GRkapter 5 — Farctior of Several Yariables
Subject: Real Analysis Level: M.Sc.
Source: Syed Gul Shah (Chairman, Department of Mathematics, US Sargodha)

< Introduction

There is the basic difference between the calculus of functions of one variable and
the calculus of functions of two variables. But there is a slight difference between the
calculus of two variable and the calculus of functions of three, four or of many
variables. Therefore we shall emphasise mainly on the study of functions of two
variables.

< Function of two variables
If to each point (X,y) of acertain part of xy—plane, there is assigned a real number
z, then z isknown to be a function of two variable x and y.
eg. z=X-Vy°,z=X"+Yy°, Z=Xy €tc.
< Neighbourhood (nhood)
A neighbourhood of radius 6 of apoint (xo, yO) of the xy —plane is the set of
points which lies inside a circle with centre at (,, Y, ) and hasradius § .
N5 (Xo’ YO) :(X_ X0)2 +(y_ YO)Z <6°
Similarly, a nhood of aradius 6 of a point (xo,yo,zo) of a space is a sphere with
centre at (X,, Yo, %) and radius & .
N (%0 Yo%) = (X=%) +(y— o) +(2-2) <8

This definition can be extended to the definition of a nhood of a point of a space of
any dimension.

< Open Set
A set is known to be open set if each point (,, Y,) of the set has a nhood which
totally liesinside the set.

s Domain
A set D which is not empty and open is known to be a domain, if any two points
of the set can be joined by a broken line which lies completely within D .

“ Region
A domain D isknownto be aregion if some or all of the boundary points are
contained in D..

% Closed Region
A region is known to be closed if it contains all the boundary points.

eg. i) xX*+y°<1 (Domain) i) xy<1l  (Domain)
x*+y*=1 (Boundary) xy=2  (Boundary)
x*+y*<1 (Closed region) xy<1 (Closed Region)

% Limit & Continuity
Let z= f(x,y) beafunction of two variables defined in adomain D . Suppose
thereisapoint (X,,Y,) € D or isaboundary point then
lim f(x,y)=c

X=X
Y=Y

It means that given € >0 3 a 6 >0 such that
| f(xy)—c|<e whenever |(x,y)~ (%, ¥o)| <8 ¥ (% y)eN;(%, Vo)
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If limit of a function is equal to actual value of functionthen f issaidto be
continuous at the point (X,, Y, )
lim £ (x,) = f (%, %)
Y=Y

If f iscontinuous at every point of D, then f issaid to be continuouson D .

% Theorem
Let f(x,y) & g(xY) bedefinedinadomain D and suppose that
lim f(x,y)=u, & Ilimg(x,y)=Vv,
e ",
a) then (i) lim[f(xy)+9(xy)]=u+Vv
",
(i) Nim[f(xy)-g(xy)]=uy
Y=Y
iy lim2 Y W
e g(X%y) W
b) If f(x,y) & g(xYy) aredefinedin D, then
Imiy)=106%) & limg(xy)=09(x,Yo)
Y=Y Y=Y
l.e. T(x,Y), g(x,y) arecontinuous at (xO,yO) then so are the functions

f(x,y)+g(xy), f(x,y)g(xy) ad M provided g(x,y)=0.
g(x.y)

Proof

a () -~ Ilimf(xy)=u , Ilimg(xy) =V
X=> X—>X%g
ya;(; Y=>Yo

. given %>O i a 6,,0,>0 suchthat
&
[fxy)-w[<Z ¥ (%y)eN; (6, %)

& Ig(x,y)—v1|<% v (% y) e Ny, (%, o)

then |[f (% )+ 906 V)] - +w]|=|[ f O y) -] +[g0x y) - vi]|
S| f(X1y)_u1|+|g(X1y)_Vl|

<§+§ v (%) e Ny (%, Yo)

where § =min(§,,5,)
Which show that
1@0[ fO,yY)+a(xy)]=u+v

(ii) | f(x,y)-9(xYy) _U1V1| :| f(Xy) - g(xy)—ug(x,y) +ug(xy) _u1V1|
=|ox [ 1Y) -u]+ufg(xy) -]
<| g V6 Y) —w]|+|u[gxy)—v]|

8—

<|g(x,y>|§+u12 =gV (xYy)eN; (% Yo)
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= lim f(xy)-9(X,y)=uv
X=Xy

Y=Y

vari abl es

lii) Weprovethat lim ! :i
% g(X,y) v
Y=Y
‘ 1 _izvl_g(XsY)
axy) v v, 9(X,Y)
_lax ) v £
villax | wllaxy)]

%

o,

< <
|V1||g(XsY)_V1+V1| |V1|(|g(XsY)_V1|+|V1|)

%

&
2
< =& v (X1 y) € N52 (XO’ yO)
|V1|(%+|V1|)
1

= lim =—
% g(Xy) v
Y=Y
= limf(xy)=u & limg(xy)=v
X=Xy X—>Xg

Y=o Y=Y

By (ii) of theorem

lim f(x,y)- _imt Y)W
% g(xy) =eg(xy) v

Y=Y

b) Since it is given that the limiting values are the same as the actual values of the

functions f(x,y)+g(xy) , f(X¥y)-9(x,y) ad ;E)):yz at the point (%, Y,)

therefore these function are continuous on (X,, Y,) -

Note
It isto be noted that there is a difference between ( I)irr(l ) f(x,y) and limf(x,y)
X,y)—(a, X—a
y—b
ie Iimf(x,y):lirrg(limf(x,y)) or Iimf(x,y):lim(lirrgf(x,y))
X—a y—b \ x—>a X—a Xx—a\ y—
y—b y—b

Obviously in the two cases limits are taken first w.r.t one variable and then w.r.t
other variable. These limits are called the repeated limits. Since these are taken along
the special path, therefore repeated limits are the special cases of limits.

( |)iIT(l ) f(x,y) existsif and only if limiting vales are not depend upon any path
X,y)—>(a,

along which (x,y) — (a,b) .
< Example
Consider f:R*—>R givenby
X2y2

— , (X,y)#(0,0
fFy)=1x*+y* (xy)#(0.0)
0 , (x,y)=(0,0)
Now Iirgf(x,y):lirr(}f(x,y):o
X—> y—>
y—0 x—0

However aong the straight line y=mx, we have
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4

lim f(xy)= Z
(x,y)—>(0,0) 1+m
which is different for different values of m. Hence( I)i rr(lO , f (X,y) does not exist.
X, y)—>(U,
< Example
Consider f :R*— R given by
X*COSX — y*Cosy
, (X, y)#0
(=1 X1y Gey)
0 , (x,y)=0
then Iim[limf(x,y)}:limcosx:l
x—0| y—0 x—0
and Iim[limf(x,y)}:lim(—cosy):—l
y—0| x>0 y—0
= limf (x,y) doesnot exist.
s
< Example
Consider f :R* - R given by
sin(x® + y°
oy o 0TI = 0)
0 , (xy)=(0,0)
Use ﬂxx<l to get
| 009 -0 <[x+y[<[x[+]y|
Thus | f(x,y)-0||<e whenever |x|<% , |y|<%
Take 5 =< ,
2

It follows that for given ¢ >0, wecanfind 6 >0 such that
| f(x,y)— f(0,0)|<& whenever J(x=0+(y-0)° <5
l.e. V (X, Y) e Ny(0,0)
Limit of the function at (0,0) is equal to actual value of function at (0,0).
Hence f iscontinuousat (0,0).

% Partial Derivative
Let z= f(X,Yy) bedefined inadomain D of xy-planeand take (X,,Y,) €D,

then f(Xx,y,) isafunction of x aoneand its derivative may exist. If it exists then its
value at (X,,Y,) is known to be the partial derivative of f(x,y) at (X,,Y,) andis

denoted as a or oz
OX (%.¥0) OX (%.%)
The other notationsare z, , f, , f,.
ﬂ = lim f(X'*'AXsyo)_f(X’yo)
OX () x>0 AX

We can define Z—f in the same manner.
y
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< Geometrical Interpretation
z= f(X,y) represents asurfacein space. y=y, isaplane. z= (x, yO) is the curve

which ariseswhen y =y, cutsthesurface z= f(x,y). Thus 6_1; denotes the
(%:Yo)
slope of tangent to thecurve z= f(X,y,) a xX=X,. Smilarly a denotes the

(%:Yo)
slope of the tangent to thecurve z= f(x,,y) a y=Y,.

If the point (X, Y,) varies, then f, & f arethemselvesfunctionsof x & y.
In the case of functions of more than three variables it is necessary to indicate the

variable held constant during the process of differentiation as a suffix to avoid the

confusion.
. — , 0z 0z
For example, z= f (X, y,u,V), then partial derivatives are written as (a—) : (a—]
uj, \oy),
and so on. We take an example: x=u+v, y=u-Vv

(2) 0 (2) (2] -1 [2) -
ou ), ov ), ou ), ov ),
Also x+y=2u and x=2u-y, then

(%j =2 & % =-1 and so on.
ou ), oy ),

< Total Differential
In the case of partial derivative we have considered increments AX & Ay
separately.
Now take (x,y) & (X+ Ax,y+ Ay) two pointsin the domain of definition of z
thenif (z+ Az) correspond to the point (X+ AXx, y+ Ay) we have
Az=T(X+AX, y+Ay) - (X, Y)
If theincrement Az can be expressed as
AZ = aAX+ DAY + g,AX + g,Ay
and ¢,e, >0 as Ax,Ay — 0, then aAx+ bAy is known to be the total differential
of z denoted by dz, and we write
AZ=dz+ g AX+¢g,Ay
In case when z is differentiable function dz gives very close approximation of Az.

% Theorem
If z= f(x,y) hasatotal differential at apoint (x,y) € D, then
a= gz & b= oz .
OX oy
Proof

We have
Az=dz+gAX+¢g,Ay where g,6, >0 as AX,Ay -0

Let us supposethat Ay=0

then AZ = aAX + g,AX
Taking thelimitas Ax—0
0z
—=a
OX

Similarly we can get Q:b_
oy
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% Theorem (Fundamental Lemma)
If z= f(X,y) hasacontinuous first order partial derivativein D then z has total
differential dz:gqutgAy at every point (x,y)eD.
OX oy
Proof
Take apoint (x,y) asafixed point inthe domain D . Suppose x changes alone.
Then we have
Az=T(X+AX,y)- f(XY)
= f, (X, Y)AX (x<x <X+Ax) (Itisby M. V. Theorem)
f, is continuous
e =f0y)-f(Xy)>0 a Ax—>0
= f(X+AXxYy)-f(Xy)=f (X, Y)AX+gAX .......... (i)
Now if both X,y changes, we obtain achange Az in z as
Az= T (X+AX, y+Ay) - (X, Y)
=[f(x+A%Yy)— f (% V) ]+[ f (X+AX, y+Ay) - f (x+AX, Y)]
that is we have expressed Az as the sum of terms representing the effect of a
change in x alone and subsequent change in y alone.
Now f(X+AXy+Ay)—f(x+Axy)=f (X+AXy)Ay (y<y, <y+Ay)
(It is by use of M.V. theorem)
- f, isgiven to be continuous
g = f X+ A% YY) - (X y) >0 as Ax,Ay—0
= f(X+AX Yy +Ay) - f(X+AX Y) = f (X, Y)AY + £,AY ........... (i)
Using (i) & (ii), we have
Az= 1, (X% Y)AX+ f (X Y)Ay + e AX+e,Ay  where g6, — 0 as AX,Ay — 0
which shows that the total differential dz of z exist & is given by
dz=f (X, Y)AX+ f (X, Y)AY ... (iii)

Note
(a) For reasons to be explained later; Ax & Ay can bereplaced by dx & dy in (iii).

Thuswe have dz= %dx + gdy
OX oy
Which is the customary way of writing the differential. The preceding analysis
extends at once to functions of three or more variables. For example, if

w= f(x,y,u,v), then dW:a—de+a—Wdy+a—Wdu +a—de.
OX oy ou ov
(b) Inthe following discussion, the function and their Ist order partial derivatives

will be considered to be continuous in their respective domain of definition.

Example
If z=x*—y?, then dz = 2xdx— 2ydy.

Example:

If w=2Y, then dw:zdx+§dy—ﬁ2dz
z

z X z
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PROBLEMS
1) Evaluate 22 and 2 if
OX oy
2 2 _
a) 7= 2X 5 Ans: %:y;xz , g:AZ
X“+y OX (x2+y2) OX (x2+y2)
. 0z . 0z
b) z=xsinxy Ans. — =sIN Xy + XyCOSXy, — = X° COSXy
OX oy
2 2 X+2y
0 X+xy’-xz+2°-2=0 Ang 23Xty —2e oz e y

Tox x* —37° , 6y_ ey _ y2

2) Evaluate the indicated partial derivatives:

a) (@) and(@] if u=x*-y? v=x+2y
oX oy ),

b) (ﬁ) and(@j if u=x-2y,v=u+2y Ans (ﬁ) :1,(@j 1
ou ), ov ), ou ), o), 2

3) Find the differentials of the following functions

8 z=2 Ans: ydx;zxdy
y y
b) z=logyx*+Yy* Ans: M
X2 4y
c) z= tan‘l(zj Ans: M
X X2 +y
d) u= 1 Ans —(xdx + ydy + zdz)

X+ Y2+ 2 ¢ +y2 +2%) 2
4)If z=x*+2xy, find Az intermsof Ax, Ay for x=1, y=1.
Ans: Az:4Ax+2Ay+E+2AxAy , dz=4AX+2Ay , dz=4Ax+2Ay.
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< Derivative and Differential of functions of functions
In the following discussion, the function and their first order partial derivatives
will be considered to be continuous in their respective domain of definitions.

% Theorem (Chain Rule I)
Let z=f(x,y), x=9(t) & y=h(t) bedefinedinadomain D, then
dz g dx oz dy
dt ox dt ay dt
Proof
- z=1(Xx,y), x=9(t), y=h(t) aredefined in D, are continuous and have Ist

order partial derivatives.
. By using the fundamental lemma we have
Az :a—Ax+a—Ay+gle+g AY ool (1)
OX oy
where ¢,,6, >0 as Ax,Ay -0
Also Ax=g(t+ At) — g(t)
Ay = h(t + At) — h(t)
Dividing (i) by At, we get
Az 0z AX 0z Ay AX Ay
—+——+g—+E&,—
At ox At oy At At At
Take the limit as At —» 0, we get

Gz_02 &, Z Y s desired.

dt ox dt oy dt
% Theorem (Chain Rule II)
Let z=f(X,y), x=9g(u,v), y=h(u,v) bedefinedinadomainD and have
continuous first order partial derivativein D, then
0z_oz ox 0z oy
ou oOX ou oy ou
0z_oz ox 0z oy
oV OX oV oy oV
Proof
* the functions are continuous having first order partial derivativesin D,

therefore by the fundamental lemma, we have
Az :a—Ax+a—Ay+gle+g AY ool (1)
OX oy
where Ax=g(u+Au,v)-g(u,v), Ay=h(u+ Au,v)-h(u,v)
and ¢,6,—>0as AX,Ay—>0 i.e. Au—0
Dividing (i) by Au throughout to have
Az oz Ax 0z Ay Ay
+81 +82
AU X Au ay Au AU Au
Taking the limit as Au— 0 i.e. AX,Ay — 0, we have
0z_oz x 0z oy
du X ou oy au
Similarly if Ax=g(u,v+Av)-g(u,v)
Ay = h(u,v+ Av) — h(u,v)
Then dividing (i) by Av throughout, we obtain
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Az oz Ax oz Ay 8Ax+ Ay

—_— 8 —_—

AV X AV oy AV AV ZAv
Taking the limit as Av— 0, we have
0z 0z 0X 0z oy

N X ov ay oV

s Note
We have proved inchainrulel, that if z= f(x,y) , x=9g(t) , y=h(t), then

dz_oz dx oz dy

— et — = (i)
dt ox ot oy dt

The three functions of t considered here: x=g(t) , y=h(t) , z=f(g(t),h(t))

have differentials dx= %At , dy= ﬂAt , dz= ﬁAt
dt dt dt

From (i) we conclude that

L ——(dXAtj az(dymj
dt dt ) oyl dt
0Z

0z .
dz——dx+—d ............ i
= x>t oy y (i)

Similarly, dx:%Au %Av
ou ov
QAU—FQAV
ou ov

dz= gAu +§Av
ou oV

are the corresponding differentialswhen z= f(x,y), x=9(u,v), y=h(u,v)

= e (@g oz ay] u{gg oz ay]

dy =

OoX ou ay ou OX oV ay oV
:ﬁ(aXA + X v+ j (@Au +@Avj

ox\ ou ov oy\ ou ov
:de+§dy

OX oy

which is again (ii)
The generalization of this permits to conclude that:
The differential formula

dzzng'F gdyqtgdt + e
OX oy ot
which holdswhen z= f (X, y,t,....) and dx=Ax, dy=Ay, dt =At,......, remain the
true when X, y,t,....., and hence z, are all functions of other independent variables
and dx,dy,dt,.....,dz are the corresponding differentials.

As a conseguence we can conclude:

Any equation in differentials which is correct for one choice of independent
variables remains true for any other choice. Another way of saying this isthat any
equation in differentials treats all variables on an equal basis.

Thus, if dz=2dx—3dy at agiven point, then dx:%dz+gdy isthe

corresponding differentials of x intermsof y and z.
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< Example
2 2
x“—1 then dz= 2xydx—(2x —1Ddy
y y
0z 2x 0z 1-x°
Hence —=— , —=——
ox y oy oy
< Example
If r?=x°+y?, then rdr = xdx + ydy

and (ﬂj :E , ﬂ :X , (%j :L , etc.
ox), r oy) r or), X
< Example

If z= tan‘l(zj (x=0), then

X X° +y

If z=

X

and hence
@y o x
X Xe+y: oy XP+y?




Chap 5 — Function of several variables 11

< Implicit Function
If F(x,Yy,2) isagivenfunctionof X,y & z, thenthe equation F(X,y,z)=0 isa
relation which may describe one or several functions z of x & .

Thusif x°+y?+2z°-1=0, then

Z=41-X—y* o z=—1-X*-V*
Where both functions being defined for x* + y* <1. Either function is said to be
implicitly defined by the equation x*+ y*+ z*-1=0.
Similarly, an equation F (X, Y, z,w) =0 may define one or more implicit functions
w of X,y,z. If two such equations are given,
F(x,y,Zzw)=0 , G(x,y,zw)=0,
It isin general possible (at least in theory) to reduce the equations by elimination to
the form
w="f(xy) . z=9(xy)
I.e. to obtain two functions of two variables. In general, if m equationsin n
unknown are given (m<n), it is possible to solve for m of the variables in terms of

the remaining n—m variables; the number of dependent variables equals the number
of equations

< Example
If 3x+2y+z+2w=0
2Xx+3y—-z-w=0
then w=f(X,y)=-5x-5y & z=9g(x,y)=7x+8y

< Example

Suppose that the functions w= f (X,y) & z=g(x,y) areimplicitly defined by
2x° +y*+ 72— 2w=0
X*+y*+22°-8+2zw=0

Then taking the differentials, we obtain
Axdx+ 2ydy + 2zdz—wdz - zdw=0 ......... (i)
wdz + zdw+ 2xdx + 2ydy + 4zdz=0 ......... (i)

Eliminate dw between (i) and (ii) to have
6xdXx + 4ydy + 6zdz=0

= dz:—zdx—ﬂdy

z 3X
0z X oz 2y
- — = —— , —_—=——
OX z oy 3z
Eliminating of dz from (i) and (ii) gives
6x(2z+w)dx +4y(z+w)dy - 6z°dw = 0

2 2
= dw = a Z2+W)dx+ y(Z;Lw)dy
z 3z
OW _ X(2X+ W) ow _2y(z+w)

2 2

OX X G, z
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< Examples
Suppose that the functions w= f(x,y) & z=g(X,y) areimplicitly define by
F(x,y,zw)=0 and G(X,Y,z)=0, then
Fdx+Fdy+F,dz+F,dwv=0
and G,dx+G,dy+G,dz+G,dw=0
= F,dz+F,dw= —[ F.dx + Fydy]
and G,dz+G,dw=— [Gxdx + Gydy}
Then by crammer rule, we have

Fdx+Fdy F, F F, F, K
G,dx+G,dy G, G, G, G, G,
dz= F, F, “Te £|%TE £V
G, G, G, G, G, G,
F. F, F, F,
oz G, G, g___Gy G,
OX F, F,| = oy F, F,
G, G, G, G,
o(F,G) o(F,G)
0z o(X,w 0z o(y,w . o(F,G
= &:— —a((F,G)) : a_y:_—a((lz/,G)) provided a((z,w)) #0
o(z,w) o(z,w)

Similarly, we have
G, Gax+Gdy
F, F

z w

G, G,

F, Fdx+Fdy ‘

dw=—

and we can find a—W and a—W in the same manner.
OX oy

% Particular Cases
1) One equation in 2 unknowns i.e. F(x,y)=0
= Fdx+Fdy=0
&y__K (Fy # O)
ax F
I1) One equation in 3 unknowns i.e. F(X,y,2)=0
Fdx+Fdy+F,dz=0
F
z_ ka2 R oo
OX F, oy F,
lii) 2 equationsin 3 unknown
F(xy,2=0 , G(xY,2=0
o(F,G) o(F,G)
oz__dyx)  0z__owy)

ox O(F.G) ' gy O(F.G)
a(y.2) o(z,w)
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< Example
Find the partial derivativesw.r.t x & y, when
U+2v—x+y*=0

2u—-v—-2xy=0
Solution
Take the differentials
du+ 2dv—2xdx+2ydy=0 ............ (i)
2du—dv—-2xdy—2ydx=0 ............. (i)

Eliminating dv between (i) and (ii), we have
5du— (2x+4y)dx+ (2y—4x)dy =0

= du :%(2x+4y)dx—%(2y—4x)dy

ou 1 ou 1
= —=—(2x+4 & —=—=(2y-4x
OX 5( y) oy 5( Y )
Eliminating du between (i) and (ii), we get

5dv —(4x—2y)dx+(4y+2x)dy =0
= dv:%(4x— 2y)dx—%(4y+ 2x)dy

ov 1 ov 1
= —=—(4x-2y) & —=—-—(4y+2X
OX 5( y) oy 5( Y )
s Question
Give that
2X+y—-3z-2u=0
& X+2y+z+u=0

o (5).(3)- (). @)

Solution
Take the differentials
2dx+dy—3dz—-2du=0 ............ (i)
dx+2dy+dz+du=0 ............... (i)
Eliminating du between (i) and (ii), we have
4dx+5dy —dz=0 .......... (iii)

= dx:—§dy+1dz
4 4

OX 5
= | = | =—
(@/l 4

From (iii), we have
5dy = dz— 4dx

= dyzldz—ﬂdx
5 5

- (2]
0z), 5

Eliminating dz between (i) & (ii), we get
5dx+7dy+du=0

13
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Now eliminating dy between (i) & (ii), we get
—3dx—-5dz-3du=0

= dz:—gdx—gdu

5 5

s Question

(azj 3
= | —| =—=
ou), 5
Given that

X+ Y +Z U V=1 ..., (i)
XY+ Z U+ =2 (i)
a) Find du & dv interms of dx,dy & dz at the point
x=1,y=1,z=2,u=3 & v=2.

OX a_y
¢) Find approximately the valuesof u & v for x=1.1, y=12, z=1.8

Solutions
Differential gives

b) Find (@) : (a\/] at the point given above.
(y,2) (x,2)

2xdx + 2ydy + 2zdz—2udu + 2vdv=0 ......... (iii)
2xdx — 2ydy + 2zdz+ 2udu + 2vdv=0 ......... (iv)
a) Putting x=1, y=1, z=2,u=3 & v=2 in(iii) & (iv), we obtain
2dx+ 2dy+ 4dz—6du+4dv=0 ............ (V)
& 2dx—2dy+4dz+6du+8dv=0 ............ (vi)
Adding gives

12dv = —(4dx + 8dz)
= dv:—%(dx+0-dy+2dz)
Similarly eliminating dv between (v) and (vi), we get

du= é(dx+ 3dy + 2dz)

b) v du= %(dx+ 3dy + 2dz)

. (iuj 1
S \ox),, 9

& - dv= —%(dx+ 0-dy + 2dz)
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s Question
Find the transformation of x=rcosf, y=rsinf from rectangular to polar
coordinates. Verify the relations
a) dx = cosfdr —rsin6do
dy =sinfdr + r cosfdo
b) dr = cosfdx + sinfdy

do = ——S”:G dx+_corst9 dy

C) (%j —cosf (Q) _sech or.0) 1
or Jo or )y o(xy) r

Solutions

Giventhat x=rcosf® & y=rsnf

a) Differential gives
dx=cosfdr —rsinfdeo .......... (i)
dy=sinfdr +rcosodo .......... (i)

b) Multiplying (i) by cosf & (ii) by snf and adding, we get
dr = cosfdx + sinfdy

Now multiply (i) by sn@ & (ii) by cosf and subtract to obtain

siné N cos6 dy

do =- dx
r r

c) Given x=r cosO

= (%j = Cos0O
or J,

We have already shown that dr = cosOdx +sinfdy
dr

Which can be written as dx=—— — tan0dy
cosf
- (3]
or y

OX OX

o A0 cosf® -rsiné
o(xy) _|or 00| _ _ =rcos’f +rsin0 =r
o(r,0) |oy oy sin@ rcosf

or 00

T A e sng
or,0) |ox oy| _ CO-SQ Smg —1c0320+lsin20 1
oy |20 20| T|-SE SE| T

oX oy ' '

s Question
Giventhat x°—y’cosuv+z>=0
X+ y*—sinuv+2z°=2
and xy-sinucosv+z=0
Find (ﬁ) : (%j a x=1, y=1, u:z, v=0, z=0
ou), \ov), 2

Solution
Differential gives
2xdx— 2ycosuvdy + y*sinuv- udv + y*sinuv-vdu + 2zdz=0 ....... (i)
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2xdx+ 2ydy — cosuv-udv —cosuv-vdu + 4zdz=0 ......... (i)
& xdy+ ydx—cosu-cosvdu+sinu-sinvdv+dz=0 ......... (iii)
At the given point, these equations reduce to
20x—2dy=0 ........cennnn. (iv)
20X + 2dy—%dv =0 o, (v)
& dx+dy+dz=0 ............... (vi)
Adding (iv) & (v), we have
4dx—Zdv=0
2
= dx=2dv+0-du = (%j =0, (%j _I
8 ou ), o), 8

s Question

Find (@) if X’-y*+u*+2v°=1
ox ),
X+ Yy —ut-v =2
Solution
Taking the differentials, we have
2xdx—2ydy +2udu+4vdv=0
2xdx+2ydy —2udu—2vdv=0
Eliminating dv, we get
6xdx+2ydy—-2udu=0

= du :%dX'FXdy
u u

( ou j 3x
— | =] =22
ox), u
s Question
Given the transformation
X=U—-2v
y=2Uu+V
a) Write the equations of the inverse transformation
b) Evaluate the Jacobian of the transformation and that of the inverse
transformation.
Solution
a) From the equations, we have

u—1x+gy
5 5

v——gx+1y
5 5

which are the equations of the inverse transformation.
OX OX
o(xy) _|ou v
ouy) |oy oy
ou ov

b) Jacobian of the given transformation =

|1 -2
12 1
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u
o(u,v) |ox 0oy
oxy) |ov v
oxX oy

Jacobian of the inverse transformation =

gl 3alN
Ul

* Question

17

Given the transformation x= f (u,v), y=g(u,v) with Jacobian J = o(x.y) , Show

o(u,v)
that for the inverse transformation one has
u_loy ou_ 1ox ov_ 1oy ou_1ox
ox Jov oy Jov  ox  Jou ' oy Jéu
Solution
The given equations are
f(uv)—x=0.......... (i)
g(uv)—y=0 .......... (i)
Differentiating w.r.t. x, we get
fu@uv@—l:o
OX OX
ou ov
—+9,—-0=0
guax gVaX
Solving these equations by Crammer’ s rule, we have
-1 f,
u_ 10 o) g 1y (- 2
OX f, f, J  Jov Cov Y
9. 9
f, -1
v__19 O] 9. __ 1%
OX J J Jaou
Differentiating (i) & (ii) w.r.t. y, we have
fu@qufvﬂ—O:O
oy oy
gu@+gvﬂ—1zo
o oy
Solving these equations by Crammer’ s rule, we get
0 f,
u__|=tel __f __10
oy J J Jov
f, O
ov__ 19 S _f, _1oX

oy J J Jau
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s Question
Given the transformation

Chap 5 — Function of several

vari abl es

X=U’—-V?

y = 2uv
a) Compuite its Jacobian.

b) Evaluate (@j & (@j
oX ), 0X )y

Solution

The given equations can be written as

u>-v?—x=0
=0

2uv -y

Differentiating (i) & (ii) partially w.r.t. x, we have

ZU@—

OX
ou

2V—+2u—-0=0

OX
OX
ou
oy
ou
Solving (iii) & (iv) by Crammer’

3_9xy) _
o(u,v)

2v@—1:0
OX

oV

OX
OX
oV
oy
oV
srule, we have

2u u

-1 -2v
(i?U)
OX y

2u -1
2v O

- 4% +v?) - 2(u® +Vv%)

-2V -V

_ 0 2
J
&)
oX ), J
Note
ou ov
oy
s Question
Provethat if F(X,y,2) =0, then

SR

- 4% +v?) - 2(u® +Vv%)

(a_y] & (—] can be determined in the same manner.

o (@j 1
oy ), \oz),

Solution
F(x,y,2=0
= Fdx+F,dy+F,dz=0
F F
= dx:——ydy—idz SN (G I
I:X I:X ay z Fx
& dy:—idx—idz = ¥ .k
F, F, 0z ), F,
F
dZ:—idx——ydy — g :_i
F, F OX F

z

N
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Hence

215

* Question
Provethat, if x= f(u,v), y=g9(u,v), then

2325
= (2(5) (5] (2)
e (] (2] -1

© f(u,v)—x=0
g(u,v)-y=0

(@j _9 (@j __ 9%
Clox), 3 \ex), 3

Solution

au :_L, Ny _& as already shown
oy ), J oy) J

Taking differentials of the given equations, we have
f,du+ f,dv—-dx=0
g,du+g,dv—-dy=0

= dx= f,du+ f,dv

= f,-=t=g,-—, whichistrue
J J

Similarly, we have the second relation.
Eliminating dv between (i) & (ii), we get
(f,-9,—f,-g,)du—g,dx+ f,dy=0
_— dX:%.du_dey

f,g,— f
and dy:%dx_M du

\ \

oy . 9 ox), f

- [ X (Q} 9
8yu ox), 9, f

\Y

19
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s Question
Giventhat x= f (u,v,w), y=g(u,v,w), z=h(u,v,w) with the Jacobian

J= M , show that for the inverse transformation one has

o(u,v,w)
3 ou_14(y,2 ou_10(zx) ou_14(xy)
ox Ja(v,w) ay Jo(v,w) 8z Ja(v,w)
i) ov_10(y,z2 ov_10d(zx) ov_10dkxy)
ox Jowu) dy Jawu) oz J(wu)
i) ow_140(y,z2 ow_19(zx) ow_19(xy)
ox Jo,yv) oy Jouyv)  dz I ou,v)
Solution
Wehave f(u,v,w)—x=0
g(u,v,w)—y=0
h(u,v,w)—z=0

Differentiating w.r.t. to x, we get

fu@'F fV@'F fwa_vv_1:O
OX OX OX

g @+g @+g a—W—O—O
“ox  TUox T oX
ou oV oW
—+h,—+h,—-0=0
hbax h’8x h’Vax
By Crammer’ s rule, we have
-1 f, f,
0 g9 9. |9 9
ou_ |0 h h| |h h|_13gh _1d(y2
OX J J Jo(v,w)  Jo(v,w)
f, -1 f,
9, 0 g, 9 Yu
o_|h 0 h| |h h| _ 108(gh _14(y.2
OX J J Jo(w,u)  Jo(w,u)
f, f, -1
9 9 0 |a g
ow_ |h h 0] [h h| _105gh) _15(y.2)

X J J Jouyv)  Jauv)
We can find the other relations in the same way by differentiating given relation
w.r.t. y and w.r.t. z respectively.
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< Partial Derivative of Higher Order

Let afunction z= f(X,y) be given. Then itstwo partial derivatives ? & ?
X y

are themselves functionsof x & y.
: 0z 0z
e —=f(xy) , —="f (X

Hence each can be differentiablew.r.t. x & y.
Thus, we obtain four partial derivatives

2z 0%z
v fo(XY)

= £, (%)

X O
27 0°z
=f (XV), =f (X,
yox w(XY) EYd w(XY)
2 2

a—f is the result of differentiating oz w.r.t. x, where
OX OX 0y OX

Is the result of

differentiating ? w.r.t. y. If al the derivatives concerned are continuous in the
X

2 2
domain considered, then 0z = 0z I.e. order of differentiation is immaterial.
OXoy 0oyoX
Third and higher order partial derivatives are defined in the same manner and
under appropriate assumptions of continuity the order of differentiation does not

matter.

* Laplacian of z
If z= f(x,y), thenthe Laplacian of z isdenoted by V?z isthe expression
2 2
sz:a—f+a—f
ox~ oy
if w=1f(x,y,2), the Laplacian of w isthe expression
o'w  o°'w  d°w
2 + 2 + 2
ox- oy® o0z
The symbol “ V” is avector differential operator define as

V—£|+£I+ilz
oX~ oy~ OX

We then have symbolically

Vaw=

o 0% &
+ +
ox*  oy* 07

Vi=V.V=

< Harmonic Function
If z= f(x,y) has continuous second order derivativesin adomain D and V*z=0
in D, then z issaid to be Harmonic in D . The same term is used for the function of

three variables which has continuous 2™ derivatives in adomain D in space and
whose Laplacianis zero in D . The two equations for harmonic functions

2 02

Viz=—+—5=0
x> oy°

Vo — o° \/2v o° W o° w_
ox> oy’ az

are known as the Laplace equations in two and three dimensions respectively.
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“ Bi-Harmonic Equations
Another important combination of derivatives occurs in the equation
0z . 0z . o'z
oxt  Toxtoy: oyt
which is known to be the Bi-harmonic equation. This combination can be
expressed in terms of Laplacian as
V3(Viz) = V*z =0
The solutions of V*z=0 are termed as Pri-harmonic functions.

“» Higher Derivatives of Functions of Functions
(1) Let z=f(x,y) and x=g(t), y=h(t) sothat z can be expressed in terms of t

aone. Then
dz oz dx oz dy

+
dt ox dt oy dt

d’z d(dz azdx dx d azdy dy d .
— = — — t——F | . (i)
d°  dtldt,) ox o dt di\ ox dy dt?  dt dt ay

Using (i), we have
d(azj 822%+ 0’z dy
dt ox® dt  oyox dt

d(az] 02z dx+azzdy

dt\ oy ) oxozdt oy® dt

Putting these values in (ii), we have
d_zzzgd_%(+a_zz(%j2+2 °z dx dy+82 (dyj ozd%y
dt®>  ox dt’ dt oxoy dt dt oy?\dt) oy dt’

2 If z=1f(x,y) and x=g(u,v) , y=h(u,v), then
0z_oz x oz oy
ou oOX ou oy ou
o0z 0z ax oz oy
N ox av ay oV
0%z oz *x 0 (azj X az(a y] &y 0 (az] .
— =t — == — | i (iv)
ou® ox ou® du\ox) ou oyl ou®) ou oul oy

Using (iii), we have

a(azj 0’z ox  o°z oy

aulox) o ou oyox ou

i(%]_ 0’z x 02y
oul oy ) oxoy ou oy* ou
Putting these valuesin (iv), we get
dz_o20% %z (axj+2 o’z x oy oz (ijg_@
ou® oxou® ox*\ou OX3y du ou oy° dy ou?
0%z 0%z

We can find the values of & —
ouov ov

&

in the same manner.
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< The Laplacian in Polar, Cylindrical and Spherical Co-ordinate
We consider first the two-dimensional Laplacian
V2= o° W+ o*w
ox*  oy°

and its expression in terms of polar co-ordinates r & 6.

Thuswe aregiven w= f(x,y) and x=rcosf, y=rsind and we wish to express
VAw intermsof r, 8 and derivatives of w with respect to r and 6. The solution is
asfollows. One has

ow_ow or ow a0

+_._
ax ar oX 00 0X

ow _ aw or ow 00 .
—+—-— by chainrule
ay or oy 00 oy

To evaluate ﬂ, @ ﬂ 140 , We use the equations
ox ox oy oy

dx=cosO dr —rsin6 do
dy=sinf dr +r cosb do

These can be solved for dr and d6 by determinants or by elimination to give
dr = cosO dx+ sinf dy

sno cosf

do =— r dx+ r dy
Hence ﬂ:cos@, T _sn 0, 00 __sno 4 99 _coso
X oy ox r oy T
Putting these values above in expressions of X & Ve we have
y
ow ow sSing ow
— =C0S0 ——
X or r oo i)
ow_ y a_vv cosh ow |
ay or r o6

These equations provide general rules for expressing derivativesw.r.t. x or y in
terms of derivativesw.r.t. r and 6. By applying the first equation to the function

a—W , one finds that

OX
R, a(awj a(awj sing a(awj
>=—| — | =C0S0 —| — |-————| —
OX OX\ oX or \ ox r 00\ ox

By (i) this can be written as follows:

o°w 0 ow sing ow) snd o ow  sing ow
> = C0SO —| cost) — — - coSO) — ————

OX or or r oo r oo or r 00

The rule for differentiation of a product gives finally

R, 2, 0°W_ 2sinfcosd o°w S|n20 o*w
> =C0S"0 - — —
OX or r arae r 00
sn‘0 ow 2sinfcosh ow ..
+ —+ 5 — s (i)
r 00 r 00

In the same manner one finds

82W a aw 0 aw cosO ow) cosf O ( . .OwW €0SsO ow
=sng—| sinO + sIng —+ ————
ay ay ay or ar r o6 r o060 or r o6
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24
.2, 0°W 2sinfcosd o°w 00320 R,
=sn“0 -—+ — =
or r arae r 00
cos’ 0 0w 2sind cos® ow
+ T eeene (iii)
r ar r 80

Adding (ii) & (iii), we conclude
o°w aw o’'w 1 o*w 1ow (iv)

VW=—+ + St
oxC oy or? r2p02 ror

Thisis the desired result.
Equation (iv) at once permits one to write the expression for the 3-demensional

Laplacian in cylindrical co-ordinates for the transformation of coordinates
X=rcosf , y=rsing , z=z

involvesonly x & Y. Inthe same way as above, we have
o'w  o°'w  d°w
2 + 2 + 2
ox- oy® o0z
a w 10w 1low o°w
>+ — 792 +-—t—
o 00° ror oz

Vaw=

< Laplacian in Spherical Polar Coordinates
The transformation form rectangular to spherical polar coordinates is
X=psSinpcoshd , y=psSinpsing , z= pCcose

Writing r = psSing, we have
X=rcosf , y=rsing , z=z
Which can be considered as a transformation from rectangular to cylindrical

coordinates (r,0,z)

We have
Vaw= aW+125";’+16W AR (i)
or? 002 ror o7
where  z= pCose (i)
f=psing [T

We have transformation from (x,y) to (r,0) as
o° W o° w o° W 10°w 1low

+
Py oy?  or? " e0° v o0
Now if we take transformation from (zr) to (p,¢), then
o'w 0w o'w 1 o°w 16w
st s T et a2t
0z or° oOp° p op° pop
oW _ow op oW O
o Op or Op or

X
Where p*=72°+r1% , tangp=—
z

Also

2 2
& seczqg-a—(p:l _, Op _cos'p _cosp _cosp
o z or z p COS@p p
ow a—W-sin +@-@ ............ (iv)

= —= [0
or op op
Substituting (iii) & (iv) in (i), we have
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o°'w o°w) 10w 1low
VW=| —+— +—2—2+——
0z>  or? 00 r or
o°w 1aw 1aw 1 aw 1 oW _. OW COSQ
=— +— +— —sSinp +——
p® 0p° pap p’sin‘e 0602 pSng

op op op p
aw+1 oW aw 1 aw+1aw coty ow
op? p? op? p op planie 007 p op  p? og

1
o,
a_iaz L20w 1 o'w cotp ow
op® p® 0p° p Op p°sine 90° p° Og
s Question
If u & v arefunctionsof x & Yy defined by the equations
Xy+uv=1, xu+yw=1

2

then find a—lzj
OX
Solution
ydx+ xdy+vdu+udv=0 ......... (i)
udx+vdy +xdu+ ydv=0 ......... (ii)

Eliminating dv between (i) & (ii)
(v?—u?)dx+(xy —uv)dy +(vy—ux)du=0

2 2

U =Y ax+ M=%y

Vy — UX Vy — UX

@:uz_yzzuz_yz

OX Vwy—ux 1-2ux

o%u

ou
. _(1 2UX) - 2U - a——(u -y )[( 2U) — Zxax}

ox? (1- 2ux)®

= du=

(using given eg. )

s Question

o'W o°w

ox* 7
1

1Y
X

Find — when

1) w=

i) w=tan"

2 2

i) w=e*"
% Question
Show that the following functions are harmonicin x & y
i) €“cosy
i) x°—3xy?

iii) logyx®+y°
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 Sufficient Condition for the Validity of Reversal in the Order
of Derivation
We now prove two theorems which lay sufficient conditions for the equality of f,

and fyx.

% Schawarz’s Theorem
If (a,b) beapoint of the domain of afunction f (x,y) such that

1) f.(Xy) existsinacertain nhood of (a,b).

i) f,(xy) iscontinuousat (a,b).

then f,(a,b) existsand isequal to f, (a,b).
Proof

The given conditions imply that there exists a certain nhood of (a,b) at every point
(%, y) of which f (x,y), f,(xy) and f(xy) exist. Let (a+h,b+k) beany point

of this nhood. We write
#(h,k)=f(a+h,b+k)- f(a+h,b)- f(a,b+k)+ f(a,b)

g(y)=f(a+hy)-f(ay)
sothat ¢(hk)=gb+k)—g) ........... (i)

- f, existsinanhood of (a,b), the function g(y) in derivablein [b,b+k], and,
therefore, by applying the M.V. theorem to the expression on R.H.S of (i), we have
¢#(h,K) =kg'(b+6Kk) (0<6<1)
=k(f,(a+hb+6k) - f (ab+0Kk)) ......... (ii)
Againsince f,, existsinanhood of (a,b), the function f (x,b+06k) of x is

derivablew.r.t. x ininterval (a,a+ h) and, therefore, by applying the M.V. theorem
to theright of (ii), we have

$(h,k)=hk f_(a+6'h,b+6k) (0<6'<1)
o %( f(a+hb+ kr)]— fab+k) f(a+ h,br)]— f(a,b)j: [ (a+0'hb 0K

Since f,(X,y) existsinanhood of (a,b), this giveswhen h— 0,
f.(a,b+k)- f (ab)

k
Let, now, k— 0. Since f, (x,y) iscontinuousat (a,b), we obtain

f,(ab)=limlimf,(a+0'hb+6k) = f, (ab)

k—0 h—0

=lim f,,(a+0',b+0k)

* Young’s Theorem
If (a,b) beapoint of the domain of definition of afunction f(x,y) such that

f.(xy) and f (xy) areboth differentiable at (a,b), then
fy(@b)=f,(ab)
Proof
The differentiability of f, and f, at (a,b) impliesthat they exist in a certain
nhood of (a,b) andthat f,, f,, f, f, existat (a,b).
Let (a+ h,b+h) be apoint of this nhood. We write
#(h,h)=f(a+h,b+h)—f(a+hb)-f(ab+h)+ f(ab)

g(y)=f(a+hy)-f(ay)
sothat ¢(h,h)=gb+h)—g) .......... (i)
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Since f, existsinanhood of (a,b), the function g(y) isderivablein (b,b+h),
and, therefore, by applying the M.V. theorem to the expression on the right of (i),
we have

¢(h,h)=hg'(b+6h) (0<6<1)
=h(f,(a+hb+0h)-f (ab+6h)) ......... (ii)
Since f (xy) isdifferentiable at (a,b), we have, by definition,
f,(@a+hb+0oh)-f (a,b)=hf (ab)+0hf, (ab)
+he,(h,h) +0hy,(h,h) ...... (iii)

and f (ab+0h)-f (a,b)=0hf, (ab)+0hy,(hh) ... (iv)

where ¢,, v, v, dl >0ash—-0

From (ii), (iii) and (iv), we obtain

h,h
¢(h2 ): fy(@b)+¢,(h,h)+0y,(hh)-0w,(hh) ........ (V)
By a similar argument and on considering
g(x) = f(x,b+k)— f(x,b)
We can show that

M::;h) = f,(a,b) +ws(h,h) +0'p,(h,h) - 0'p,(h,h) ........... (Vi)

where ¢,, @,,y, dl >0 ash—0
Equating the right hand side of (v) and (vi) and making h— O, we obtain
fy(ab)=f,(ab)
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* Maxima and Minima for Functions of Two Variables
Let (X,.Y,) bethe point of the domain of afunction f(x,y), then f(x,,Y,) saidto
an extreme value of the function f (x,y), if the expression

Af = f(xo+h’YO+h)_ f(XO’yO)
preservesits sign for all h and k.
The extreme value of f (x,,Y,) being called a maximum or a minimum value

according as this difference is positive or negative respectively.

Necessary Condition
The Necessary Condition for f (x,,Y,) to be an extreme value of function f (x,y)
isthat f, (%), Y,)=0=f,(XY,), provided that these partial derivatives exist.

It isto be noted that it is impossible to determine the nature of a critical point by
studying the function f(x,y,) and f(x,,Y).

eg. Let f(x,y)=1+x"-y°
then f(0,y)=1-y* = f'(0,y)=-2y=0 = (0,0) isaturning point.
Now f"(0,y)=-2 = (0,0) isapoint of maximum value.
But f(x,0)=1+x°
= '(x,00=2x=0 = x=0 = (0,0) isthecritical point
= "(x,00=2>0 = (0,0) isthe maximum value
Hence we fail to decide the nature of the critical point in this way.
Sufficient Condition
Let z= f(x,y) bedefined and have continuous 1% and 2™ order partial derivatives
inadomain D . Suppose (X, Y,) isapoint of D for which f, and f, are both zero.
Let A= 1, (%, ¥): B=1,(%: ¥0), C=1,0%,¥)
then we have the following cases
i) B>~ AC<0and A+C<0 = relativemaximumat (X,,Y,).

i) B>~ AC<0and A+C>0 = relative minimum at (x,,Y,)
iii) B>~ AC>0 = saddlepointat (X,,Y,)
iv) B>~ AC=0 = nature of the critical point is undetermined
Pré);fthe application of M.V. theorem for function of two variables we have
Af =hf, (%, +0h,y, +0k) + K, (X, +0h,y, +0k) (0<0 <1)
= h[ (% +6h, Y, +0K) = (%, Yo) ] +K[ f, (%, +0h, y, +0K) = (%, Yo) ]
(it isbecause f,(x;,Y,) = f, (%, Yo) =0, aturning point)
= h[ Ohf, (X, Yo) + OKE (X, Vo) + £0N + £,0K |
+k[ ONf, (X5, o) +OKF, (X5, Vo) + £0h+£,0K |
where ¢,,¢,,6;, & €,>0ashk—0
Af = (%, Yo) + 20K £, (%0, Yo) + K £, (X5, Yo) +6:0° + (&, + 5)k + £,k
= Af =h’A+2hkB+Kk°C +&,h* + (g, + £;)hk + £,k*
The sign of Af depends upon the quadratic d*f = h*A+ 2hk B+ k*C
i & ii) Let B°-~AC<0, (Az0)

= d?f :%(h2A+ 2hk AB + kZAC)
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= %(thz + 2hk AB + k’B? + (k*AC - k’B?))

= %((hA+ kB)® +k*(AC - B?))

Since (hA+kB)? is positive and AC — B* (supposed) is +ive, therefore the sign of

d*f depends upon the sign of A.
= Af >0 if A>0 & Af <0 if A<O

Again, since B°~AC<0 = B°<AC = AC>0
= A and C are either both +ive or both —ive.

If A0, C>0 then A+C>0 andif A<O, C<0 then A+C<DO0.
Hence we have the following result
a) Af >0 when A+C>0 = (X,,Y,) isapoint of minimum value.

b) Af <O when A+C<0 = (X, Y,) isapoint of maximum value.
iii) Let B>— AC >0, then

d?f :%((hA+ kB) + k*(AC - B?))

1
=—((hA+kB)*—k*(B* - AC

NG )? —K*( ))

which may be +ive or —ive for certain value of h & k, therefore (x,,Y,) isa
saddle point.

iv) Let B>~ AC=0, A%0

= d*f :%(hA'F kB)2

which may vanish for certain values of h and k, implies that nature of the point

remain undetermined.

s Question
Test for maxima and minima

z=1-x°-y°
Solution
g:—2x:0 = x=0
OX
gz—Zy:O = y=0
oy
= (0,0) istheonly critical point.
2 2 2
A:a_fz_ =% _¢o :a_fz_g
OX oxoy oy

B°~-AC=0-4=-4<0 and A+C=-2-2=-4<0
= the function has maximum value at (0,0).

s Question
Test for maxima and minima

z=Xx-3xy*
Solution
g:3x2—3y2:0 = X=-y & X=Yy
oy
0z
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= (0,0) isthe critical point.

0%z
A=—=6x=0 at (0,0
ox? 0.0
2
8=22 __6y-0 a (0,0)
oxoy
0%z

C=—5=-6x=0 a (0,0
5 (0,0)

B°~4AC=0 aso A+C=0
Therefore we need further consideration for the nature of point
Az=2z(0+h,0+k) - z(0,0)
= z(h,k) — z(0,0)
= h® - 2hk?
For h=k
Az=h’-3h*=-2h°
= Az>0 if h<0 & Az<O if h>0
Hence (0,0) is a saddle point.

% Question
Examine the function
z=f(x,y)=xy’
Solution
f=0 = 2xy*°=0
f,=0 = 2yx*=0
implies that (0,0) isthe critical point
A=f_=2y*=0 at (0,0)
B=f,,=-4xy=0 at (0,0)
C= fW=2X2=O a (0,0)
Since B°-4AC=0 andalso A+C=0
Therefore we need further consideration for the nature of point.
Af = f(h,k) - (0,0)
= h’k?
Af >0 foral h & k
Hence (0,0) isthe point where function has minimum value.
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< Lagrange’s Multiplier
(Maxima & Minima for Function with Side Condition)

A problem of considerable importance for application is that of maximizing and
minimizing of function (optimization) of several variables where the variables are
related by one or more equations, which are turned as side condition. e.g. the
problem of finding the radius of largest sphere inscribable in the ellipsoid
x* + 2y* +37° = 6 is equivalent to minimizing the function w= x* + y* + z° with the
side condition x* + 2y* +7° =6.

To handle such problem, we can, if possible, eliminate some of the variables by
using the side conditions and reduce the problem to an ordinary maximum and
minimum problem such as that consider previously.

This procedure is not always feasible and following procedure often is more
convenient which treat the variable in more symmetrical manner, so that various
simplifications may be possible.

Consider the problem of finding the extreme values of the function f (x,X,,....,X,)
when the variable are restricted by a certain number of side conditions say

0.0, X101 %,) = O

05 (X Xpsnms%,) = O

0, (X %5y X)) = 0
We then form the linear combination

QX X)) = F OG0 X)) A0, (0 X)) + 2,0, (X0, X)) + e + A0 (Xsees X,)
where 4,,A,,....,A,, are m constants.

We then differentiate ¢ w.r.t. each coordinate and consider the following system
of n+m equations.
D,o(X,%,....%)=0 , r=12..,n
0 (X, %,....X,)=0 , k=12..,m
Lagrange discovered that if the point (X, X,,....,X,) isasolution of the extreme

problem then it will also satisfy the system of n+ m equation.
In practise, we attempt to solve this system for n+ m unknowns, which are

M Agreen Ay & X, X500 X

The point so obtain must then be tested to determine whether they yield a
maximum, a minimum or neither.

The numbers 4,,4,,....,4,,, which are introduced only to help to solve the system

for x,X,,....,x, are known as Lagrange's multiplier. One multiplier is introduced for
each side condition.
s Question

Find the critical points of w= xyz, subject to condition x*+ y*+ z* =1.
Solution

We form the function

O =Xyz+ A(X*+y* + 77 -1)
then

a—(P: yz+2Ax=0
OX

a—(P:xz+ 21y=0
oy
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a—(P:xy+2)uz:0
0z

& X+y*+7°-1=0
Multiplying the first three equations by X,y & z respectively, adding and using
the fourth equation, we find
P 3x2yz
using this relation we find that (0,0,+1), (0,£1,0), (+1,0,0) and

1 1 1 . .
+—,t—,+ are the critical points.
( NERNE ﬁ] P
s Question
Find the critical points of w= xyz, where x* + y* =1 & x—z=0. Also test for

maxima and minima.
Solution

Consider F = xyz+,(X* + y* +1) + A, (X~ 2)
For the critical points, we have

F.=YZ+2A4X+A,=0 ........... (1)
F,=xz+24y=0 ......ccoee (i)
F,=xy—A,=0 ... (iii)
and XA+Y =1 i, (iv)
X=2=0 . (V)
From (iii), A,=xy & from (ii) 21:—2—
y

Use these values in equation (i) to have
2

yz->Z4 =0
y
= yz-Xz+xy’=0
=z from (v)
L YX=X+xy’=0 = 2xy°-x’=0
But y*=1-x?, from (iv)

g 2x(1—x) =0 = 2x-3=0 = x= O,i\/?

. . . . 2 1 2
Thisimplies the critical pointsare | +, |—,—, — . =
p pomsire 2542 (15 42

(0,0), (0,-10)
A=F_ =24
B=F,=2
C=F,=24
B°-AC=2"-42;

222—4 =

(i) At (i %%i\g} , we have
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= function has maximum value at (i Eii E)
3'37\3
Similarly, we can show that F isaso maximumat (0,—1,0) and is minimum at
remaining points. (Check yourself)
s Question
Find the point of the curve
X*—xy+y —z°=1, xX*+y°=1
which is nearest to the origin.
Solution
Let apoint on a given curve be (X, Y, z)
Implies that we are to minimize the function
f=d’=x+y*°+7
subject to the conditions
X —-xy+y’ —-z°=1
x> +y*=1
Consider
F=xX+y +7 +21(x2 —xy+y -7° —1) W%Z(X2 +y° —1)
For the critical points

Fo=2x(1+ A4, +4,)-A4,y=0 ........... (i)
F,=2y(1+ A4 +2,)-A4x=0 ........... (ii)
F,=2z(1-2,)=0 ............ (iii)
X2 —Xy+Vy —z2°=1.......... (iv)
XC+ Y =1, (V)
From equation (iii), we have
z=0 and A =1

Put z=0 inequation(iv), gives
x> —xy+y’-1=0

= xy=x+y’ -1

= xy=0 by (v)

= x=0 or y=0 or bothare zero.
z=0, x=01in (v) gives, y*=1 = y=#1
= (0,+1,0) are the critical points.
z=0,y=0 = x=x1 = (£10,0) arethecritical points.
We can not take x=0, y=0 at the same time, because it gives (0,0,0) which is

origin itself as a critical point.

-+ d*=1 at all these four points.
.. these are the required point at which function is nearest to origin.
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s Question
Find the point on the curve
X*+y*+7°=1
which is farthest from the point (1,2,3)

Solution
We are the maximize the function

f :(x—l)2 +(y—2)2 +(z—3)2
subject to the condition
X+y* +7°=1
Let
F :(x—1)2+(y—2)2 +(z—3)2 +A(x2+ y* + 22—1)
For the critical points, we have

X=1+AXx=0 ............. (i)
Yy—2+Ay=0 ...cccoents (i)
z-3+Az2=0 ............ (i)
& X+y+7=1..... (iv)

2 1

= X=—, y:— =
1+ A 1+ 3+
Putting in (iv)

2
(ﬁj (1+4+9)=1 = (1+1) =14 = A=-1+ 14
+

2 .3
++/14

1
= X=—1—, :
s T

= critical points are

Its clear that the required point which is farthest from the point (1,2,3) is
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% Directional Derivative
i)Let f:V—>R,whereV cR",isnhood of aeR". Then the directional

derivative D, f at a inthedirection of 8 eR", isdefined by the limit, if it exists,
flathp)-f(@
h

D, f (a) =lim

h—0
i) The directional derivative of f(%,%,,...%,...X,) & a=(a,,a,,...a,...,.a,) in
the direction of the unit vector (0,0,...,1,0,0,...,0) is called partial derivative of f at
a w.r.t. theith component x and is denoted by

D f@ o 12

or fx,- (a)

where D f (a) =lim f (a1a2a1 +h""’an)_ f (aiazaah)

h—0 h

< Example
Let f(X,y)=%"+ Yy +x+V,then f hasadirectional derivative in every direction
and at every point in R?.
Since, if g =(a,b)eR?, wehave
2 2 2 2
Dﬂf(x,y):LiLr()l(X+ha) +(y+hb) +(x+hs)+(y+hb)—x ) i &
:Liirg(Zax+2by+ ha’ + hb’ +a+b)

=2(ax+by)+a+b
< Exercise
f( ) XY(XZ—YZ) : X4+y4¢0
Let T(Xy)=y x*+y*
: (x,¥)#=(0,0
0 (x,y)=(0,0)

Note that if 8 =(a,b)eR?,
0+ ah)(0+bh)| (0+ah)” —(0+bh)’
o 100y &N (0 (0]
h-0 | (0+ah)’ +(0+bh)’ |
ab(a® - b’
h—0 h(a4+b4)
This limit obviously existsonly if =(1,0) or (0,1). Hence the directional

derivativesof f at (0,0) that exists are the partial derivatives f, and f, given by
f =0, f,=0.
X vy

< Example
Let

Y (xy)=(00)

D= )09

It is discontinuous at (0,0). To seeit, note that

lim f(xy) iszeroalong y=0 and is%along y* =X,

(x,y)—(0,0)
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However, if B =(a,b), then

2
(. (0.0)=tim (O+ah2(0+bh) 4
"Oh| (0+ah)”+(0+bh)*|
ah-b*h? . ab?

=lim =lim————
h—0 h|:a2h2 + b4h4:| h—0 a2 + h2b4

b2
_ A , az0
0 , a=0

Hence the directional derivative of f at (0,0) existsin every direction.

* Question
Let z=f(x,y) , x=u*—v?, y=2uv. Then show that

EREE CRE)

Solution
We have
%:Zu %:—Zv : QzZV : @=2V
ou ov ou ov
Also
1:2u@—2v@ , O:ZUQ—ZVﬂ
OX OX oy oy
and O:2va—u+2u@ , 1:2va—u+2u@
OX OX oy oy
Solving these four equations for @, @, au & @, we get
OX OX oy oy
ou___u N__ v
ox 2(u2+v2) ' oX 2(u2+v2)
ou v oV _ u
oy 2(u2+v2) Y 2(u2+v2)
And
0z_oz ou oz v
OX OUu 0OX oV OX
SN . 1
2(u2+v2) ou oV
0z 0Z Oou 0z ov
& - .
oy oOu oy ov oy
SN W 1
2(u2+v2) ou oV
Hence

&5 - 53]



Chap 5 — Function of several variables 37

s Question
Let f:R*—R begivenby

Xy .
f(xy)=1 X +Y° » (xy)=(0.0)

o) (xw)=(00)
Show that f, f, existat (0,0) but f isdiscontinuous at (0,0).
Solution

. ah)(bh
fs (0,0)= LerO] h[(;h)z)i (b)h)z} where 8 =(a,b)
_lim—22
h—0 h(a2 + b2)
Which exists only when =(10) or (0,1).
= f & f, existat (0,0)
Now

im f(xy)= lim — 2
()00 (D00 X2 + y
Let y=mx,then
2
im Y= lim—
(x,y)—>(0,0) X~ + y x=0 X 4+ mM°X

Which is different for different m.
= f(x,y) isdiscontinuousat (0,0).

s Question

Let f:R*— R begivenby

2

Xy . (X
; (x,y)#(0,0)
f(xy)=<x*+Vy°
; (Xy)=(0,0
Y (xy)=(00)
Show that f , f, existat (0,0) but f isdiscontinuous at (0,0).
Solution
(a?h®)(bh)
f,(0,0)=Ilim =(a,b
ﬂ( ) h—0 h|:a4h4+b2h2:| ﬁ ( )
_jim— 2P
h-0 a*h® + b*
2
B % b=0
0 b=0

) 1
N lim f(xy) iszeroaong x=0 andis = along y=X*
ow (x,y)la(o,O) ( y) 9 2 gy

= itisdiscontinuousat (0,0).
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s Question
Find the greatest volume of the box contained in the ellipsoid 3x* + 2y? + z* =18,
when each of its edges is parallel to one of the coordinate axes.
Solution
V =volume of the box = (12x)(2y)(2z) = 8xyz
We need to find maximum of V subject to 3x* + 2y* + 2 —18=0
Consider ¢(x,y,z)=8xyz+(3x* +2y* + 7 ~18)=0
Then
0, =8yz+6Ax=0
0, =82+ 41y =0
0, =8xy+212=0
= 4xyz+3Ax*=0
2xyz+ Ay =0
4xyz+ 22" =0
= (3% -2y*)=0
A(sz - 22) =0
2y* Z°

- x¥*="2 =
3 3

Substituting these valuesin
3X°+2y*+27°-18=0
We get
X +3x°+3x°=18 = 9x*=18

= x=+/2, y:\/§ and z=+/6

Which gives
f(x Yy, z)=8xyz=48
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“+ Definition

If f:R" >R, aeR" then

A@) @ @, o)
i 0% 0%, 0%, X,

vi(a) =

“+ Definition
Let f:G—> R, Gisanopensetin R".
i) f issaidtohavealocal maximumat aeG, if thereisanhood V,(a) such that
f(x)<f(a) v xeV..
ii) f issaidtohavealocal minimumat aeG, if thereisanhood V. (a) such that
f(x)>f(a) v xeV..

< Theorem
Let f:G—> R, Gisanopensetin R".If f hasalocal extremumat ae G, then
vf(a)=0.
Proof
. . 0(a) .
Itisclear that Vf(a)=0 iff W:O, i=123....,Nn
Write f(x +t)=f(X,%,.. X +t,...,%,) = f(X)
If f hasalocal maximumat a, then
f(“tz_f(a) <0 if t>0
fla+t)-f(a)
t

IA

= lim 0O if t>0

t—0

soth 218) < g

ox
Similarly,
|imf(a+t2_f(a) >0 if t<O

t—0

sothat 118)5

X
of .
Hence ﬂ:o , 1=123,....,n
X
= Vf(a)=0
Note
There are situations when Vf (g):o but f hasno local maximum or minimum at

a. If soand if the sign of f(x)— f(a) depends upon thedirectionof x and a, f is
said to have asaddle point at a.

={END }=



