+ −
≤    if   0t >  

 ( ) ( )
0

lim 0i i

t

f a t f a
t→

+ −
⇒ ≤     if   0t >  

So that    ( ) 0
i

f a
x

∂
≤

∂
 

   Similarly,  

       ( ) ( )
0

lim 0i i

t

f a t f a
t→

+ −
≥     if    0t <  

So that ( ) 0
i

f a
x

∂
≥

∂
 

   Hence  ( ) 0
i

f a
x

∂
=

∂
  ,   1,2,3,....,i n=  

     ( ) 0f a⇒ ∇ =  
 

Note 
   There are situations when ( ) 0f a∇ =  but f  has no local maximum or minimum at 
a . If so and if the sign of ( ) ( )f x f a−  depends upon the direction of x  and a , f  is 
said to have a saddle point at a . 
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