
 

v Limit of the function 
   Suppose 

(i)  ( , )XX d  and ( , )YY d  be two metric spaces 
(ii)  E X⊂  
(iii)  :f E Y→    i.e.  f  maps E   into Y . 
(iv)  p  is the limit point of E . 

   We write ( )f x q→  as x p→   or  lim ( )
x p

f x q
→

= ,  if there is a point q  with the 

following property; 
   For every  0ε > , there exists a  0δ >  such that  ( )( ),Yd f x q ε<   for all points 
x E∈  for which  ( , )Xd x p δ< . 
   If X  and Y  are replaced by a real line, complex plane or by Euclidean space k¡ , 
then the distances Xd  and Yd  are replaced by absolute values or by appropriate 
norms.               q 
 

Note:   i) It is to be noted that p X∈  but that p  need not a point of E  in the above 
definition ( p  is a limit point of E  which may or may not belong to E .) 
   ii) Even if p E∈ , we may have ( ) lim ( )

x p
f p f x

→
≠ .         q 

v Example 
2lim 2

1x

x
x→∞

=
+

 

   We have    2 2 2 2 2 22
1 1 1

x x x
x x x x

− − −
− = = <

− + +
 

   Now if  0ε >  is given we can find  2
δ

ε
=  so that  

2 2
1

x
x

ε− <
+

    whenever   x δ> .         q 
 

v Example 

Consider the function 
2 1( )

1
xf x
x

−
=

−
. 

It is to be noted that f  is not defined at 1x =  but if 1x ≠  and is very close to 1 or 
less then ( )f x  equals to 2.             q 
 

v Definitions 
   i) Let X  and Y  be subsets of ¡ , a function :f X Y→  is said to tend to limit l  
as x → ∞ , if for a real number 0ε >  however small, ∃ a positive number δ  which 
depends upon ε  such that distance 
   ( )f x l ε− <   when x δ>   and we write  lim ( )

x
f x l

→∞
= . 

   ii) f  is said to tend to a right limit l  as x c→  if for 0ε > ,  ∃  0δ >  such that  
( )f x l ε− <  whenever x G∈  and 0 x c δ< < + . 

   And we write ( ) lim ( )
x c

f c f x l
→ +

+ = =   

   iii) f  is said to tend to a left limit l  as x c→  if for 0ε > , ∃ a 0δ >  such that  
( )f x l ε− <  whenever  x G∈  and 0 c x cδ< − < < . 

   And we write ( ) lim ( )
x c

f c f x l
→ −

− = = .           q 
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v Theorem 
   Suppose 

(i)  ( , )xX d  and ( , )yY d  be two metric spaces 
(ii)  E X⊂  
(iii)  :f E Y→    i.e.  f  maps E   into Y . 
(iv)  p  is the limit point of E . 

   Then  lim ( )
x p

f x q
→

=  iff  lim ( )nn
f p q

→∞
=  for every sequence { }np  in E  such that 

np p≠ , lim nn
p p

→∞
= . 

Proof 
   Suppose lim ( )

x p
f x q

→
=  holds. 

   Choose { }np  in E  such that np p≠ , lim nn
p p

→∞
= , we are to show that 

lim ( )nn
f p q

→∞
=  

  Then there exists a 0δ >  such that 
                 ( )( ),yd f x q ε<    if x E∈   and  0 ( , )xd x p δ< <  ………. (i) 
   Also ∃ a positive integer 0n  such that  0n n>  
            ( ),x nd p p δ⇒ <  ………….. (ii) 
   from (i) and (ii), we have for 0n n>   

( )( ),y nd f p q ε<  
   Which shows that limit of the sequence 

( )lim nn
f p q

→∞
=  

   Conversely, suppose that  ( )lim nn
f p q

→∞
=  is false. 

   Then ∃ some 0ε >  such that for every 0δ > , there is a point x E∈  for which 
( )( ),yd f x q ε≥  but 0 ( , )xd x p δ< < . 

   In particular, taking  1
n n

δ =   ,  1,2,3,......n =  

   We find a sequence in E  satisfied  np p≠ ,  lim nn
p p

→∞
=  for which  lim ( )nn

f p q
→∞

=  

is false.                q 
 

v Example 

   1lim sin
x x→∞

   does not exist. 

   Suppose that  1lim sin
x x→∞

  exists and take it to be  l, then there exist a positive real 

number δ  such that  
1sin 1l
x

− <     when   0 0x δ< − <    (we take  1 0ε = >  here) 

   We can find a positive integer n  such that  

             2
n

δ
π

<    then    2
(4 1)n

δ
π

<
+

   and   2
(4 3)n

δ
π

<
+

 

   It thus follows 
(4 1)sin 1

2
n lπ+

− <   1 1l⇒ − <  

    and  (4 3)sin 1
2

n lπ+
− <   1 1l⇒ − − <     or    1 1l+ <  
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   So that  

2 1 1 1 1 1 1l l l l= + + − ≤ + + − < +      2 2⇒ <  
   This is impossible; hence limit of the function does not exist.        q 
 

Alternative: 

Consider    2
(2 1)nx

n π
=

−
   then   lim 0nx

x
→∞

=  

   But  { }( )nf x   i.e.  1sin
nx

 
 
 

  is an oscillatory sequence 

   i.e.  {1, 1,1, 1,..........}− −   therefore 1sin
nx

 
 
 

 diverges. 

   Hence we conclude that  1lim sin
x x→∞

 does not exit.          q 
 

v Example 
   Consider the function  

    2

; 1
( )

2 ( 1) ; 1
x x

f x
x x

<
=  + − ≥

 

   We show that  
1

lim ( )
x

f x
→

 does not exist.  

   To prove this take  11nx
n

= − ,  then  lim 1nx
x

→∞
=   and  lim ( ) 1nn

f x
→∞

=  

   But if we take  11nx
n

= +   then  1nx →   as n → ∞  

   and  
21lim ( ) lim 2 1 1 2nx x

f x
n→∞ →∞

 = + + − = 
 

 

   This show that  { }( )nf x  does not tend to a same limit as for all sequences  { }nS  
such that 1nx → . 
   Hence this limit does not exist.            q 
 

v Example 
   Consider the function  :[0,1]f → ¡   defined as 

    
0

( )
1

if x is rational
f x

if x is irratioanl


= 


 

   Show that  lim ( )
x p

f x
→

  where  [0,1]p∈   does not exist. 

Solution 
   Let lim ( )

x p
f x q

→
=  , if given 0ε >  we can find 0δ >  such that 

( )f x q ε− <   whenever  x p δ− < . 
   Consider the irrational  ( , ) [0,1]r s r s− + ⊂  such that r  is rational and s  is 
irrational. 
   Then  ( ) 0f r =   &  ( ) 1f s =  
   Suppose  lim ( )

x p
f x q

→
=   then 

( ) 1f s =      
  1 ( )f s q q⇒ = − +  
         ( ( ) 0f s q q= − + −  

( ) ( )f s q q f r= − + −       0 ( )f r=∵  
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( ) ( )f s q f r q ε ε≤ − + − < +  
                     i.e.   1 ε ε< +  

                       1 11
4 4

⇒ < +  if 1
4

ε =  

   Which is absurd. 
   Hence the limit of the function does not exist.          q 
 

v Exercise 

   
0

1lim sin 0
x

x
x→

=  

   We have 
1sin 0x
x

ε− <     where  0ε >  is a pre-assigned positive number. 

    1sinx
x

ε⇒ <  

    1sinx
x

ε⇒ <  

    x ε⇒ <  1sin 1
x

≤∵  

    0x ε δ⇒ − < =  

   It shows that    
0

1lim sin 0
x

x
x→

= . 

   Same the case for function for 1( ) cosf x x
x

=  

   Also we can derived the result that 2

0

1lim sin 0
x

x
x→

= .        q 
 

v Theorem 
   If lim ( )

x c
f x

→
 exists then it is unique. 

Proof 
   Suppose lim ( )

x c
f x

→
 is not unique. 

   Take  1lim ( )
x c

f x l
→

=    and   2lim ( )
x c

f x l
→

=     where   1 2l l≠ . 

    ⇒ ∃  real numbers  1δ  and  2δ  such that  

1( )f x l ε− <     whenever    1x c δ− <  
  &     2( )f x l ε− <     whenever    2x c δ− <  

    Now     ( ) ( )1 2 1 2( ) ( )l l f x l f x l− = − − −  
       1 2( ) ( )f x l f x l≤ − + −  
       ε ε< +     whenever    1 2min( , )x c δ δ− <  

        1 2l l⇒ =                 q 
 

 
………………… 
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v Theorem 
   Suppose that a real valued function f  is defined on an open interval G  except 
possibly at c G∈ . Then lim ( )

x c
f x l

→
=  if and only if for every positive real number 

ε , there is 0δ >  such that  ( ) ( )f t f s ε− <   whenever s  & t  are in 

{ }:x x c δ− < . 

Proof 
   Suppose  lim ( )

x c
f x l

→
=  

   ∴ for every  0ε > , ∃  0δ >  such that  

                            1( )
2

f s l ε− <    whenever    0 s c δ< − <  

&    1( )
2

f t l ε− <     whenever    0 t c δ< − <  

                      ( ) ( ) ( ) ( )f s f t f s l f t l⇒ − ≤ − + −  

         
2 2
ε ε

< +         whenever   s c δ− <   &  t c δ− <  

       ( ) ( )f t f s ε− <   whenever  s  & t  are in  { }:x x c δ− < . 
   Conversely, suppose that the given condition holds. 
   Let { }nx  be a sequence of distinct elements of G  such that nx c→  as n → ∞ . 
   Then for 0δ >  ∃ a natural number 0n  such that  

nx l δ− <   and   mx l δ− <     0,m n n∀ > . 
   And for  0ε >  

( ) ( )n mf x f x ε− <     whenever   0,m n n>  
   { }( )nf x⇒  is a Cauchy sequence and therefore it is convergent.       q 
 

v Theorem (Sandwiching Theorem) 
   Suppose that f , g  and h  are functions defined on an open interval G  except 
possibly at c G∈ . Let  f h g≤ ≤  on G . 
   If   lim ( ) lim ( )

x c x c
f x g x l

→ →
= = , then  lim ( )

x c
h x l

→
= . 

Proof 
   For  0ε >   1 2, 0δ δ∃ >   such that  

( )f x l ε− <    whenever   10 x c δ< − <  
     &  ( )g x l ε− <     whenever   20 x c δ< − <  

      ( )l f x lε ε⇒ − < < +     for   10 x c δ< − <  
     &   ( )l g x lε ε− < < +     for   20 x c δ< − <  
      ( ) ( ) ( )l f x h x g x lε ε⇒ − < ≤ ≤ < +  
      ( )l h x lε ε⇒ − < < +     for    1 20 min( , )x c δ δ< − <  
      lim ( )

x c
h x l

→
⇒ =         q 

 

 
………………………. 
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v Theorem 
   Let   (i)  ( , )X d  , ( , )yY d  be two metric spaces. 

 (ii)  E X⊂  
 (iii)  p  is a limit point of E . 
 (iv)  :f E Y→ . 
 (v)  :g E Y→  

   and   lim ( )
x p

f x A
→

=   and   lim ( )
x p

g x B
→

=   then 

    i-   ( )lim ( ) ( )
x p

f x g x A B
→

± = ±  

    ii-   lim( )( )
x p

fg x AB
→

=  

   iii-  ( )lim
( )x p

f x A
g x B→

 
= 

 
  provided 0B ≠ . 

Proof 
Do yourself         q 

 
v Continuity 
Suppose 

i)   ( ), XX d , ( ), YY d  are two metric spaces 
ii) E X⊂  
iii) p E∈  
iv) :f E Y→  

   Then f  is said to be continuous at p  if for every 0ε >  ∃ a 0δ >  such that 
( )( ), ( )Yd f x f p ε<  for all points x E∈  for which ( ),Xd x p δ< .          

 

Note:  
  (i) If f  is continuous  at every point of E . Then f  is said to be continuous on E . 
  (ii) It is to be noted that f  has to be defined at p  iff  lim ( ) ( )

x p
f x f p

→
= .     q 

 

v Examples 
   2( )f x x=  is continuous ∀  x∈¡ . 
   Here 2( )f x x= , Take p∈¡  
   Then     ( ) ( )f x f p ε− <  

2 2x p ε⇒ − <  

( )( )x p x p ε⇒ − + <  
x p ε δ⇒ − < =  

   ∵ p  is arbitrary real number  
   ∴ the function ( )f x  is continuous ∀  real numbers.         q 
 

……………………….. 
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v Theorem 
   Let 

i)   , ,X Y Z  be metric spaces  
ii)  E X⊂  
iii) :f E Y→  , : ( )g f E Z→  and :h E Z→  defined by ( )( ) ( )h x g f x=  

   If f  is continuous at p E∈  and if g  is continuous at the point ( )f p , then h  is 
continuous at .p  
Proof 

X

f 

f 

f(x) 

f(p) 

x 
p 

h(x) 

g 

g 

h 

h 

h(p) 

Y Z 
E 

=  g(f(x)) 

g(f(p)) =  

 
   ∵  g  is continuous at ( )f p  
   ∴  for every 0ε > ,  ∃ a  0δ >  such that  

( )( )( ), ( )Zd g y g f p ε<  whenever  ( ) 1, ( )Yd y f p δ<  ……….. (i) 
   ∵ f  is continuous at p E∈  
   ∴  ∃  a  0δ >  such that  

( ) 1( ), ( )Yd f x f p δ<  whenever  ( ),Xd x p δ<  ………… (ii) 
   Combining ( )i  and ( )ii , we have 

( )( )( ), ( )Zd g y g f p ε<   whenever   ( ),Xd x p δ<  
    ( )( ), ( )Zd h x h p ε⇒ <    whenever   ( , )Xd x p δ<  

   which shows that the function h  is continuous at p .        q 
  

v Example 
   (i)  2( ) (1 )f x x= −   is continuous  x∀ ∈¡   and  ( )g x x=   is continuous 

[ ]0,x∀ ∈ ∞ , then  ( ) 2( ) 1g f x x= −   is continuous  ( )1,1x∈ − . 
 

   (ii)  Let  ( ) sing x x=   and  { , 0( ) , 0
x xf x x x

π
π

− ≤= + >   

   Then    ( )( ) sing f x x= −   x∀  
   Then the function  ( )( )g f x   is continuous at  0x = , although f  is discontinuous 
at  0x = .                q 
 

v Theorem 
   Let  f  be defined on  X . If  f  is continuous at c X∈  then  ∃ a number 0δ >  
such that f  is bounded on the open interval  ( , )c cδ δ− + . 
 Proof 
   Since f  is continuous at  c X∈ . 
   Therefore for a real number  0,ε > ∃  a real number  0δ >  such that  

( ) ( )f x f c ε− <    whenever  x X∈   and   x c δ− < . 
( ) ( ) ( ) ( )f x f x f c f c⇒ = − +  
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      ( ) ( ) ( )f x f c f c≤ − −  
      ( )f cε< +     whenever   x c δ− < . 

   It shows that  f  is bounded on the open interval  ] [,c cδ δ− + .      q 
 

v Theorem 
   Suppose f  is continuous on  [ ],a b . If ( ) 0f c >   for some [ ],c a b∈  then there 
exist an open interval  [ ],G a b⊂  such that  ( ) 0f x >   ∀  x G∈ . 
Proof 

   Take  1 ( )
2

f cε =  

   f∵   is continuous on  [ ],a b  
   ( ) ( )f x f c ε∴ − <    whenever  [ ], ,x c x a bδ− < ∈  
   Take  [ ]{ }, :G x a b x c δ= ∈ − <  
   ( ) ( ) ( ) ( )f x f x f c f c⇒ = − +  

( ) ( ) ( )f x f c f c≤ − +  
( )f cε< +     whenever   x c δ− <  

   For  x G∈ ,  we have 
 ( )( ) ( ) ( ) ( )f x f c f c f x= − −  ( ) ( ) ( )f c f c f x≥ − −  

( ) ( ) ( )f c f x f c≥ − −  1( ) ( )
2

f c f c> −  

     1( ) ( ) 0
2

f x f c⇒ > >             q 
 

v Example 
   Define a function f  by 

   
cos ;

( )
0 ; 0

x x x o
f x

x
≠

=  =
 

   This function is continuous at  0x =  because 
( ) (0) cosf x f x x− =  x≤         ( )cos 1x ≤∵  

   Which shows that for  0ε > , we can find  0δ >  such that  
( ) (0)f x f ε− <     whenever    0 x c δ ε< − < =      q 

 

v Example 
   ( )f x x=   is continuous on  [ [0,∞ . 
   Let  c  be an arbitrary point such that  0 c< < ∞  
   For  0ε > , we have 

( ) ( )f x f c x c− = −  
x c
x c

−
=

+
 

x c
c

−
<  

    ( ) ( )f x f c ε⇒ − <     whenever    
x c

c
ε

−
<  

   i.e.  x c c ε δ− < =  
   f⇒  is continuous for x c= . 
   c∵  is an arbitrary point lying in [ [0,∞    
   ( )f x x∴ =  is continuous on [ [0,∞           q 

……………………….. 
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v Example 
   Consider the function f  defined on ¡  such that 

1 ,  is rational
( )

1 ,  is irrational
x

f x
x


= −

 

   This function is discontinuous every where but ( )f x  is continuous on ¡ .    q 
 

v Theorem 
   A mapping of a metric space X  into a metric space Y  is continuous on X  iff 

1( )f V−  is open in X  for every open set V  in Y . 
Proof 
   Suppose f  is continuous on X  and V  is open in Y . 
   We are to show that  1( )f V−  is open in X   i.e. every point of  1( )f V−  is an 
interior point of  1( )f V− . 
   Let  p X∈  and  ( )f p V∈  
   V∵   is open  
  ∴ ∃   0ε >   such that   y V∈   if  ( ), ( )Yd y f p ε<  …….. (i) 
   f∵  is continuous at p  
   ∴ ∃  0δ >   such that  ( )( ), ( )Yd f x f p ε<    when  ( , )Xd x p δ<  ……… (ii) 
   From (i) and (ii), we conclude that  

1( )x f V−∈   as soon as  ( ),Xd x p δ<  
   Which shows that  1( )f V−  is open in X . 
   Conversely, suppose  1( )f V−  is open in X  for every open set V  in Y . 
   We are to prove that f  is continuous for this. 
   Fix p X∈  and  0ε > . 
   Let  V  be the set of all  y Y∈  such that  ( ), ( )Yd y f p ε<  
   V  is open,  1( )f V−  is open 
   0δ⇒ ∃ >   such that  1( )x f V−∈   as soon as  ( , )Xd x p δ< . 
   But if  1( )x f V−∈  then  ( )f x V∈  so that   ( )( ), ( )Yd f x f y ε<  
   Which proves that  f  is continuous.           q 
 

Note 
   The above theorem can also be stated as a mapping  :f X Y→   is continuous iff  

1( )f C−   is closed in X  for every closed set C  in Y .        q 
 

v Theorem 
   Let  1 2 3, , ,...., kf f f f   be real valued functions on a metric space X  and f   be a 
mapping from X  on to k¡  defined by  
   ( )1 2 3( ) ( ), ( ), ( ),....., ( )kf x f x f x f x f x=   ,   x X∈  
then f  is continuous on X  if and only if  1 2 3, , ,....., kf f f f   are continuous on X . 

Proof 
   Let us suppose that the function  f  is continuous on X , we are to show that 

1 2 3, , ,......, kf f f f  are continuous on X . 
   If  p X∈ , then  ( )( ), ( )kd f x f p ε<¡    whenever  ( , )Xd x p δ<  

   ( ) ( )f x f p ε⇒ − <     whenever   x p δ− <  
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   1 1 1 1( ) ( ), ( ) ( ),...... ( ) ( )k kf x f p f x f p f x f p ε⇒ − − − <    whenever  x p δ− <  

   ( ) ( ) ( )22 2
1 1 2 2

1
2( ) ( ) , ( ) ( ) ,......, ( ) ( )k kf x f p f x f p f x f p ε ⇒ − − − <   

  whenever x p δ− <  

i.e.    ( )2

1

1
2

( ) ( )
k

i i
i

f x f p ε
=

 
⇒ − < 

 
∑    whenever   x p δ− <  

         1 1( ) ( )f x f p ε⇒ − <     whenever   x p δ− <  
     2 2( ) ( )f x f p ε− <    whenever   x p δ− <  
     …………………… 
     …………………… 
     …………………… 
    ( ) ( )k kf x f x ε− <    whenever   x p δ− <  

   ⇒ all the functions  1 2 3, , ,....., kf f f f   are continuous at p . 
   p∵  is arbitrary point of x , therefore  1 2 3, , ,....., kf f f f   are continuous on X . 
   Conversely, suppose that the function  1 2 3, , ,....., kf f f f   are continuous on X , we 
are to show that f  is continuous on X .  
   For  p X∈  and given  0iε >  ,  1,2,.....i k=  ∃  0iδ > ,  1,2,....,i k=  
   Such that 

    1 1 1( ) ( )f x f p ε− <     whenever    1x p δ− <  
    2 2 2( ) ( )f x f p ε− <    whenever    2x p δ− <  
    …………………… 
    …………………… 
    …………………… 
   ( ) ( )k k kf x f x ε− <     whenever    kx p δ− <  

   Take  ( )1 2 3min , , ,...., kδ δ δ δ δ=  then 
  ( ) ( )i i if x f p ε− <     whenever    x p δ− <  

( ) ( ) ( ) ( )2 2 2 2 2 2
1 1 2 2 1 2

1 12 2( ) ( ) ( ) ( ) .... ( ) ( ) ....k k kf x f p f x f p f x f p ε ε ε⇒ − + − + + − < + + + 
 

   i.e.  ( ) ( ) ( )22 2
1 1 2 2

1
2( ) ( ) ( ) ( ) ..... ( ) ( )k kf x f p f x f p f x f p ε ⇒ − + − + + − <    

     whenever x p δ− <  

   where  ( )2 2 2
1 2

1
2..... kε ε ε ε+ + + =  

   Then  ( )( ), ( )kd f x f p ε<¡    whenever   ( , )Xd x p δ<  
   ( )f x⇒  is continuous at p . 
   p∵  is an arbitrary point therefore we conclude that f  is continuous on X .    q 
 
 

………………………… 
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v Theorem 
   Suppose f  is continuous on [ ],a b  
   i) If ( ) 0f a <  and ( ) 0f b >  then there is a point c , a c b< <  such that ( ) 0f c = . 
   ii) If ( ) 0f a >  and ( ) 0f b < , then there is a point c , a c b< <  such that ( ) 0f c = . 
Proof 
   i) Bisect  [ ],a b  then  f  must satisfy the given condition on at least one of the 
sub-interval so obtained. Denote this interval by  [ ]2 2,a b  
   If  f  satisfies the condition on both sub-interval then choose the right hand one 
[ ]2 2,a b . 
   It is obvious that  2 2a a b b≤ ≤ ≤ . By repeated bisection we can find nested 
intervals  { }nI ,  1n nI I+ ⊆ ,  [ ],n n nI a b=   so that f  satisfies the given condition on 
[ ],n na b , 1,2,.......n =  
   And   1 2 3 2 1..... .....n na a a a a b b b b= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ =  

   Where  ( )1
2

n

n nb a b a − = − 
 

 

  Then  
1

n

n
i

I
=
∩  contain one and only one point. Let that point be c  such that 

( ) 0f c =  
   If ( ) 0f c ≠ , let ( ) 0f c >  then there is a subinterval [ ],m ma b  such that m ma b c< <  
Which can not happen. Hence ( ) 0f c =  
 

 ii) Do yourself as above             q 
 

v Example 
   Show that  3 22 3 1 0x x x− − + =  has a solution  [ ]1,1c∈ −  
Solution 
   Let  3 2( ) 2 3 1f x x x x= − − +  
   ∵ ( )f x  is polynomial    
   ∴  it is continuous everywhere. (for being a polynomial continuous everywhere) 
   Now  3 2( 1) ( 1) 2( 1) 3( 1) 1f − = − − − − − +  

   1 2 3 1 1 0= − − + + = >  
     3 2(1) (1) 2(1) 3(1) 1f = − − +  

   1 2 3 1 3 0= − − + = − <  
   Therefore there is a point [ ]1,1c∈ −  such that ( ) 0f c =  
   i.e. c  is the root of the equation.            q 
 

v Theorem (The intermediate value theorem) 
   Suppose  f  is continuous on [ ],a b  and ( ) ( )f a f b≠ , then given a number λ  that 
lies between ( )f a  and ( )f b , ∃ a point c  , a c b< <  with ( )f c λ= . 
Proof 
   Let  ( ) ( )f a f b<   and  ( ) ( )f a f bλ< < . 
   Suppose  ( ) ( )g x f x λ= −  
   Then  ( ) ( ) 0g a f a λ= − <    and    ( ) ( ) 0g b f b λ= − >  
   ⇒ ∃  a point c  between a  and b  such that  ( ) 0g c =  

( ) 0f c λ⇒ − =    ( )f c λ⇒ =  
   If ( ) ( )f a f b>  then take ( ) ( )g x f xλ= −  to obtain the required result.      q 
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v Theorem 
   Suppose f  is continuous on [ ],a b , then f  is bounded on [ ],a b  
   (Continuity implies boundedness) 
Proof 
   Suppose that f  is not bounded on [ ],a b , 
   We can, therefore, find a sequence { }nx  in the interval [ ],a b  such that  

( )nf x n>   for all  1n ≥ . 
    { }( )nf x⇒  diverges. 
   But   na x b≤ ≤   ; 1n ≥  

   ⇒ ∃  a subsequence  { }knx  such that  { }knx  converges to λ . 

   ( ){ }knf x⇒   also converges to λ . 

   { }( )nf x⇒   converges to λ . 
   Which is contradiction  
   Hence our supposition is wrong.            q 
 

v Uniform continuity 
   Let  f  be a mapping of a metric space X  into a metric space Y . We say that f  
is uniformly continuous on X  if for every 0ε >  there exists 0δ >  such that  
   ( )( ), ( )Yd f p f q ε<   ∀   ,p q X∈   for which   ( ),xd p q δ<  
   The uniform continuity is a property of a function on a set  i.e. it is a global 
property but continuity can be defined at a single point  i.e. it is a local property. 
Uniform continuity of a function at a point has no meaning. 
   If f  is continuous on X  then it is possible to find for each  0ε >  and for each 
point p  of X , a number  0δ >  such that  ( )( ), ( )Yd f x f p ε<   whenever 

( , )Xd x p δ< . Then number δ  depends upon ε  and on p  in this case but if f  is 
uniformly continuous on X  then it is possible for each  0ε >  to find one number  

0δ >  which will do for all point p  of X . 
   It is evident that every uniformly continuous function is continuous. 
   To emphasize a difference between continuity and uniform continuity on set S , 
we consider the following examples.            q 
 

v Example 
   Let S  be a half open interval  0 1x< ≤  and let f  be defined for each x  in S  by 
the formula 2( )f x x= . It is uniformly continuous on S . To prove this observe that 
we have 

2 2( ) ( )f x f y x y− = −  

   x y x y= − +  
   2 x y< −  

   If   x y δ− <   then   ( ) ( ) 2f x f y δ ε− < =  

   Hence if ε  is given we need only to take  
2
ε

δ =  to guarantee that  

( ) ( )f x f y ε− <  for every pair  ,x y  with  x y δ− <  
   Thus f  is uniformly continuous on the set S .         q 
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v Example 
   ( ) nf x x=  , 0n ≥  is uniformly continuous of [ ]0,1  
Solution 
   For any two values  1 2,x x   in  [ ]0,1  we have 

( )( )1 2 3 2 1
1 2 1 2 1 1 2 1 2 2.....n n n n n nx x x x x x x x x x− − − −− = − + + + +  

     1 2n x x≤ −  

   Given 0ε > , we can find  
n
ε

δ =   independent of  1x  and  2x  such that  

2 2
1 2 1 2x x n x x ε− < − <   whenever  [ ]1 2, 0,1x x ∈   and  1 2x x

n
ε

δ− < =  

   Hence the function f  is uniformly continuous on [ ]0,1 .        q 
 

v Example 
   Let S  be the half open interval 0 1x< ≤  and let a function f  be defined for each 

x  in S  by the formula 1( )f x
x

= . This function is continuous on the set S , 

however we shall prove that this function is not uniformly continuous on S .       
Solution 
   Let suppose 10ε =  and suppose we can find a  δ  , 0 1δ< < , to satisfy the 
condition of the definition. 

   Taking  x δ=  ,  
11

y δ
= , we obtain  

10
11

x y δ
δ− = <  

     and 

   1 11 10( ) ( ) 10f x f y
δ δ δ

− = − = >  

   Hence for these two points we have  ( ) ( ) 10f x f y− >  (always) 
   Which contradict the definition of uniform continuity. 
   Hence the given function being continuous on a set S  is not uniformly 
continuous on S .              q 
 

v Example 

   1( ) sinf x
x

=  ; 0x ≠ .  is not uniformly continuous on 0 1x< ≤  i.e (0,1]. 

Proof 
   Suppose that  f  is uniformly continuous on the given interval then for  1ε = , 
there is 0δ >  such that   

1 2( ) ( ) 1f x f x− <   whenever  1 2x x δ− <  

   Take  
( )1 1

2

1x
n π

=
−

  and   
( )2 1

2

1
3

x
n π

=
−

    ,   1n ≥ . 

   So that   
( )1 2 1

2

2
3

x x
n

δ
π

− < =
−

 

   But    ( ) ( )1 1
1 2 2 2( ) ( ) sin sin3f x f x n nπ π− = − − −  2 1= >  

   Which contradict the assumption. 
   Hence f  is not uniformly continuous on the interval.         q 
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v Example 
   Prove that  ( )f x x=    is uniformly continuous on  [ ]0,1 . 
Solution 
   Suppose 1ε =  and suppose we can find  δ , 0 1δ< <  to satisfy the condition of 
the definition. 

   Taking   2x δ=  ,  
2

4
y δ

=  

   Then    
2 2

2 3
4 4

x y δ δ
δ δ− = − = <  

   And    
2

2( ) ( )
4

f x f y δ
δ− = −  

      1
2 2
δ δ

δ ε= − = < =  

   Hence f  is uniformly continuous on [ ]0,1 .        q 
 

v Theorem 
   If  f  is continuous on a closed and bounded interval  [ ],a b , then f  is uniformly 
continuous on [ ],a b . 
Proof 
   Suppose that f  is not uniformly continuous on [ ],a b  then  ∃ a real number  

0ε >   such that for every real number  0δ > . 
   We can find a pair  u , v  satisfying  

u v δ− <     but   ( ) ( ) 0f u f v ε− ≥ >  

   If    1
n

δ = ,  1,2,3,....n =  

   We can determine two sequence  { }nu  and  { }nv  such that 
1

n nu v
n

− <    but   ( ) ( )n nf u f v ε− ≥  

   na u b≤ ≤∵   1,2,3.......n∀ =  

   ∴ there is a subsequence  { }knu  which converges to some number  0u  in  [ ],a b  

   ⇒ for some  0λ > , we can find an integer 0n  such that 

0knu u λ− <   0n n∀ ≥  

    0 0k k k kn n n nv u v u u u⇒ − ≤ − + −
1
n

λ< +  

   { }knv⇒  also converges to 0u . 

   ( ){ }knf u⇒  and  ( ){ }knf v  converge to 0( )f u  . 

   Consequently,  ( ) ( )k kn nf u f v ε− <    whenever   
k kn nu v ε− <  

   Which contradict our supposition. 
   Hence we conclude that f  is uniformly continuous on [ ],a b .       q 
 
 

……………………………. 
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v Theorem 
   Let f  and g  be two continuous mappings from a metric space X  into k¡ , then 
the mappings  f g+   and  f g⋅  are also continuous on X . 
   i.e. the sum and product of two continuous vector valued function are also 
continuous. 
Proof 
   i)    f∵  & g  are continuous on X . 
          ∴ by the definition of continuity, we have for a point p X∈ . 

( ) ( )
2

f x f p ε
− <     whenever   1x p δ− <   

and     ( ) ( )
2

g x g p ε
− <     whenever    2x p δ− <  

   Now consider  
    ( ) ( ) ( ) ( )f x g x f x g p+ − −  

 ( ) ( ) ( ) ( )f x f p g x g p= − + −  

( ) ( ) ( ) ( )f x f p g x g p≤ − + −  

2 2
ε ε

ε< + =     whenever   x p δ− <    where  ( )1 2min ,δ δ δ=  

   which shows that the vector valued function  f g+  is continuous at  x p=  and 
hence on X . 

ii)     
1

k

i i
i

f g f g
=

⋅ = ⋅∑  

       1 1 2 2 3 3 ..... k kf g f g f g f g= + + + +  
   ∵ the function  f  and  g  are continuous on X  
   ∴ their components  if  and  ig  are continuous on X .        q 
 
v Question 
   Suppose f  is a real valued function define on  ¡  which satisfies 
    [ ]

0
lim ( ) ( ) 0
h

f x h f x h
→

+ − − =     x∀ ∈¡  

   Does this imply that the function f  is continuous on ¡ . 
Solution 
    [ ]

0
lim ( ) ( ) 0
h

f x h f x h
→

+ − − =∵    x∀ ∈¡  

         
0 0

lim ( ) lim ( )
h h

f x h f x h
→ →

⇒ + = −  

         ( 0) ( 0)f x f x⇒ + = −  x∀ ∈¡  
   Also it is given that  ( ) ( 0) ( 0)f x f x f x= + = −  
   It means f  is continuous on  x∈¡ .           q 
 
 

…………………………… 
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v Discontinuities 
   If  x  is a point in the domain of definition of the function f  at which f  is not 
continuous, we say that  f  is discontinuous at x  or that  f  has a discontinuity at 
x . 
   If the function f  is defined on an interval, the discontinuity is divided into two 
types 
 1. Let f  be defined on ( ),a b . If f  is discontinuous at a point x  and if ( )f x+  and 

( )f x−  exist then f  is said to have a discontinuity of first kind or a simple 
discontinuity at x . 
 2. Otherwise the discontinuity is said to be second  kind. 
    For simple discontinuity  

i.  either ( ) ( )f x f x+ ≠ −     [ ( )f x  is immaterial] 
  ii.  or ( ) ( ) ( )f x f x f x+ = − ≠            q 
 

v Example 

   i)   Define  1 ,  is rational( ) 0 ,  is irrational
xf x x

= 
 

   The function f  has discontinuity of second kind on every point x  because 
neither ( )f x+  nor ( )f x−  exists.            q 
 

   ii)   Define  ,  is rational( ) 0 ,  is irrational
x xf x x

= 
 

   Then f  is continuous at  0x =  and has a discontinuity of the second kind at 
every other point.               q 

   iii)   Define   
2 ( 3 2)

( ) 2 ( 2 0)
2 (0 1)

x x
f x x x

x x

+ − < < −
= − − − < <
 + < <

 

   The function has simple discontinuity at  0x =  and it is continuous at every other 
point of the interval ( 3,1)−             q 
 

   iv)    Define   
1 , 0sin( ) , 00

xf x x x

 ≠=
=

 

   ∵  neither  (0 )f +   nor  (0 )f −  exists, therefore the function  f  has discontinuity 
of second kind. 
   f  is continuous at every point except  0x = .         q 
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