Ghapter 3 – Limit and Gontinuity

Subject: Real Analysis (Mathematics) Level: M.Sc. Source: Syyed Gul Shah (Chairman, Department of Mathematics, US Sargodha) Collected & Composed by: Atiq ur Rehman (mathcity@gmail.com), http://www.mathcity.org

* Limit of the function

Suppose

(i) (X, d_x) and (Y, d_y) be two metric spaces

(ii) $E \subset X$

(iii) $f: E \to Y$ i.e. f maps E into Y.

(iv) p is the limit point of E.

We write $f(x) \to q$ as $x \to p$ or $\lim_{x \to p} f(x) = q$, if there is a point q with the

following property;

For every e > 0, there exists a d > 0 such that $d_y(f(x),q) < e$ for all points $x \in E$ for which $d_x(x, p) < d$.

If X and Y are replaced by a real line, complex plane or by Euclidean space \mathbb{R}^k , then the distances d_x and d_y are replaced by absolute values or by appropriate norms.

Note: i) It is to be noted that $p \in X$ but that p need not a point of E in the above definition (p is a limit point of E which may or may not belong to E.)

ii) Even if $p \in E$, we may have $f(p) \neq \lim f(x)$.

 $\lim_{x \to 1} \frac{2x}{1+x} = 2$

* Example

We

have
$$\left|\frac{2x}{x-1}-2\right| = \left|\frac{2x-2-2x}{1+x}\right| = \left|\frac{-2}{1+x}\right| < \frac{2}{x}$$

Now if e > 0 is given we can find $d = \frac{2}{2}$ so that

$$\left|\frac{2x}{1+x}-2\right| < e$$
 whenever $x > d$.

* Example

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

It is to be noted that f is not defined at x=1 but if $x \neq 1$ and is very close to 1 or less then f(x) equals to 2.

* Definitions

i) Let X and Y be subsets of \mathbb{R} , a function $f: X \to Y$ is said to tend to limit l as $x \to \infty$, if for a real number e > 0 however small, \exists a positive number d which depends upon e such that distance |f(x)-l| < e when x > d and we write $\lim f(x) = l$. *ii*) f is said to tend to a right limit l as $x \to c$ if for e > 0, $\exists d > 0$ such that |f(x)-l| < e whenever $x \in G$ and 0 < x < c+d. And we write $f(c+) = \lim_{x \to a} f(x) = l$ *iii*) f is said to tend to a left limit l as $x \to c$ if for e > 0, $\exists a d > 0$ such that |f(x)-l| < e whenever $x \in G$ and 0 < c - d < x < c.

And we write $f(c-) = \lim f(x) = l$.

2

* Theorem

Suppose (i) (X, d_x) and (Y, d_y) be two metric spaces (ii) $E \subset X$ (iii) $f: E \to Y$ i.e. f maps E into Y. (iv) p is the limit point of E. Then $\lim_{x \to p} f(x) = q$ iff $\lim_{n \to \infty} f(p_n) = q$ for every sequence $\{p_n\}$ in E such that $p_n \neq p$, $\lim_{n \to \infty} p_n = p$.

Proof

Suppose $\lim_{x \to p} f(x) = q$ holds. Choose $\{p_n\}$ in E such that $p_n \neq p$, $\lim_{n \to \infty} p_n = p$, we are to show that $\lim_{n \to \infty} f(p_n) = q$ Then there exists a d > 0 such that $d_y(f(x),q) < e$ if $x \in E$ and $0 < d_x(x,p) < d$ (i) Also \exists a positive integer n_0 such that $n > n_0$ $\Rightarrow d_x(p_n, p) < d$ (ii) from (i) and (ii), we have for $n > n_0$ $d_y(f(p_n),q) < e$ Which shows that limit of the sequence $\lim_{n \to \infty} f(p_n) = q$ Conversely, suppose that $\lim_{n \to \infty} f(p_n) = q$ is false. Then \exists some e > 0 such that for every d > 0, there is a point $x \in E$ for which $d_y(f(x,q) \ge e$ but $0 < d_x(x,p) < d$.

In particular, taking $d_n = \frac{1}{n}$, $n = 1, 2, 3, \dots$

We find a sequence in E satisfied $p_n \neq p$, $\lim_{n \to \infty} p_n = p$ for which $\lim_{n \to \infty} f(p_n) = q$ is false.

* Example

 $\lim_{x \to \infty} \sin \frac{1}{x} \quad \text{does not exist.}$

Suppose that $\lim_{x\to\infty} \sin \frac{1}{x}$ exists and take it to be *l*, then there exist a positive real number *d* such that

$$\sin\frac{1}{x} - l \left| < 1 \quad \text{when} \quad 0 < \left| x - 0 \right| < d \quad (\text{we take } e = 1 > 0 \text{ here})$$

We can find a positive integer n such that

$$\frac{2}{np} < d$$
 then $\frac{2}{(4n+1)p} < d$ and $\frac{2}{(4n+3)p} < d$

It thus follows

$$\left| \frac{\sin \frac{(4n+1)p}{2} - l}{2} - l \right| < 1 \implies |1 - l| < 1$$

and
$$\left| \frac{(4n+3)p}{2} - l \right| < 1 \implies |-1 - l| < 1 \text{ or } |1 + l| < 1$$

So that

$$2 = |1+l+1-l| \le |1+l|+|1-l| < 1+1 \implies 2 < 2$$

This is impossible; hence limit of the function does not exist.

Alternative:

Consider
$$x_n = \frac{2}{(2n-1)p}$$
 then $\lim_{x \to \infty} x_n = 0$
But $\{f(x_n)\}$ i.e. $\{\sin \frac{1}{x_n}\}$ is an oscillatory sequence
i.e. $\{1, -1, 1, -1, \dots\}$ therefore $\{\sin \frac{1}{x_n}\}$ diverges.
Hence we conclude that $\lim_{x \to \infty} \sin \frac{1}{x}$ does not exit.

* Example

Consider the function

$$f(x) = \begin{cases} x & ; & x < 1 \\ 2 + (x - 1)^2 & ; & x \ge 1 \end{cases}$$

We show that $\lim f(x)$ does not exist.

To prove this take
$$x_n = 1 - \frac{1}{n}$$
, then $\lim_{x \to \infty} x_n = 1$ and $\lim_{n \to \infty} f(x_n) = 1$
But if we take $x_n = 1 + \frac{1}{n}$ then $x_n \to 1$ as $n \to \infty$
and $\lim_{x \to \infty} f(x_n) = \lim_{x \to \infty} 2 + \left(1 + \frac{1}{n} - 1\right)^2 = 2$

This show that $\{f(x_n)\}$ does not tend to a same limit as for all sequences $\{S_n\}$ such that $x_n \rightarrow 1$.

Hence this limit does not exist.

* Example

Consider the function $f:[0,1] \to \mathbb{R}$ defined as $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irratioanl} \end{cases}$ Show that $\lim_{x \to p} f(x)$ where $p \in [0,1]$ does not exist.

Solution

Let $\lim_{x \to a} f(x) = q$, if given e > 0 we can find d > 0 such that $x \rightarrow p$

$$|f(x)-q| < e$$
 whenever $|x-p| < d$.

Consider the irrational $(r-s, r+s) \subset [0,1]$ such that r is rational and s is irrational.

Then
$$f(r) = 0$$
 & $f(s) = 1$
Suppose $\lim_{x \to p} f(x) = q$ then
 $|f(s)| = 1$
 $\Rightarrow 1 = |f(s) - q + q|$
 $= |(f(s) - q + q - 0)|$
 $= |f(s) - q + q - f(r)|$ $\therefore 0 = f(r)$

$$\leq |f(s) - q| + |f(r) - q| < e + e$$

i.e. $1 < e + e$
 $\Rightarrow 1 < \frac{1}{4} + \frac{1}{4}$ if $e = \frac{1}{4}$

Which is absurd.

Hence the limit of the function does not exist.

* Exercise

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0$$

We have

$$\begin{vmatrix} x \sin \frac{1}{x} - 0 \\ | < e \end{vmatrix} \quad \text{where} \quad e > 0 \text{ is a pre-assigned positive} \\ \Rightarrow \left| x \sin \frac{1}{x} \right| < e \\ \Rightarrow \left| x \right| \left| \sin \frac{1}{x} \right| < e \\ \Rightarrow \left| x \right| < e \qquad \because \left| \sin \frac{1}{x} \right| \le 1 \\ \Rightarrow \left| x - 0 \right| < e = d \\ \text{pows that} \quad \lim_{x \to \infty} x \sin \frac{1}{x} = 0 \end{aligned}$$

It shows that $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

Same the case for function for
$$f(x) = x \cos \frac{1}{x}$$

Also we can derived the result that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

* Theorem

If $\lim_{x\to c} f(x)$ exists then it is unique.

Proof

Suppose $\lim_{x \to c} f(x)$ is not unique. Take $\lim_{x \to c} f(x) = l_1$ and $\lim_{x \to c} f(x) = l_2$ where $l_1 \neq l_2$. $\Rightarrow \exists$ real numbers d_1 and d_2 such that $|f(x) - l_1| < e$ whenever $|x - c| < d_1$ & $|f(x) - l_2| < e$ whenever $|x - c| < d_2$ Now $|l_1 - l_2| = |(f(x) - l_1) - (f(x) - l_2)|$ $\leq |f(x) - l_1| + |f(x) - l_2|$ < e + e whenever $|x - c| < \min(d_1, d_2)$ $\Rightarrow l_1 = l_2$

.

number.

Suppose that a real valued function f is defined on an open interval G except possibly at $c \in G$. Then $\lim_{x \to c} f(x) = l$ if and only if for every positive real number e, there is d > 0 such that |f(t) - f(s)| < e whenever s & t are in $\{x : |x - c| < d\}$.

Proof

Suppose $\lim_{x \to c} f(x) = l$ \therefore for every $e > 0, \exists d > 0$ such that $|f(s) - l| < \frac{1}{2}e$ whenever 0 < |s - c| < d $\& |f(t) - l| < \frac{1}{2}e$ whenever 0 < |t - c| < d $\Rightarrow |f(s) - f(t)| \le |f(s) - l| + |f(t) - l|$ $< \frac{e}{2} + \frac{e}{2}$ whenever |s - c| < d & |t - c| < d|f(t) - f(s)| < e whenever s & t are in $\{x : |x - c| < d\}$.

Conversely, suppose that the given condition holds.

Let $\{x_n\}$ be a sequence of distinct elements of *G* such that $x_n \to c$ as $n \to \infty$. Then for $d > 0 \exists$ a natural number n_0 such that

$$|x_n-l| < d$$
 and $|x_m-l| < d$ \forall $m, n > n_0$.

And for e > 0

 $\left| f(x_n) - f(x_m) \right| < e$ whenever $m, n > n_0$

 \Rightarrow { $f(x_n)$ } is a Cauchy sequence and therefore it is convergent.

* Theorem (Sandwiching Theorem)

Suppose that f, g and h are functions defined on an open interval G except possibly at $c \in G$. Let $f \le h \le g$ on G.

If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = l$, then $\lim_{x \to a} h(x) = l$.

Proof

For $e > 0 \exists d_1, d_2 > 0$ such that

$$\begin{aligned} |f(x)-l| < e & \text{whenever } 0 < |x-c| < d_1 \\ & \& |g(x)-l| < e & \text{whenever } 0 < |x-c| < d_2 \\ \Rightarrow l-e < f(x) < l+e & \text{for } 0 < |x-c| < d_1 \\ & \& l-e < g(x) < l+e & \text{for } 0 < |x-c| < d_2 \\ \Rightarrow l-e < f(x) \le h(x) \le g(x) < l+e \\ \Rightarrow l-e < h(x) < l+e & \text{for } 0 < |x-c| < \min(d_1, d_2) \\ \Rightarrow \lim_{x \to c} h(x) = l \end{aligned}$$

Let (i) (X,d), (Y,d_y) be two metric spaces. (ii) $E \subset X$ (iii) p is a limit point of E. (iv) $f: E \to Y$. (v) $g: E \to Y$ and $\lim_{x \to p} f(x) = A$ and $\lim_{x \to p} g(x) = B$ then i- $\lim_{x \to p} (f(x) \pm g(x)) = A \pm B$ ii- $\lim_{x \to p} (fg)(x) = AB$ iii- $\lim_{x \to p} (fg)(x) = AB$

Proof

Do yourself

* Continuity

Suppose i) $(X, d_x), (Y, d_y)$ are two metric spaces ii) $E \subset X$ iii) $p \in E$ iv) $f: E \to Y$ Then f is said to be continuous at p if for every $e > 0 \exists a d > 0$ such that $d_y(f(x), f(p)) < e$ for all points $x \in E$ for which $d_x(x, p) < d$.

Note:

(*i*) If f is continuous at every point of E. Then f is said to be continuous on E. (*ii*) It is to be noted that f has to be defined at p iff $\lim_{x \to a} f(x) = f(p)$.

* Examples

 $f(x) = x^{2} \text{ is continuous } \forall x \in \mathbb{R}.$ Here $f(x) = x^{2}$, Take $p \in \mathbb{R}$ Then |f(x) - f(p)| < e $\Rightarrow |x^{2} - p^{2}| < e$

$$\Rightarrow |x - p| < e$$

$$\Rightarrow |(x - p)(x + p)| < e$$

 $\Rightarrow |x-p| < e = d$

 $\therefore p$ is arbitrary real number

: the function f(x) is continuous \forall real numbers.

Let

i) X, Y, Z be metric spaces

ii) $E \subset X$

iii) $f: E \to Y$, $g: f(E) \to Z$ and $h: E \to Z$ defined by h(x) = g(f(x))If f is continuous at $p \in E$ and if g is continuous at the point f(p), then h is continuous at p.

Proof

- \therefore g is continuous at f(p)
- \therefore for every e > 0, $\exists a \ d > 0$ such that

 $d_{Z}(g(y), g(f(p))) < e \text{ whenever } d_{Y}(y, f(p)) < d_{1} \dots \dots (i)$:: f is continuous at $p \in E$

 $\therefore \exists a d > 0$ such that

 $d_Y(f(x), f(p)) < d_1$ whenever $d_X(x, p) < d$ (*ii*) Combining (*i*) and (*ii*), we have

 $d_{Z}(g(y), g(f(p))) < e \text{ whenever } d_{X}(x, p) < d$ $\Rightarrow d_{Z}(h(x), h(p)) < e \text{ whenever } d_{X}(x, p) < d$

which shows that the function h is continuous at p.

* Example

(i) $f(x) = (1 - x^2)$ is continuous $\forall x \in \mathbb{R}$ and $g(x) = \sqrt{x}$ is continuous $\forall x \in [0,\infty]$, then $g(f(x)) = \sqrt{1 - x^2}$ is continuous $x \in (-1,1)$.

(*ii*) Let
$$g(x) = \sin x$$
 and $f(x) = \begin{cases} x - p & , x \le 0 \\ x + p & , x > 0 \end{cases}$

Then $g(f(x)) = -\sin x \quad \forall x$

Then the function g(f(x)) is continuous at x=0, although f is discontinuous at x=0.

* Theorem

Let f be defined on X. If f is continuous at $c \in X$ then \exists a number d > 0 such that f is bounded on the open interval (c-d,c+d).

Proof

Since f is continuous at $c \in X$.

Therefore for a real number e > 0, \exists a real number d > 0 such that

$$|f(x) - f(c)| < e$$
 whenever $x \in X$ and $|x - c| < d$
 $\Rightarrow |f(x)| = |f(x) - f(c) + f(c)|$

Suppose f is continuous on [a,b]. If f(c) > 0 for some $c \in [a,b]$ then there exist an open interval $G \subset [a,b]$ such that $f(x) > 0 \quad \forall x \in G$.

Proof

Take
$$e = \frac{1}{2}f(c)$$

 $\therefore f$ is continuous on $[a,b]$
 $\therefore |f(x) - f(c)| < e$ whenever $|x-c| < d$, $x \in [a,b]$
Take $G = \{x \in [a,b] : |x-c| < d\}$
 $\Rightarrow |f(x)| = |f(x) - f(c) + f(c)|$
 $\leq |f(x) - f(c)| + |f(c)|$
 $< e + |f(c)|$ whenever $|x-c| < d$
For $x \in G$, we have
 $f(x) = f(c) - (f(c) - f(x)) \ge f(c) - |f(c) - f(x)|$
 $\geq f(c) - |f(x) - f(c)| > f(c) - \frac{1}{2}f(c)$
 $\Rightarrow f(x) > \frac{1}{2}f(c) > 0$

* Example

Define a function f by

$$f(x) = \begin{cases} x \cos x & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

This function is continuous at x=0 because $|f(x)-f(0)| = |x\cos x| \le |x|$ ($\because |\cos x| \le 1$) Which shows that for e > 0, we can find d > 0 such that |f(x)-f(0)| < e whenever 0 < |x-c| < d = e

* Example

 $f(x) = \sqrt{x}$ is continuous on $[0, \infty)$.

Let *c* be an arbitrary point such that $0 < c < \infty$ For e > 0, we have

$$|f(x) - f(c)| = \left|\sqrt{x} - \sqrt{c}\right| = \frac{|x - c|}{\sqrt{x} + \sqrt{c}} < \frac{|x - c|}{\sqrt{c}}$$

$$\Rightarrow |f(x) - f(c)| < e \quad \text{whenever} \quad \frac{|x - c|}{\sqrt{c}} < e$$

i.e. $|x - c| < \sqrt{c} e = d$

$$\Rightarrow f \text{ is continuous for } x = c.$$

$$\because c \text{ is an arbitrary point lying in } [0, \infty[$$

$$\therefore f(x) = \sqrt{x} \text{ is continuous on } [0, \infty[$$

* Example

Consider the function f defined on \mathbb{R} such that

$$f(x) = \begin{cases} 1 & , x \text{ is rational} \\ -1 & , x \text{ is irrational} \end{cases}$$

This function is discontinuous every where but |f(x)| is continuous on \mathbb{R} .

* Theorem

A mapping of a metric space X into a metric space Y is continuous on X iff $f^{-1}(V)$ is open in X for every open set V in Y.

Proof

Suppose f is continuous on X and V is open in Y.

We are to show that $f^{-1}(V)$ is open in X i.e. every point of $f^{-1}(V)$ is an interior point of $f^{-1}(V)$.

Let
$$p \in X$$
 and $f(p) \in V$

 $\therefore V$ is open

 $\therefore \exists e > 0 \text{ such that } y \in V \text{ if } d_Y(y, f(p)) < e \dots (i)$

 \therefore f is continuous at p

 $\therefore \exists d > 0$ such that $d_Y(f(x), f(p)) < e$ when $d_X(x, p) < d$ (*ii*) From (*i*) and (*ii*), we conclude that

$$x \in f^{-1}(V)$$
 as soon as $d_{X}(x, p) < d$

Which shows that $f^{-1}(V)$ is open in X.

Conversely, suppose $f^{-1}(V)$ is open in X for every open set V in Y.

We are to prove that f is continuous for this.

Fix $p \in X$ and e > 0.

Let V be the set of all $y \in Y$ such that $d_y(y, f(p)) < e$

V is open, $f^{-1}(V)$ is open

 $\Rightarrow \exists d > 0$ such that $x \in f^{-1}(V)$ as soon as $d_X(x, p) < d$.

But if $x \in f^{-1}(V)$ then $f(x) \in V$ so that $d_Y(f(x), f(y)) < e$

Which proves that f is continuous.

Note

The above theorem can also be stated as a mapping $f: X \to Y$ is continuous iff $f^{-1}(C)$ is closed in X for every closed set C in Y.

* Theorem

Let $f_1, f_2, f_3, \dots, f_k$ be real valued functions on a metric space X and \underline{f} be a mapping from X on to \mathbb{R}^k defined by

 $f(x) = (f_1(x), f_2(x), f_3(x), \dots, f_k(x)) , x \in X$

then f is continuous on X if and only if $f_1, f_2, f_3, \dots, f_k$ are continuous on X.

Proof

Let us suppose that the function \underline{f} is continuous on X, we are to show that $f_1, f_2, f_3, \dots, f_k$ are continuous on X.

If
$$p \in X$$
, then $d_{\mathbb{R}^k}(\underline{f}(x), \underline{f}(p)) < e$ whenever $d_X(x, p) < d$
 $\Rightarrow \|\underline{f}(x) - \underline{f}(p)\| < e$ whenever $\|x - p\| < d$

$$\Rightarrow \|f_1(x) - f_1(p), f_1(x) - f_1(p), \dots, f_k(x) - f_k(p)\| < e \text{ whenever } \|x - p\| < d$$

$$\Rightarrow \left[\left(f_1(x) - f_1(p) \right)^2, \left(f_2(x) - f_2(p) \right)^2, \dots, \left(f_k(x) - f_k(p) \right)^2 \right]^{\frac{1}{2}} < e \text{ whenever } \|x - p\| < d$$

i.e.
$$\Rightarrow \left[\sum_{i=1}^{k} (f_i(x) - f_i(p))^2\right]^{\frac{1}{2}} < e \text{ whenever } \|x - p\| < d$$
$$\Rightarrow \|f_1(x) - f_1(p)\| < e \text{ whenever } \|x - p\| < d$$
$$\|f_2(x) - f_2(p)\| < e \text{ whenever } \|x - p\| < d$$
$$\dots \\ \|f_k(x) - f_k(x)\| < e \text{ whenever } \|x - p\| < d$$
$$\Rightarrow \text{ all the functions } f_1, f_2, f_3, \dots, f_k \text{ are continuous at } p.$$

 \therefore p is arbitrary point of x, therefore $f_1, f_2, f_3, \dots, f_k$ are continuous on X. Conversely, suppose that the function $f_1, f_2, f_3, \dots, f_k$ are continuous on X, we are to show that f is continuous on X.

For $p \in X$ and given $e_i > 0$, $i = 1, 2, \dots, k \exists d_i > 0$, $i = 1, 2, \dots, k$ Such that

 $\|f_{1}(x) - f_{1}(p)\| < e_{1} \quad \text{whenever} \quad \|x - p\| < d_{1} \\ \|f_{2}(x) - f_{2}(p)\| < e_{2} \quad \text{whenever} \quad \|x - p\| < d_{2} \\ \dots \\ \|f_{k}(x) - f_{k}(x)\| < e_{k} \quad \text{whenever} \quad \|x - p\| < d_{k} \\ \text{Take } d = \min(d_{1}, d_{2}, d_{3}, \dots, d_{k}) \text{ then} \\ \|f_{i}(x) - f_{i}(p)\| < e_{i} \quad \text{whenever} \quad \|x - p\| < d \\ \Rightarrow \left[(f_{1}(x) - f_{1}(p))^{2} + (f_{2}(x) - f_{2}(p))^{2} + \dots + (f_{k}(x) - f_{k}(p))^{2} \right]^{\frac{1}{2}} < (e_{1}^{2} + e_{2}^{2} + \dots + e_{k}^{2})^{\frac{1}{2}} \\ \text{i.e.} \Rightarrow \left[(f_{1}(x) - f_{1}(p))^{2} + (f_{2}(x) - f_{2}(p))^{2} + \dots + (f_{k}(x) - f_{k}(p))^{2} \right]^{\frac{1}{2}} < e \\ \text{whenever } \|x - p\| < d \\ \end{bmatrix}$

where $(e_1^2 + e_2^2 + \dots + e_k^2)^{\frac{1}{2}} = e$ Then $d_{\mathbb{R}^k}(\underline{f}(x), \underline{f}(p)) < e$ whenever $d_X(x, p) < d$ $\Rightarrow \underline{f}(x)$ is continuous at p. $\therefore p$ is an arbitrary point therefore we conclude that \underline{f} is continuous on X.

Suppose f is continuous on [a,b]

i) If f(a) < 0 and f(b) > 0 then there is a point c, a < c < b such that f(c) = 0. ii) If f(a) > 0 and f(b) < 0, then there is a point c, a < c < b such that f(c) = 0.

Proof

i) Bisect [a,b] then f must satisfy the given condition on at least one of the sub-interval so obtained. Denote this interval by $[a_2,b_2]$

If f satisfies the condition on both sub-interval then choose the right hand one $[a_2, b_2]$.

It is obvious that $a \le a_2 \le b_2 \le b$. By repeated bisection we can find nested intervals $\{I_n\}$, $I_{n+1} \subseteq I_n$, $I_n = [a_n, b_n]$ so that f satisfies the given condition on $[a_n, b_n]$, $n = 1, 2, \dots$

And $a = a_1 \le a_2 \le a_3 \le \dots \le a_n \le b_n \le \dots \le b_2 \le b_1 = b$ Where $b_n - a_n = \left(\frac{1}{2}\right)^n (b - a)$

Then $\bigcap_{i=1}^{n} I_n$ contain one and only one point. Let that point be *c* such that f(c) = 0

If $f(c) \neq 0$, let f(c) > 0 then there is a subinterval $[a_m, b_m]$ such that $a_m < b_m < c$ Which can not happen. Hence f(c) = 0

ii) Do yourself as above

* Example

Show that $x^3 - 2x^2 - 3x + 1 = 0$ has a solution $c \in [-1,1]$

Solution

Let $f(x) = x^3 - 2x^2 - 3x + 1$ \therefore f(x) is polynomial \therefore it is continuous everywhere. (for being a polynomial continuous everywhere) Now $f(-1) = (-1)^3 - 2(-1)^2 - 3(-1) + 1$ = -1 - 2 + 3 + 1 = 1 > 0 $f(1) = (1)^3 - 2(1)^2 - 3(1) + 1$ = 1 - 2 - 3 + 1 = -3 < 0Therefore there is a point $c \in [-1,1]$ such that f(c) = 0i.e. c is the root of the equation.

* Theorem (The intermediate value theorem)

Suppose f is continuous on [a,b] and $f(a) \neq f(b)$, then given a number l that lies between f(a) and f(b), \exists a point c, a < c < b with f(c) = l.

Proof

Let f(a) < f(b) and f(a) < l < f(b). Suppose g(x) = f(x) - lThen g(a) = f(a) - l < 0 and g(b) = f(b) - l > 0 $\Rightarrow \exists$ a point c between a and b such that g(c) = 0 $\Rightarrow f(c) - l = 0 \Rightarrow f(c) = l$ If f(a) > f(b) then take g(x) = l - f(x) to obtain the require

If f(a) > f(b) then take g(x) = l - f(x) to obtain the required result.

Suppose f is continuous on [a,b], then f is bounded on [a,b] (Continuity implies boundedness)

Proof

Suppose that f is not bounded on [a,b],

We can, therefore, find a sequence $\{x_n\}$ in the interval [a,b] such that

 $f(x_n) > n \text{ for all } n \ge 1.$

 $\Rightarrow \{f(x_n)\} \text{ diverges.}$ But $a \le x_n \le b$; $n \ge 1$

 $\Rightarrow \exists$ a subsequence $\{x_{n_k}\}$ such that $\{x_{n_k}\}$ converges to I.

 $\Rightarrow \left\{ f\left(x_{n_k}\right) \right\}$ also converges to I.

 $\Rightarrow \{f(x_n)\}$ converges to I.

Which is contradiction

Hence our supposition is wrong.

***** Uniform continuity

Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every e > 0 there exists d > 0 such that

 $d_{Y}(f(p), f(q)) < e \quad \forall \quad p, q \in X \text{ for which } d_{X}(p,q) < d$

The uniform continuity is a property of a function on a set i.e. it is a global property but continuity can be defined at a single point i.e. it is a local property. Uniform continuity of a function at a point has no meaning.

If f is continuous on X then it is possible to find for each e > 0 and for each point p of X, a number d > 0 such that $d_Y(f(x), f(p)) < e$ whenever $d_X(x, p) < d$. Then number d depends upon e and on p in this case but if f is uniformly continuous on X then it is possible for each e > 0 to find one number d > 0 which will do for all point p of X.

It is evident that every uniformly continuous function is continuous.

To emphasize a difference between continuity and uniform continuity on set S, we consider the following examples.

* Example

Let *S* be a half open interval $0 < x \le 1$ and let *f* be defined for each *x* in *S* by the formula $f(x) = x^2$. It is uniformly continuous on *S*. To prove this observe that we have

$$|f(x) - f(y)| = |x^{2} - y^{2}|$$

= |x - y||x + y|
< 2|x - y|
- y| < d then |f(x) - f(y)| < 2d =

If |x-y| < d then |f(x)-f(y)| < 2d = e

Hence if *e* is given we need only to take $d = \frac{e}{2}$ to guarantee that

$$|f(x) - f(y)| < e$$
 for every pair x, y with $|x - y| < d$

Thus f is uniformly continuous on the set S.

* Example

 $f(x) = x^n$, $n \ge 0$ is uniformly continuous of [0,1]

Solution

For any two values x_1, x_2 in [0,1] we have

$$\begin{vmatrix} x_1^n - x_2^n \end{vmatrix} = \left| (x_1 - x_2) (x_1^{n-1} + x_1^{n-2} x_2 + x_1^{n-3} x_2^2 + \dots + x_2^{n-1}) \right| \\ \le n |x_1 - x_2|$$

Given e > 0, we can find $d = \frac{e}{n}$ independent of x_1 and x_2 such that

$$|x_1^2 - x_2^2| < n|x_1 - x_2| < e$$
 whenever $x_1, x_2 \in [0,1]$ and $|x_1 - x_2| < d = \frac{e}{n}$
nee the function f is uniformly continuous on $[0,1]$.

Hence the function f is uniformly continuous on [0,1].

* Example

Let *S* be the half open interval $0 < x \le 1$ and let a function *f* be defined for each x in S by the formula $f(x) = \frac{1}{x}$. This function is continuous on the set S, however we shall prove that this function is not uniformly continuous on S.

Solution

Let suppose e = 10 and suppose we can find a d , 0 < d < 1, to satisfy the condition of the definition.

Taking
$$x = d$$
, $y = \frac{d}{11}$, we obtain
 $|x - y| = \frac{10d}{11} <$

and

$$|f(x) - f(y)| = \left|\frac{1}{d} - \frac{11}{d}\right| = \frac{10}{d} > 10$$

d

Hence for these two points we have |f(x) - f(y)| > 10 (always)

Which contradict the definition of uniform continuity.

Hence the given function being continuous on a set S is not uniformly continuous on S.

* Example

 $f(x) = \sin \frac{1}{x}$; $x \neq 0$. is not uniformly continuous on $0 < x \le 1$ i.e (0,1].

Proof

Suppose that f is uniformly continuous on the given interval then for e = 1, there is d > 0 such that

$$|f(x_1) - f(x_2)| < 1 \text{ whenever } |x_1 - x_2| < d$$

Take $x_1 = \frac{1}{(n - \frac{1}{2})p}$ and $x_2 = \frac{1}{3(n - \frac{1}{2})p}$, $n \ge 1$.
So that $|x_1 - x_2| < d = \frac{2}{3(n - \frac{1}{2})p}$
But $|f(x_1) - f(x_2)| = |\sin(n - \frac{1}{2})p - \sin 3(n - \frac{1}{2})p| = 2 > 1$
Which contradict the assumption.
Hence f is not uniformly continuous on the interval.

* Example

Prove that $f(x) = \sqrt{x}$ is uniformly continuous on [0,1].

Solution

Suppose e = 1 and suppose we can find d, 0 < d < 1 to satisfy the condition of the definition.

Taking
$$x = d^2$$
, $y = \frac{d^2}{4}$
Then $|x - y| = d^2 - \frac{d^2}{4} = \frac{3d^2}{4} < d$
And $|f(x) - f(y)| = \left|\sqrt{d^2} - \sqrt{\frac{d^2}{4}}\right|$
 $= \left|d - \frac{d}{2}\right| = \left|\frac{d}{2}\right| < 1 = d$

Hence f is uniformly continuous on [0,1].

* Theorem

If f is continuous on a closed and bounded interval [a,b], then f is uniformly continuous on [a,b].

Proof

Suppose that f is not uniformly continuous on [a,b] then \exists a real number e > 0 such that for every real number d > 0.

We can find a pair u, v satisfying

$$|u-v| < d$$
 but $|f(u)-f(v)| \ge e > 0$

If $d = \frac{1}{n}$, n = 1, 2, 3, ...

We can determine two sequence $\{u_n\}$ and $\{v_n\}$ such that

$$|u_n - v_n| < \frac{1}{n}$$
 but $|f(u_n) - f(v_n)| \ge e$

 $\therefore a \le u_n \le b \quad \forall n=1,2,3...$

: there is a subsequence $\{u_{n_k}\}$ which converges to some number u_0 in [a,b] \Rightarrow for some l > 0, we can find an integer n_0 such that

$$|u_{n_{k}} - u_{0}| < l \quad \forall \quad n \ge n_{0}$$

$$\Rightarrow |v_{n_{k}} - u_{0}| \le |v_{n_{k}} - u_{n_{k}}| + |u_{n_{k}} - u_{0}| < \frac{1}{n} + l$$

 $\Rightarrow \{v_{n_k}\} \text{ also converges to } u_0.$

 $\Rightarrow \left\{ f\left(u_{n_{k}}\right) \right\} \text{ and } \left\{ f\left(v_{n_{k}}\right) \right\} \text{ converge to } f\left(u_{0}\right) \text{ .}$ Consequently, $\left| f\left(u_{n_{k}}\right) - f\left(v_{n_{k}}\right) \right| < e$ whenever $\left| u_{n_{k}} - v_{n_{k}} \right| < e$ Which contradict our supposition.

Hence we conclude that f is uniformly continuous on [a,b].

Let \underline{f} and \underline{g} be two continuous mappings from a metric space X into \mathbb{R}^k , then the mappings $\underline{f} + \underline{g}$ and $\underline{f} \cdot \underline{g}$ are also continuous on X.

i.e. the sum and product of two continuous vector valued function are also continuous.

Proof

i) $\therefore \underline{f} \& \underline{g}$ are continuous on X.

: by the definition of continuity, we have for a point $p \in X$.

$$\left\| \underline{f}(x) - \underline{f}(p) \right\| < \frac{e}{2} \quad \text{whenever} \quad \|x - p\| < d_1$$

and
$$\left\| \underline{g}(x) - \underline{g}(p) \right\| < \frac{e}{2} \quad \text{whenever} \quad \|x - p\| < d_2$$

Now consider

$$\begin{aligned} \left\| \underline{f}(x) + \underline{g}(x) - \underline{f}(x) - \underline{g}(p) \right\| \\ &= \left\| \underline{f}(x) - \underline{f}(p) + \underline{g}(x) - \underline{g}(p) \right\| \\ &\leq \left\| \underline{f}(x) - \underline{f}(p) \right\| + \left\| \underline{g}(x) - \underline{g}(p) \right\| \\ &< \frac{e}{2} + \frac{e}{2} = e \quad \text{whenever} \quad \left\| x - p \right\| < d \quad \text{where} \quad d = \min(d_1, d_2) \end{aligned}$$

which shows that the vector valued function $\underline{f} + \underline{g}$ is continuous at x = p and hence on X.

ii)
$$\underline{f} \cdot \underline{g} = \sum_{i=1}^{k} f_i \cdot g_i$$

= $f_1 g_1 + f_2 g_2 + f_3 g_3 + \dots + f_k g_k$
 \therefore the function \underline{f} and \underline{g} are continuous on X

: their components f_i and g_i are continuous on X.

* Question

Suppose f is a real valued function define on \mathbb{R} which satisfies

$$\lim_{h \to 0} \left[f(x+h) - f(x-h) \right] = 0 \quad \forall \ x \in \mathbb{R}$$

Does this imply that the function f is continuous on \mathbb{R} .

Solution

 $:: \lim_{h \to 0} [f(x+h) - f(x-h)] = 0 \quad \forall \ x \in \mathbb{R}$ $\Rightarrow \lim_{h \to 0} f(x+h) = \lim_{h \to 0} f(x-h)$ $\Rightarrow f(x+0) = f(x-0) \quad \forall \ x \in \mathbb{R}$ Also it is given that f(x) = f(x+0) = f(x-0)It means f is continuous on $x \in \mathbb{R}$.

* Discontinuities

If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x or that f has a discontinuity at x.

If the function f is defined on an interval, the discontinuity is divided into two types

1. Let f be defined on (a,b). If f is discontinuous at a point x and if f(x+) and f(x-) exist then f is said to have a discontinuity of first kind or a simple discontinuity at x.

2. Otherwise the discontinuity is said to be second kind.

For simple discontinuity

i. either $f(x+) \neq f(x-)$ [f(x) is immaterial]

ii. or $f(x+) = f(x-) \neq f(x)$

* Example

i) Define $f(x) = \begin{bmatrix} 1 & , x \text{ is rational} \\ 0 & , x \text{ is irrational} \end{bmatrix}$

The function f has discontinuity of second kind on every point x because neither f(x+) nor f(x-) exists.

ii) Define $f(x) = \begin{bmatrix} x & , x \text{ is rational} \\ 0 & , x \text{ is irrational} \end{bmatrix}$

Then f is continuous at x = 0 and has a discontinuity of the second kind at every other point.

iii) Define
$$f(x) = \begin{bmatrix} x+2 & (-3 < x < -2) \\ -x-2 & (-2 < x < 0) \\ x+2 & (0 < x < 1) \end{bmatrix}$$

The function has simple discontinuity at x = 0 and it is continuous at every other point of the interval (-3,1)

iv) Define
$$f(x) = \begin{bmatrix} \sin \frac{1}{x} & , x \neq 0 \\ 0 & , x = 0 \end{bmatrix}$$

: neither f(0+) nor f(0-) exists, therefore the function f has discontinuity of second kind.

f is continuous at every point except x = 0.

References: (1) Lectures (2003-04) Prof. Syyed Gull Shah Chairman, Department of Mathematics. University of Sargodha, Sargodha. (2) Book Principles of Mathematical Analysis Walter Rudin (McGraw-Hill, Inc.)

Collected and composed by: Atiq ur Rehman (<u>mathcity@gmail.com</u>) Available online at <u>http://www.mathcity.org</u> in PDF Format. Page Setup: Legal (8" ½×14") Printed: October 20, 2004. Updated: November 03, 2005