Gkapter 3 - bimit ard Gontiruity

Subject: Real Analysis (Mathematics) Level: M.Sc.
Source: Syyed Gul Shah (Chairman, Department of Mathematics, US Sargodha)
Collected \& Composed by: Atiq ur Rehman (mathcity@gmail.com), http://www.mathcity.org

* Limit of the function
 Suppose

(i) $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces
(ii) $E \subset X$
(iii) $f: E \rightarrow Y$ i.e. f maps E into Y.
(iv) p is the limit point of E.

We write $f(x) \rightarrow q$ as $x \rightarrow p$ or $\lim _{x \rightarrow p} f(x)=q$, if there is a point q with the following property;
For every $\varepsilon>0$, there exists a $\delta>0$ such that $d_{Y}(f(x), q)<\varepsilon$ for all points $x \in E$ for which $d_{X}(x, p)<\delta$.
If X and Y are replaced by a real line, complex plane or by Euclidean space \mathbb{R}^{k}, then the distances d_{X} and d_{Y} are replaced by absolute values or by appropriate norms.

Note: i It is to be noted that $p \in X$ but that p need not a point of E in the above definition (p is a limit point of E which may or may not belong to E.)
ii) Even if $p \in E$, we may have $f(p) \neq \lim _{x \rightarrow p} f(x)$.

* Example

$$
\lim _{x \rightarrow \infty} \frac{2 x}{1+x}=2
$$

We have $\left|\frac{2 x}{x-1}-2\right|=\left|\frac{2 x-2-2 x}{1+x}\right|=\left|\frac{-2}{1+x}\right|<\frac{2}{x}$
Now if $\varepsilon>0$ is given we can find $\delta=\frac{2}{\varepsilon}$ so that

$$
\left|\frac{2 x}{1+x}-2\right|<\varepsilon \quad \text { whenever } \quad x>\delta
$$

* Example

Consider the function $f(x)=\frac{x^{2}-1}{x-1}$.
It is to be noted that f is not defined at $x=1$ but if $x \neq 1$ and is very close to 1 or less then $f(x)$ equals to 2 .

* Definitions

i) Let X and Y be subsets of \mathbb{R}, a function $f: X \rightarrow Y$ is said to tend to limit l as $x \rightarrow \infty$, if for a real number $\varepsilon>0$ however small, \exists a positive number δ which depends upon ε such that distance

$$
|f(x)-l|<\varepsilon \text { when } x>\delta \text { and we write } \lim _{x \rightarrow \infty} f(x)=l
$$

ii) f is said to tend to a right limit l as $x \rightarrow c$ if for $\varepsilon>0, \exists \delta>0$ such that $|f(x)-l|<\varepsilon$ whenever $x \in G$ and $0<x<c+\delta$.
And we write $f(c+)=\lim _{x \rightarrow c+} f(x)=l$
iii) f is said to tend to a left limit l as $x \rightarrow c$ if for $\varepsilon>0, \exists$ a $\delta>0$ such that $|f(x)-l|<\varepsilon$ whenever $x \in G$ and $0<c-\delta<x<c$.
And we write $f(c-)=\lim _{x \rightarrow c_{-}^{-}} f(x)=l$.

* Theorem

Suppose
(i) $\left(X, d_{x}\right)$ and $\left(Y, d_{y}\right)$ be two metric spaces
(ii) $E \subset X$
(iii) $f: E \rightarrow Y$ i.e. f maps E into Y.
(iv) p is the limit point of E.

Then $\lim _{x \rightarrow p} f(x)=q$ iff $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$ for every sequence $\left\{p_{n}\right\}$ in E such that $p_{n} \neq p, \lim _{n \rightarrow \infty} p_{n}=p$.

Proof

Suppose $\lim _{x \rightarrow p} f(x)=q$ holds.
Choose $\left\{p_{n}\right\}$ in E such that $p_{n} \neq p, \lim _{n \rightarrow \infty} p_{n}=p$, we are to show that
$\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$
Then there exists a $\delta>0$ such that

$$
\begin{equation*}
d_{y}(f(x), q)<\varepsilon \text { if } x \in E \text { and } 0<d_{x}(x, p)<\delta \tag{i}
\end{equation*}
$$

Also \exists a positive integer n_{0} such that $n>n_{0}$

$$
\begin{equation*}
\Rightarrow d_{x}\left(p_{n}, p\right)<\delta \tag{ii}
\end{equation*}
$$

from (i) and (ii), we have for $n>n_{0}$

$$
d_{y}\left(f\left(p_{n}\right), q\right)<\varepsilon
$$

Which shows that limit of the sequence

$$
\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q
$$

Conversely, suppose that $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$ is false.
Then \exists some $\varepsilon>0$ such that for every $\delta>0$, there is a point $x \in E$ for which $d_{y}(f(x), q) \geq \varepsilon$ but $0<d_{x}(x, p)<\delta$.
In particular, taking $\delta_{n}=\frac{1}{n}, n=1,2,3, \ldots \ldots$.
We find a sequence in E satisfied $p_{n} \neq p, \lim _{n \rightarrow \infty} p_{n}=p$ for which $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$ is false.

Example

$$
\lim _{x \rightarrow \infty} \sin \frac{1}{x} \text { does not exist. }
$$

Suppose that $\lim _{x \rightarrow \infty} \sin \frac{1}{x}$ exists and take it to be l, then there exist a positive real number δ such that

$$
\left|\sin \frac{1}{x}-l\right|<1 \quad \text { when } \quad 0<|x-0|<\delta \quad \text { (we take } \varepsilon=1>0 \text { here) }
$$

We can find a positive integer n such that

$$
\frac{2}{n \pi}<\delta \text { then } \frac{2}{(4 n+1) \pi}<\delta \quad \text { and } \frac{2}{(4 n+3) \pi}<\delta
$$

It thus follows

$$
\left|\sin \frac{(4 n+1) \pi}{2}-l\right|<1 \quad \Rightarrow|1-l|<1
$$

and

$$
\left|\sin \frac{(4 n+3) \pi}{2}-l\right|<1 \quad \Rightarrow|-1-l|<1 \quad \text { or } \quad|1+l|<1
$$

So that

$$
2=|1+l+1-l| \leq|1+l|+|1-l|<1+1 \quad \Rightarrow 2<2
$$

This is impossible; hence limit of the function does not exist.

Alternative:

Consider $\quad x_{n}=\frac{2}{(2 n-1) \pi}$ then $\lim _{x \rightarrow \infty} x_{n}=0$
But $\left\{f\left(x_{n}\right)\right\}$ i.e. $\left\{\sin \frac{1}{x_{n}}\right\}$ is an oscillatory sequence
i.e. $\{1,-1,1,-1, \ldots$.$\} therefore \left\{\sin \frac{1}{x_{n}}\right\}$ diverges.

Hence we conclude that $\lim _{x \rightarrow \infty} \sin \frac{1}{x}$ does not exit.

- Example

Consider the function

$$
f(x)=\left\{\begin{array}{ccl}
x ; & x<1 \\
2+(x-1)^{2} ; & x \geq 1
\end{array}\right.
$$

We show that $\lim _{x \rightarrow 1} f(x)$ does not exist.
To prove this take $x_{n}=1-\frac{1}{n}$, then $\lim _{x \rightarrow \infty} x_{n}=1$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=1$
But if we take $x_{n}=1+\frac{1}{n}$ then $x_{n} \rightarrow 1$ as $n \rightarrow \infty$
and $\lim _{x \rightarrow \infty} f\left(x_{n}\right)=\lim _{x \rightarrow \infty} 2+\left(1+\frac{1}{n}-1\right)^{2}=2$
This show that $\left\{f\left(x_{n}\right)\right\}$ does not tend to a same limit as for all sequences $\left\{S_{n}\right\}$ such that $x_{n} \rightarrow 1$.
Hence this limit does not exist.

* Example

Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irratioanl }\end{cases}
$$

Show that $\lim _{x \rightarrow p} f(x)$ where $p \in[0,1]$ does not exist.

Solution

Let $\lim _{x \rightarrow p} f(x)=q$, if given $\varepsilon>0$ we can find $\delta>0$ such that

$$
|f(x)-q|<\varepsilon \text { whenever }|x-p|<\delta .
$$

Consider the irrational $(r-s, r+s) \subset[0,1]$ such that r is rational and s is irrational.
Then $f(r)=0$ \& $f(s)=1$
Suppose $\lim _{x \rightarrow p} f(x)=q$ then

$$
\begin{aligned}
& |f(s)|=1 \\
\Rightarrow 1 & =|f(s)-q+q| \\
& =\mid(f(s)-q+q-0 \mid \\
& =|f(s)-q+q-f(r)| \quad \because 0=f(r)
\end{aligned}
$$

$$
\leq|f(s)-q|+|f(r)-q|<\varepsilon+\varepsilon
$$

i.e. $1<\varepsilon+\varepsilon$

$$
\Rightarrow 1<\frac{1}{4}+\frac{1}{4} \quad \text { if } \varepsilon=\frac{1}{4}
$$

Which is absurd.
Hence the limit of the function does not exist.

Exercise

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
$$

We have

$$
\begin{aligned}
& \left|x \sin \frac{1}{x}-0\right|<\varepsilon \quad \text { where } \varepsilon>0 \text { is a pre-assigned positive number. } \\
\Rightarrow & \left|x \sin \frac{1}{x}\right|<\varepsilon \\
\Rightarrow & |x|\left|\sin \frac{1}{x}\right|<\varepsilon \\
\Rightarrow & |x|<\varepsilon \quad \because\left|\sin \frac{1}{x}\right| \leq 1 \\
\Rightarrow & |x-0|<\varepsilon=\delta
\end{aligned}
$$

It shows that $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.
Same the case for function for $f(x)=x \cos \frac{1}{x}$
Also we can derived the result that $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$.

Theorem

If $\lim _{x \rightarrow c} f(x)$ exists then it is unique.

Proof

Suppose $\lim _{x \rightarrow c} f(x)$ is not unique.
Take $\lim _{x \rightarrow c} f(x)=l_{1}$ and $\lim _{x \rightarrow c} f(x)=l_{2}$ where $l_{1} \neq l_{2}$.
$\Rightarrow \exists$ real numbers δ_{1} and δ_{2} such that

$$
\begin{aligned}
& \left|f(x)-l_{1}\right|<\varepsilon \quad \text { whenever } \quad|x-c|<\delta_{1} \\
& \text { \& }\left|f(x)-l_{2}\right|<\varepsilon \quad \text { whenever } \quad|x-c|<\delta_{2}
\end{aligned}
$$

Now $\quad\left|l_{1}-l_{2}\right|=\left|\left(f(x)-l_{1}\right)-\left(f(x)-l_{2}\right)\right|$
$\leq\left|f(x)-l_{1}\right|+\left|f(x)-l_{2}\right|$
$<\varepsilon+\varepsilon \quad$ whenever $\quad|x-c|<\min \left(\delta_{1}, \delta_{2}\right)$
$\Rightarrow l_{1}=l_{2}$

Theorem

Suppose that a real valued function f is defined on an open interval G except possibly at $c \in G$. Then $\lim _{x \rightarrow c} f(x)=l$ if and only if for every positive real number ε, there is $\delta>0$ such that $|f(t)-f(s)|<\varepsilon$ whenever $s \& t$ are in $\{x:|x-c|<\delta\}$.

Proof

Suppose $\lim _{x \rightarrow c} f(x)=l$
\therefore for every $\varepsilon>0, \exists \delta>0$ such that

$$
|f(s)-l|<\frac{1}{2} \varepsilon \quad \text { whenever } \quad 0<|s-c|<\delta
$$

$$
\& \quad|f(t)-l|<\frac{1}{2} \varepsilon \quad \text { whenever } \quad 0<|t-c|<\delta
$$

$$
\Rightarrow|f(s)-f(t)| \leq|f(s)-l|+|f(t)-l|
$$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \quad \text { whenever } \quad|s-c|<\delta \quad \&|t-c|<\delta
$$

$|f(t)-f(s)|<\varepsilon$ whenever $s \& t$ are in $\{x:|x-c|<\delta\}$.
Conversely, suppose that the given condition holds.
Let $\left\{x_{n}\right\}$ be a sequence of distinct elements of G such that $x_{n} \rightarrow c$ as $n \rightarrow \infty$.
Then for $\delta>0 \exists$ a natural number n_{0} such that

$$
\left|x_{n}-l\right|<\delta \quad \text { and } \quad\left|x_{m}-l\right|<\delta \quad \forall m, n>n_{0} .
$$

And for $\varepsilon>0$

$$
\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon \quad \text { whenever } \quad m, n>n_{0}
$$

$\Rightarrow\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence and therefore it is convergent.

Theorem (Sandwiching Theorem)

Suppose that f, g and h are functions defined on an open interval G except possibly at $c \in G$. Let $f \leq h \leq g$ on G.
If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=l$, then $\lim _{x \rightarrow c} h(x)=l$.

Proof

For $\varepsilon>0 \quad \exists \delta_{1}, \delta_{2}>0$ such that

$$
\begin{aligned}
&|f(x)-l|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta_{1} \\
& \&|g(x)-l|<\varepsilon \quad \text { whenever } 0<|x-c|<\delta_{2} \\
& \Rightarrow l-\varepsilon<f(x)<l+\varepsilon \quad \text { for } \quad 0<|x-c|<\delta_{1} \\
& \& \quad l-\varepsilon<g(x)<l+\varepsilon \quad \text { for } \quad 0<|x-c|<\delta_{2} \\
& \Rightarrow l-\varepsilon<f(x) \leq h(x) \leq g(x)<l+\varepsilon \\
& \Rightarrow l-\varepsilon<h(x)<l+\varepsilon \quad \text { for } \quad 0<|x-c|<\min \left(\delta_{1}, \delta_{2}\right) \\
& \Rightarrow \lim _{x \rightarrow c} h(x)=l
\end{aligned}
$$

* Theorem

Let (i) $(X, d),\left(Y, d_{y}\right)$ be two metric spaces.
(ii) $E \subset X$
(iii) p is a limit point of E.
(iv) $f: E \rightarrow Y$.
(v) $g: E \rightarrow Y$
and $\lim _{x \rightarrow p} f(x)=A$ and $\lim _{x \rightarrow p} g(x)=B$ then
i- $\lim _{x \rightarrow p}(f(x) \pm g(x))=A \pm B$
ii- $\lim _{x \rightarrow p}(f g)(x)=A B$
iii- $\lim _{x \rightarrow p}\left(\frac{f(x)}{g(x)}\right)=\frac{A}{B}$ provided $B \neq 0$.
Proof

> Do yourself

* Continuity

Suppose
i) $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are two metric spaces
ii) $E \subset X$
iii) $p \in E$
iv) $f: E \rightarrow Y$

Then f is said to be continuous at p if for every $\varepsilon>0 \exists$ a $\delta>0$ such that $d_{Y}(f(x), f(p))<\varepsilon$ for all points $x \in E$ for which $d_{X}(x, p)<\delta$.

Note:

(i) If f is continuous at every point of E. Then f is said to be continuous on E.
(ii) It is to be noted that f has to be defined at p iff $\lim _{x \rightarrow p} f(x)=f(p)$.

Examples

$$
f(x)=x^{2} \text { is continuous } \forall x \in \mathbb{R} .
$$

Here $f(x)=x^{2}$, Take $p \in \mathbb{R}$
Then $\quad|f(x)-f(p)|<\varepsilon$

$$
\begin{aligned}
& \Rightarrow\left|x^{2}-p^{2}\right|<\varepsilon \\
& \Rightarrow|(x-p)(x+p)|<\varepsilon \\
& \Rightarrow|x-p|<\varepsilon=\delta
\end{aligned}
$$

$\because p$ is arbitrary real number
\therefore the function $f(x)$ is continuous \forall real numbers.
\qquad

Theorem

Let
i) X, Y, Z be metric spaces
ii) $E \subset X$
iii) $f: E \rightarrow Y, g: f(E) \rightarrow Z$ and $h: E \rightarrow Z$ defined by $h(x)=g(f(x))$

If f is continuous at $p \in E$ and if g is continuous at the point $f(p)$, then h is continuous at p.

Proof

$\because g$ is continuous at $f(p)$
\therefore for every $\varepsilon>0, \exists$ a $\delta>0$ such that

$$
\begin{equation*}
d_{Z}(g(y), g(f(p)))<\varepsilon \text { whenever } d_{Y}(y, f(p))<\delta_{1} \tag{i}
\end{equation*}
$$

$\because f$ is continuous at $p \in E$
$\therefore \exists$ a $\delta>0$ such that

$$
\begin{equation*}
d_{Y}(f(x), f(p))<\delta_{1} \text { whenever } d_{X}(x, p)<\delta \tag{ii}
\end{equation*}
$$

Combining (i) and (ii), we have

$$
\begin{aligned}
& d_{Z}(g(y), g(f(p)))<\varepsilon \text { whenever } \quad d_{X}(x, p)<\delta \\
\Rightarrow & d_{Z}(h(x), h(p))<\varepsilon \text { whenever } d_{X}(x, p)<\delta
\end{aligned}
$$

which shows that the function h is continuous at p.

- Example

(i) $f(x)=\left(1-x^{2}\right)$ is continuous $\forall x \in \mathbb{R}$ and $g(x)=\sqrt{x}$ is continuous $\forall x \in[0, \infty]$, then $g(f(x))=\sqrt{1-x^{2}}$ is continuous $x \in(-1,1)$.
(ii) Let $g(x)=\sin x$ and $f(x)= \begin{cases}x-\pi, & x \leq 0 \\ x+\pi, & x>0\end{cases}$

Then $\quad g(f(x))=-\sin x \quad \forall x$
Then the function $g(f(x))$ is continuous at $x=0$, although f is discontinuous at $x=0$.

* Theorem

Let f be defined on X. If f is continuous at $c \in X$ then \exists a number $\delta>0$ such that f is bounded on the open interval $(c-\delta, c+\delta)$.

Proof

Since f is continuous at $c \in X$.
Therefore for a real number $\varepsilon>0, \exists$ a real number $\delta>0$ such that

$$
\begin{aligned}
& |f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad x \in X \text { and } \quad|x-c|<\delta . \\
\Rightarrow & |f(x)|=|f(x)-f(c)+f(c)|
\end{aligned}
$$

$$
\begin{aligned}
& \leq|f(x)-f(c)|-|f(c)| \\
& <\varepsilon+|f(c)| \quad \text { whenever }|x-c|<\delta
\end{aligned}
$$

It shows that f is bounded on the open interval $] c-\delta, c+\delta[$.

* Theorem

Suppose f is continuous on $[a, b]$. If $f(c)>0$ for some $c \in[a, b]$ then there exist an open interval $G \subset[a, b]$ such that $f(x)>0 \quad \forall x \in G$.

Proof

Take $\varepsilon=\frac{1}{2} f(c)$
$\because f$ is continuous on $[a, b]$
$\therefore|f(x)-f(c)|<\varepsilon \quad$ whenever $|x-c|<\delta, x \in[a, b]$
Take $G=\{x \in[a, b]:|x-c|<\delta\}$
$\Rightarrow|f(x)|=|f(x)-f(c)+f(c)|$
$\leq|f(x)-f(c)|+|f(c)|$
$<\varepsilon+|f(c)|$ whenever $|x-c|<\delta$
For $x \in G$, we have

$$
\begin{aligned}
f(x) & =f(c)-(f(c)-f(x)) \geq f(c)-|f(c)-f(x)| \\
& \geq f(c)-|f(x)-f(c)|>f(c)-\frac{1}{2} f(c) \\
\Rightarrow f(x) & >\frac{1}{2} f(c)>0
\end{aligned}
$$

* Example

Define a function f by

$$
f(x)=\left\{\begin{array}{cc}
x \cos x & ; x \neq 0 \\
0 & ; x=0
\end{array}\right.
$$

This function is continuous at $x=0$ because

$$
|f(x)-f(0)|=|x \cos x| \leq|x| \quad(\because|\cos x| \leq 1)
$$

Which shows that for $\varepsilon>0$, we can find $\delta>0$ such that

$$
|f(x)-f(0)|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta=\varepsilon
$$

* Example

$$
f(x)=\sqrt{x} \text { is continuous on }[0, \infty[.
$$

Let c be an arbitrary point such that $0<c<\infty$
For $\varepsilon>0$, we have

$$
\begin{aligned}
& |f(x)-f(c)|=|\sqrt{x}-\sqrt{c}|=\frac{|x-c|}{\sqrt{x}+\sqrt{c}}<\frac{|x-c|}{\sqrt{c}} \\
\Rightarrow & |f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad \frac{|x-c|}{\sqrt{c}}<\varepsilon
\end{aligned}
$$

i.e. $|x-c|<\sqrt{c} \varepsilon=\delta$
$\Rightarrow f$ is continuous for $x=c$.
$\because c$ is an arbitrary point lying in $[0, \infty[$
$\therefore f(x)=\sqrt{x}$ is continuous on $[0, \infty[$

* Example

Consider the function f defined on \mathbb{R} such that

$$
f(x)=\left\{\begin{array}{cl}
1 & , x \text { is rational } \\
-1 & , x \text { is irrational }
\end{array}\right.
$$

This function is discontinuous every where but $|f(x)|$ is continuous on \mathbb{R}.

* Theorem

A mapping of a metric space X into a metric space Y is continuous on X iff $f^{-1}(V)$ is open in X for every open set V in Y.

Proof

Suppose f is continuous on X and V is open in Y.
We are to show that $f^{-1}(V)$ is open in X i.e. every point of $f^{-1}(V)$ is an interior point of $f^{-1}(V)$.
Let $p \in X$ and $f(p) \in V$
$\because V$ is open
$\therefore \exists \varepsilon>0$ such that $y \in V$ if $d_{Y}(y, f(p))<\varepsilon$
$\because f$ is continuous at p
$\therefore \exists \delta>0$ such that $d_{Y}(f(x), f(p))<\varepsilon$ when $d_{X}(x, p)<\delta$
From (i) and (ii), we conclude that

$$
x \in f^{-1}(V) \text { as soon as } d_{X}(x, p)<\delta
$$

Which shows that $f^{-1}(V)$ is open in X.
Conversely, suppose $f^{-1}(V)$ is open in X for every open set V in Y.
We are to prove that f is continuous for this.
Fix $p \in X$ and $\varepsilon>0$.
Let V be the set of all $y \in Y$ such that $d_{Y}(y, f(p))<\varepsilon$
V is open, $f^{-1}(V)$ is open
$\Rightarrow \exists \delta>0$ such that $x \in f^{-1}(V)$ as soon as $d_{X}(x, p)<\delta$.
But if $x \in f^{-1}(V)$ then $f(x) \in V$ so that $d_{Y}(f(x), f(y))<\varepsilon$
Which proves that f is continuous.

Note

The above theorem can also be stated as a mapping $f: X \rightarrow Y$ is continuous iff $f^{-1}(C)$ is closed in X for every closed set C in Y.

Theorem

Let $f_{1}, f_{2}, f_{3}, \ldots ., f_{k}$ be real valued functions on a metric space X and \underline{f} be a mapping from X on to \mathbb{R}^{k} defined by

$$
\underline{f}(x)=\left(f_{1}(x), f_{2}(x), f_{3}(x), \ldots . ., f_{k}(x)\right), \quad x \in X
$$

then \underline{f} is continuous on X if and only if $f_{1}, f_{2}, f_{3}, \ldots \ldots, f_{k}$ are continuous on X.

Proof

Let us suppose that the function \underline{f} is continuous on X, we are to show that $f_{1}, f_{2}, f_{3}, \ldots \ldots ., f_{k}$ are continuous on X.
If $p \in X$, then $d_{\mathbb{R}^{k}}(\underline{f}(x), \underline{f}(p))<\varepsilon \quad$ whenever $d_{X}(x, p)<\delta$
$\Rightarrow\|\underline{f}(x)-\underline{f}(p)\|<\varepsilon \quad$ whenever $\quad\|x-p\|<\delta$

$$
\begin{array}{r}
\Rightarrow\left\|f_{1}(x)-f_{1}(p), f_{1}(x)-f_{1}(p), \ldots \ldots f_{k}(x)-f_{k}(p)\right\|<\varepsilon \text { whenever }\|x-p\|<\delta \\
\Rightarrow\left[\left(f_{1}(x)-f_{1}(p)\right)^{2},\left(f_{2}(x)-f_{2}(p)\right)^{2}, \ldots \ldots .,\left(f_{k}(x)-f_{k}(p)\right)^{2}\right]^{1 / 2}<\varepsilon \\
\text { whenever }\|x-p\|<\delta
\end{array}
$$

i.e. $\Rightarrow\left[\sum_{i=1}^{k}\left(f_{i}(x)-f_{i}(p)\right)^{2}\right]^{1 / 2}<\varepsilon \quad$ whenever $\|x-p\|<\delta$

$$
\begin{aligned}
\Rightarrow & \left\|f_{1}(x)-f_{1}(p)\right\|<\varepsilon \quad \text { whenever } \quad\|x-p\|<\delta \\
& \left\|f_{2}(x)-f_{2}(p)\right\|<\varepsilon \quad \text { whenever } \quad\|x-p\|<\delta
\end{aligned}
$$

$\left\|f_{k}(x)-f_{k}(x)\right\|<\varepsilon \quad$ whenever $\quad\|x-p\|<\delta$
\Rightarrow all the functions $f_{1}, f_{2}, f_{3}, \ldots . ., f_{k}$ are continuous at p.
$\because p$ is arbitrary point of x, therefore $f_{1}, f_{2}, f_{3}, \ldots \ldots, f_{k}$ are continuous on X.
Conversely, suppose that the function $f_{1}, f_{2}, f_{3}, \ldots . ., f_{k}$ are continuous on X, we are to show that \underline{f} is continuous on X.
For $p \in X$ and given $\varepsilon_{i}>0, i=1,2, \ldots . . k \exists \delta_{i}>0, i=1,2, \ldots, k$
Such that

$$
\begin{aligned}
& \left\|f_{1}(x)-f_{1}(p)\right\|<\varepsilon_{1} \quad \text { whenever } \quad\|x-p\|<\delta_{1} \\
& \left\|f_{2}(x)-f_{2}(p)\right\|<\varepsilon_{2} \quad \text { whenever } \quad\|x-p\|<\delta_{2}
\end{aligned}
$$

$$
\left\|f_{k}(x)-f_{k}(x)\right\|<\varepsilon_{k} \quad \text { whenever } \quad\|x-p\|<\delta_{k}
$$

Take $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}, \ldots ., \delta_{k}\right)$ then

$$
\left\|f_{i}(x)-f_{i}(p)\right\|<\varepsilon_{i} \quad \text { whenever } \quad\|x-p\|<\delta
$$

$$
\Rightarrow\left[\left(f_{1}(x)-f_{1}(p)\right)^{2}+\left(f_{2}(x)-f_{2}(p)\right)^{2}+\ldots .+\left(f_{k}(x)-f_{k}(p)\right)^{2}\right]^{1 / 2}<\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots .+\varepsilon_{k}^{2}\right)^{1 / 2}
$$

$$
\text { i.e. } \Rightarrow\left[\left(f_{1}(x)-f_{1}(p)\right)^{2}+\left(f_{2}(x)-f_{2}(p)\right)^{2}+\ldots .+\left(f_{k}(x)-f_{k}(p)\right)^{2}\right]^{1 / 2}<\varepsilon
$$ whenever $\|x-p\|<\delta$

where $\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\ldots . .+\varepsilon_{k}^{2}\right)^{1 / 2}=\varepsilon$
Then $d_{\mathbb{R}^{k}}(\underline{f}(x), \underline{f}(p))<\varepsilon \quad$ whenever $\quad d_{X}(x, p)<\delta$
$\Rightarrow \underline{f}(x)$ is continuous at p.
$\because p$ is an arbitrary point therefore we conclude that \underline{f} is continuous on X.

Theorem

Suppose f is continuous on $[a, b]$
i) If $f(a)<0$ and $f(b)>0$ then there is a point $c, a<c<b$ such that $f(c)=0$.
ii) If $f(a)>0$ and $f(b)<0$, then there is a point $c, a<c<b$ such that $f(c)=0$.

Proof

i) Bisect $[a, b]$ then f must satisfy the given condition on at least one of the sub-interval so obtained. Denote this interval by $\left[a_{2}, b_{2}\right]$
If f satisfies the condition on both sub-interval then choose the right hand one $\left[a_{2}, b_{2}\right]$.
It is obvious that $a \leq a_{2} \leq b_{2} \leq b$. By repeated bisection we can find nested intervals $\left\{I_{n}\right\}, I_{n+1} \subseteq I_{n}, I_{n}=\left[a_{n}, b_{n}\right]$ so that f satisfies the given condition on $\left[a_{n}, b_{n}\right], n=1,2, \ldots \ldots$.
And $\quad a=a_{1} \leq a_{2} \leq a_{3} \leq \ldots . . \leq a_{n} \leq b_{n} \leq \ldots . . \leq b_{2} \leq b_{1}=b$
Where $b_{n}-a_{n}=\left(\frac{1}{2}\right)^{n}(b-a)$
Then $\bigcap_{i=1}^{n} I_{n}$ contain one and only one point. Let that point be c such that $f(c)=0$
If $f(c) \neq 0$, let $f(c)>0$ then there is a subinterval $\left[a_{m}, b_{m}\right]$ such that $a_{m}<b_{m}<c$ Which can not happen. Hence $f(c)=0$
ii) Do yourself as above

* Example

Show that $x^{3}-2 x^{2}-3 x+1=0$ has a solution $c \in[-1,1]$

Solution

Let $f(x)=x^{3}-2 x^{2}-3 x+1$
$\because f(x)$ is polynomial
\therefore it is continuous everywhere. (for being a polynomial continuous everywhere)
Now $f(-1)=(-1)^{3}-2(-1)^{2}-3(-1)+1$

$$
=-1-2+3+1=1>0
$$

$$
f(1)=(1)^{3}-2(1)^{2}-3(1)+1
$$

$$
=1-2-3+1=-3<0
$$

Therefore there is a point $c \in[-1,1]$ such that $f(c)=0$
i.e. c is the root of the equation.

- Theorem (The intermediate value theorem)

Suppose f is continuous on $[a, b]$ and $f(a) \neq f(b)$, then given a number λ that lies between $f(a)$ and $f(b), \exists$ a point $c, a<c<b$ with $f(c)=\lambda$.

Proof

Let $f(a)<f(b)$ and $f(a)<\lambda<f(b)$.
Suppose $g(x)=f(x)-\lambda$
Then $g(a)=f(a)-\lambda<0$ and $g(b)=f(b)-\lambda>0$
$\Rightarrow \exists$ a point c between a and b such that $g(c)=0$

$$
\Rightarrow f(c)-\lambda=0 \Rightarrow f(c)=\lambda
$$

If $f(a)>f(b)$ then take $g(x)=\lambda-f(x)$ to obtain the required result.

- Theorem

Suppose f is continuous on $[a, b]$, then f is bounded on $[a, b]$
(Continuity implies boundedness)

Proof

Suppose that f is not bounded on $[a, b]$,
We can, therefore, find a sequence $\left\{x_{n}\right\}$ in the interval $[a, b]$ such that $f\left(x_{n}\right)>n$ for all $n \geq 1$.
$\Rightarrow\left\{f\left(x_{n}\right)\right\}$ diverges.
But $a \leq x_{n} \leq b ; n \geq 1$
$\Rightarrow \exists$ a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges to λ.
$\Rightarrow\left\{f\left(x_{n_{k}}\right)\right\}$ also converges to λ.
$\Rightarrow\left\{f\left(x_{n}\right)\right\}$ converges to λ.
Which is contradiction
Hence our supposition is wrong.

Uniform continuity

Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every $\varepsilon>0$ there exists $\delta>0$ such that $d_{Y}(f(p), f(q))<\varepsilon \quad \forall \quad p, q \in X$ for which $d_{x}(p, q)<\delta$
The uniform continuity is a property of a function on a set i.e. it is a global property but continuity can be defined at a single point i.e. it is a local property. Uniform continuity of a function at a point has no meaning.
If f is continuous on X then it is possible to find for each $\varepsilon>0$ and for each point p of X, a number $\delta>0$ such that $d_{Y}(f(x), f(p))<\varepsilon$ whenever $d_{X}(x, p)<\delta$. Then number δ depends upon ε and on p in this case but if f is uniformly continuous on X then it is possible for each $\varepsilon>0$ to find one number $\delta>0$ which will do for all point p of X.
It is evident that every uniformly continuous function is continuous.
To emphasize a difference between continuity and uniform continuity on set S, we consider the following examples.

Example

Let S be a half open interval $0<x \leq 1$ and let f be defined for each x in S by the formula $f(x)=x^{2}$. It is uniformly continuous on S. To prove this observe that we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right| \\
& =|x-y||x+y| \\
& <2|x-y|
\end{aligned}
$$

If $|x-y|<\delta$ then $|f(x)-f(y)|<2 \delta=\varepsilon$
Hence if ε is given we need only to take $\delta=\frac{\varepsilon}{2}$ to guarantee that

$$
|f(x)-f(y)|<\varepsilon \text { for every pair } x, y \text { with }|x-y|<\delta
$$

Thus f is uniformly continuous on the set S.

Example

$f(x)=x^{n}, n \geq 0$ is uniformly continuous of $[0,1]$

Solution

For any two values x_{1}, x_{2} in $[0,1]$ we have

$$
\begin{aligned}
\left|x_{1}^{n}-x_{2}^{n}\right| & =\left|\left(x_{1}-x_{2}\right)\left(x_{1}^{n-1}+x_{1}^{n-2} x_{2}+x_{1}^{n-3} x_{2}^{2}+\ldots . .+x_{2}^{n-1}\right)\right| \\
& \leq n\left|x_{1}-x_{2}\right|
\end{aligned}
$$

Given $\varepsilon>0$, we can find $\delta=\frac{\varepsilon}{n}$ independent of x_{1} and x_{2} such that

$$
\left|x_{1}^{2}-x_{2}^{2}\right|<n\left|x_{1}-x_{2}\right|<\varepsilon \text { whenever } x_{1}, x_{2} \in[0,1] \text { and }\left|x_{1}-x_{2}\right|<\delta=\frac{\varepsilon}{n}
$$

Hence the function f is uniformly continuous on [0,1].

Example

Let S be the half open interval $0<x \leq 1$ and let a function f be defined for each x in S by the formula $f(x)=\frac{1}{x}$. This function is continuous on the set S, however we shall prove that this function is not uniformly continuous on S.

Solution

Let suppose $\varepsilon=10$ and suppose we can find a $\delta, 0<\delta<1$, to satisfy the condition of the definition.
Taking $x=\delta, y=\frac{\delta}{11}$, we obtain

$$
|x-y|=\frac{10 \delta}{11}<\delta
$$

and

$$
|f(x)-f(y)|=\left|\frac{1}{\delta}-\frac{11}{\delta}\right|=\frac{10}{\delta}>10
$$

Hence for these two points we have $|f(x)-f(y)|>10$ (always)
Which contradict the definition of uniform continuity.
Hence the given function being continuous on a set S is not uniformly continuous on S.

* Example

$f(x)=\sin \frac{1}{x} ; x \neq 0$. is not uniformly continuous on $0<x \leq 1$ i.e $(0,1]$.

Proof

Suppose that f is uniformly continuous on the given interval then for $\varepsilon=1$, there is $\delta>0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<1 \text { whenever }\left|x_{1}-x_{2}\right|<\delta
$$

Take $\quad x_{1}=\frac{1}{\left(n-\frac{1}{2}\right) \pi} \quad$ and $\quad x_{2}=\frac{1}{3\left(n-\frac{1}{2}\right) \pi} \quad, \quad n \geq 1$.
So that $\left|x_{1}-x_{2}\right|<\delta=\frac{2}{3\left(n-\frac{1}{2}\right) \pi}$
But $\quad\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=\left|\sin \left(n-\frac{1}{2}\right) \pi-\sin 3\left(n-\frac{1}{2}\right) \pi\right|=2>1$
Which contradict the assumption.
Hence f is not uniformly continuous on the interval.

Example

Prove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0,1]$.

Solution

Suppose $\varepsilon=1$ and suppose we can find $\delta, 0<\delta<1$ to satisfy the condition of the definition.
Taking $x=\delta^{2}, y=\frac{\delta^{2}}{4}$
Then $|x-y|=\delta^{2}-\frac{\delta^{2}}{4}=\frac{3 \delta^{2}}{4}<\delta$
And $\quad|f(x)-f(y)|=\left|\sqrt{\delta^{2}}-\sqrt{\frac{\delta^{2}}{4}}\right|$

$$
=\left|\delta-\frac{\delta}{2}\right|=\left|\frac{\delta}{2}\right|<1=\varepsilon
$$

Hence f is uniformly continuous on $[0,1]$.

Theorem

If f is continuous on a closed and bounded interval $[a, b]$, then f is uniformly continuous on $[a, b]$.

Proof

Suppose that f is not uniformly continuous on $[a, b]$ then \exists a real number $\varepsilon>0$ such that for every real number $\delta>0$.
We can find a pair u, v satisfying

$$
|u-v|<\delta \quad \text { but } \quad|f(u)-f(v)| \geq \varepsilon>0
$$

If $\delta=\frac{1}{n}, n=1,2,3, \ldots$.
We can determine two sequence $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ such that

$$
\left|u_{n}-v_{n}\right|<\frac{1}{n} \quad \text { but } \quad\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \geq \varepsilon
$$

$\because a \leq u_{n} \leq b \quad \forall n=1,2,3 \ldots \ldots$.
\therefore there is a subsequence $\left\{u_{n_{k}}\right\}$ which converges to some number u_{0} in $[a, b]$
\Rightarrow for some $\lambda>0$, we can find an integer n_{0} such that

$$
\begin{aligned}
& \left|u_{n_{k}}-u_{0}\right|<\lambda \quad \forall n \geq n_{0} \\
\Rightarrow & \left|v_{n_{k}}-u_{0}\right| \leq\left|v_{n_{k}}-u_{n_{k}}\right|+\left|u_{n_{k}}-u_{0}\right|<\frac{1}{n}+\lambda
\end{aligned}
$$

$\Rightarrow\left\{v_{n_{k}}\right\}$ also converges to u_{0}.
$\Rightarrow\left\{f\left(u_{n_{k}}\right)\right\}$ and $\left\{f\left(v_{n_{k}}\right)\right\}$ converge to $f\left(u_{0}\right)$.
Consequently, $\left|f\left(u_{n_{k}}\right)-f\left(v_{n_{k}}\right)\right|<\varepsilon$ whenever $\left|u_{n_{k}}-v_{n_{k}}\right|<\varepsilon$
Which contradict our supposition.
Hence we conclude that f is uniformly continuous on $[a, b]$.

* Theorem

Let \underline{f} and \underline{g} be two continuous mappings from a metric space X into \mathbb{R}^{k}, then the mappings $\underline{f}+\underline{g}$ and $\underline{f} \cdot \underline{g}$ are also continuous on X.
i.e. the sum and product of two continuous vector valued function are also continuous.

Proof

i) $\because \underline{f} \& \underline{g}$ are continuous on X.
\therefore by the definition of continuity, we have for a point $p \in X$.

$$
\begin{aligned}
& \quad\|\underline{f}(x)-\underline{f}(p)\|<\frac{\varepsilon}{2} \quad \text { whenever } \quad\|x-p\|<\delta_{1} \\
& \text { and } \quad\|\underline{g}(x)-\underline{g}(p)\|<\frac{\varepsilon}{2} \quad \text { whenever } \quad\|x-p\|<\delta_{2}
\end{aligned}
$$

Now consider

$$
\begin{aligned}
& \|\underline{f}(x)+\underline{g}(x)-\underline{f}(x)-\underline{g}(p)\| \\
= & \|\underline{f}(x)-\underline{f}(p)+\underline{g}(x)-\underline{g}(p)\| \\
\leq & \|\underline{f}(x)-\underline{f}(p)\|+\|\underline{g}(x)-\underline{g}(p)\| \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text { whenever } \quad\|x-p\|<\delta \quad \text { where } \delta=\min \left(\delta_{1}, \delta_{2}\right)
\end{aligned}
$$

which shows that the vector valued function $\underline{f}+\underline{g}$ is continuous at $x=p$ and hence on X.

$$
\text { ii) } \begin{aligned}
\underline{f} \cdot \underline{g} & =\sum_{i=1}^{k} f_{i} \cdot g_{i} \\
& =f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}+\ldots . .+f_{k} g_{k}
\end{aligned}
$$

\because the function \underline{f} and \underline{g} are continuous on X
\therefore their components f_{i} and g_{i} are continuous on X.

- Question

Suppose f is a real valued function define on \mathbb{R} which satisfies

$$
\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0 \quad \forall x \in \mathbb{R}
$$

Does this imply that the function f is continuous on \mathbb{R}.

Solution

$$
\begin{aligned}
& \because \lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0 \quad \forall x \in \mathbb{R} \\
& \Rightarrow \lim _{h \rightarrow 0} f(x+h)=\lim _{h \rightarrow 0} f(x-h) \\
& \Rightarrow f(x+0)=f(x-0) \forall x \in \mathbb{R}
\end{aligned}
$$

Also it is given that $f(x)=f(x+0)=f(x-0)$
It means f is continuous on $x \in \mathbb{R}$.

* Discontinuities

If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x or that f has a discontinuity at x.
If the function f is defined on an interval, the discontinuity is divided into two types

1. Let f be defined on (a, b). If f is discontinuous at a point x and if $f(x+)$ and $f(x-)$ exist then f is said to have a discontinuity of first kind or a simple discontinuity at x.
2. Otherwise the discontinuity is said to be second kind.

For simple discontinuity
i. either $f(x+) \neq f(x-) \quad[f(x)$ is immaterial]
ii. or $f(x+)=f(x-) \neq f(x)$

* Example

i) Define $f(x)=\left[\begin{array}{ll}1 & , x \text { is rational } \\ 0 & ,\end{array}\right.$

The function f has discontinuity of second kind on every point x because neither $f(x+)$ nor $f(x-)$ exists.
ii) Define $f(x)=\left[\begin{array}{ll}x & , x \text { is rational } \\ 0 & ,\end{array}\right.$

Then f is continuous at $x=0$ and has a discontinuity of the second kind at every other point.
iii) Define $f(x)=\left[\begin{array}{cl}x+2 & (-3<x<-2) \\ -x-2 & (-2<x<0) \\ x+2 & (0<x<1)\end{array}\right.$

The function has simple discontinuity at $x=0$ and it is continuous at every other point of the interval $(-3,1)$
iv) Define $f(x)=\left[\begin{array}{cl}\sin \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
\because neither $f(0+)$ nor $f(0-)$ exists, therefore the function f has discontinuity of second kind.
f is continuous at every point except $x=0$.

References:
(1) Lectures (2003-04)
Prof. Syyed Gull Shah
Chairman, Department of Mathematics.
University of Sargodha, Sargodha.
(2) Book
Principles of Mathematical Analysis
Walter Rudin (McGraw-Hill, Inc.)

Collected and composed by: Atiq ur Rehman (mathcity@gmail.com) Available online at http://www.mathcity.org in PDF Format.
Page Setup: Legal ($8^{\prime \prime 1} / 2 \times 14^{\prime \prime}$)
Printed: October 20, 2004. Updated: November 03, 2005

