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Sequence

A sequence is a function whose domain of definition is the set of natural
numbers.

Or it can also be defined as an ordered set.

Notation:
An infinite sequence is denoted as

{Sni or {S,:nl N} or {S,S,S,cecereens } orsimply as {S}
e.g. |) {} ={123,......... }

1lg_1,11 (
) [ —v=1d—r—rinennnns
P b
i) {- D™} ={1,- 11- L. }
Subsequence

It is a sequence whose terms are contained in given sequence.

¥ ¥
A subsequence of {S, } isusually writtenas{S, }.
n=1

Increasing Sequence
A sequence { S} is said to be anincreasing sequence if S,,3 S, " n3 1.

Decreasing Sequence
A sequence { S} is said to be an decreasing sequenceif S,,,£S, " n2 1.

Monotonic Sequence

A sequence { S} is said to be monotonic sequence if it is either increasing or
decreasing.

{31} is monotonically increasing if S,,,- S,2 0 or %3 1, " n31

n

{S} is monotonically decreasingif S, - S,,,2 0 or SS” 31, " n31
n+l
Strictly Increasing or Decreasing
{31} Is called strictly increasing or decreasing according as

Sia>S, O S,,<S, " n°l.

Bernoulli’s Inequality
Let pl R, p3-1and pt 0 thenfor n3 2 we have

(1+ p)" >1+np

Proof:
We shall use mathematical induction to prove this inequality.
Ifn=2
LHS=(1+p)?=1+2p+p°
RH.S=1+2p
P LH.S>RH.S
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i.e. condition | of mathematical induction is satisfied.

Suppose (1+ p)k STHKD oo, (i) where k3 2

Now (1+p)“" =(1+ p)(1+ p)*
>(1+ p)(1+kp) using (i)
=1+kp+ p+kp®
=1+(k+1)p+kp’
31+(k+1)p ignoring kp?3 0

b (1+p)™>1+(k+1)p
Since the truth for n=k implies the truth for n=k +1 therefore condition Il of
mathematical induction is satisfied. Hence we conclude that (1+ p)" >1+np.

Example

Let S, =§[+%g where n3 1

. . . . 1 .
To prove that this sequence is an increasing sequence, weuse p=—, n3 2in
n

Bernoulli’ s inequality to have

&1_ i(..jn>1_£
€ npg
p % 108?[+1f >1-1
88 N g& N gg n
LN .-n .l-n .n-1 .n-1
p {,10.8 10 _an-16 " _en o _g, 10
€ ng & ng ng e&n-lz & n-lg
P S >S; "n3l
which showsthat { S} is increasing sequence.
Example
1..n+1
Let t =29+=2 - n31
&€ ng
then the sequence is decreasing sequence.
Weuse p= 21 1 in Bernoulli’ sinequality.
n -
w2 Osge N (i)
8 n“-1g n--1
where
1 _n* _&n Gen o
I+ ——=——= : =
n-1 n-1 8n-1£n+1g
b H+ 21 oaen 12:aen 2...............(”)
€ n-1@ n g &n-1p
Now tn_lzai+ig :&Lg
€ n-1g &n-1g

_ 1 Gan+160 .
_§+ n2-13% - é_ﬂ from (ii)
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ST 158 n 5
S8, n Gaan+10

: - from (i
& n2-1& n g 0
>ﬁ+10ﬁ1__|—10 . 2n >£2:1
& ngEn g -1 n n
n+1
aen+10 ¢
n g A
e t >t

Hence the given sequence is decreasing sequence.

Bounded Sequence

A sequence { S} is said to be bounded if there exists a positive real number |
suchthat |S|<l " ni N

If Sand s are the supremum and infimum of elements forming the bounded
sequence { S} wewrite S=supS, and s=infS,

All the elements of the sequence S, suchthat |S|<I " ni N liewithinthe
strip{y: - | <y<I}. But the elements of the unbounded sequence can not be
contained in any strip of afinite width.

Examples
M (U=

(i) {Vv.} —{smnx} is also bounded sequence. Its supremum is 1 and infimumiis - 1.

n..

g is a bounded sequence

(i1i) The geometric sequence {ar ”'1} , I >1 is an unbounded above sequence. It is

bounded below by a.

p .

(iv) 1tan > is an unbounded sequence.

Convergence of the Sequence
A sequence { S} of real numbersis said to convergent to limit ‘s’ asn® ¥, if

for every positive real number e >0, however small, there exists a positive integer n,,
depending upone , suchthat |S,- s|<e " n>n,.

Theorem
A convergent sequence of real number has one and only one limit (i.e. Limit of
the sequence is unique.)

Proof:
Suppose {S,} convergesto two limits s and t, where s t.

Put e :% then there exits two positive integers n, and n, such that
S, - s|<e " n>n
and |S, - t|<e " n>n,
|S,- s|<e and |S, - t|<e hold simultaneously " n>max(n,n,).
Thus for all n>max(n,n,) we have

[s-t[=s- §,+5,- |
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£[S, - s[+]S,- 1]
<et+te=2e
b |s-t]< 22510
& 2 g
b |s-t|<|s-t]
Which is impossible, therefore the limit of the sequence is unique.

Note: If {S} convergesto sthenall of itsinfinite subsequence convergetos.

Cauchy Sequence
A sequence {xn} of real number is said to be a Cauchy sequence if for given

positive real number e, $ a positive integer n,(e) such that

%, - x,|<e m,n>n,
Theorem
A Cauchy sequence of real numbers is bounded.
Proof
Let { S} be a Cauchy sequence.
Take e =1, then there exits a positive integers n, such that
S, - S.|<1 " mn>n,.
Fix m=n,+1 then
|Sn|:‘sn' Sno+1+SnG+1
E‘Sn - Sno+1 +‘ SnO+1
<1+[S,. " n>n,
<| " n>1,and | :1+‘S,h+1 (n, changes as e changes)

Hence we conclude that { Sn} Is a Cauchy sequence, which is bounded one.

Note:
(i) Convergent sequence is bounded.
(ii) The converse of the above theorem does not hold.
I.e. every bounded sequence is not Cauchy.

Consider the sequence { Sn} where S =(-1)", n3 1. It isbounded sequence because
[(-D7=1<2 " n31

But it is not a Cauchy sequence if it is then for e =1 we should be able to find a
positive integer n, suchthat | S, - S,|<1 forall mn>n,

But with m=2k +1, n=2k +2 when 2k +1>n,, we arrive at

| Sn _ Sm| — ‘ (_ 1)2n+2 _ (_ 1)2k+1
=|1+1|=2<1 isabsurd.

Hence {S,} is not a Cauchy sequence. Also this sequence is not a convergent

sequence. (it is an oscillatory sequence)




Divergent Sequence
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A {Sn} Is said to be divergent if it is not convergent or it is unbounded.

e.g. { n2} is divergent, it is unbounded.

(ii) {(- 1)”} tendsto 1 or -1 according as n is even or odd. It oscillates finitely.

(iii) {(- 1)”n} is adivergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the

sequence itself is a divergent.

Theorem
If S, <U, <t, "

n3 n, and if boththe {S)} and {t,} converge to same limits as

s, then the sequence {U, } also convergestos.

Proof

Since the sequence {S,} and {t,} converge to the same limit s, therefore, for
given e >0 there exists two positive integers n,, n, > n, such that

S, - sl<e "
t, - s|<e "
i.e. -e<§ <s+e "

S- e<t <s+e
Since we have given
Sn <Un <tn

n>n
n>n,

n>n
n>n,

" n>n,

\ s-e<§ <U <t <s+e " n>max(ny,,n,n,)
P s-e<U,<s+e " n>max(ny,,n,n,)

ie. U, - s|<e " n>max(n,n,n,)
I.e. limU, =s
n® ¥
Example
1
Show that limn" =1
n® ¥
Solution
Using Bernoulli’ s Inequality
6?[+1031+—3\/_31 "on.
& Jng ~ In
Also
2
..nuﬁ 2 1
g, 1 0 %+i20 >(\/ﬁ”>n”31
& Jnp ; Ngg
2
b 1em<He L
& \/_z

1

b liml£limnn <I|ma?[+

n® ¥ n® ¥ n®¥8

J_;a

1
P 1£limn"<1
n® ¥
1
[imnn =1.
n® ¥

I.e.
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Example
Show that lime—t+_ = 4 .. a2 8
m¥&(n+1)?  (n+2) 2n)? 5
Solution
We have
& 1 1 1 6
= + S S + -
H T CneD? (ne2y (2n)? 5
and
n n
< < —
(2n)2 Sh n2

1 1
b — < <=
4n S n

p Iimi < lim§, < Iim1

n®¥ 4n n® ¥ n®¥ n
P 0< LI®nQS” <0
b 1limS, =0

n® ¥

Theorem
If the sequence {S,} convergesto sthen $ a positive integer n

such that |Sn|>%s.
Proof
We fix e:%|s|>0
P $ apositiveinteger n, such that

S, - s|<e for n>n,
1
b |5n'5|<§|5|
Now
1, ., 1
Ysi=Isl- 2sf
<|s|-|S,- 5| £[s+(S,- )|
1
> Jsl</s|
Theorem

Let aand b be fixed real numbersif {S} and {t,} convergetosandt

respectively, then
(i) {aS,+bt,} convergestoas + bt.

(i) {S.t,} convergesto st.
(iii) :%g converges to TS providedt,* 0 " nandt?!O.
ih

Proof
Since {S,} and {t.} convergeto sand t respectively,

\ |S-s|<e " n>niN
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t, - t|<e "n>ni N
Also $ | >0 suchthat |S|<l " n>1 (- {S)} isbounded)
(i) We have
|(as, +bt,)- (as+bt)|=|a(S, - s)+b(t, - t)]
£|a(s, - s)|+|b(t,- t)]
<|ale+|ble " n>max(n,n,)
=g Where e, =|ale +|b|e acertain number.
Thisimplies {aS, +bt,} convergesto as+ bt.
(i) [St,- st| =|St,- S;t+St- st
=|S(t-1)+t(S- s)| ]S (L-1)[+[tA(S:- s)]

<le+|tle " n>max(n,n,)
=e, where e, =1 e +|t|e acertain number.
Thisimplies {St,} convergesto st.
oo [ty
(iii) E f_ (t
G-t e 1
n>max(n,n,) ot >t
EERETE I
:1 5 =€, Wheree3zle2 acertain number.
3/t] 3/t]
R R 1
Thisimplies | —y convergesto =.
it t
1S 0 _1 10 1 _ s .
Hence %K{\;_%Snxm\; convergesto s¥< = . ( from (ii) )
Theorem

For each irrational number x, there exists a sequence {r,} of distinct rational
numbers such that limr, = x.

n® ¥
Proof
Since x and x + 1 are two different real numbers
-+ $ arational number r, such that
X<r <x+1
Similarly $ arational number r,* r, such that
16

X<r <mina?,x+—;< X+1
2 81 2@

Continuing in this manner we have

x<r3<min§?2,x+%2< X+1

a

ing 16

x<r4<m|n83,x+—+< X+1
4g

: 16
X<Tr, <m|n8 L Xt—=<Xx+1

nNg
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Thisimpliesthat $ a sequence {rn} of the distinct rational number such that

1 1
X- =< X<I <X+=

n n
Since
. 16 .. 1
lim3x - —2:I|m8§<+—9:x
n®¥8 nﬂ n®¥8 nﬂ
Therefore
limr, =X
n® ¥
Theorem

Let asequence {S,} be abounded sequence.

(i) 1f {S,} is monotonically increasing then it converges to its supremum.
@i) If {&} Is monotonically decreasing then it converges to its infimum.

Proof

Let S=supS, and s=inf S,

Takee>0

(i) Since S=supS,
\ $ S, suchthat S-e<S,

Since{Sn} IS - ( - stands for monotonically increasing )
\ S-e<§ <§,<S<S+e forn>n,
P S-e<§<S+e for n>n,
|S,- S|<e for n>n,
P Iim§ =S

n® ¥
(i) Since s=inf S
\ $ S, suchthat § <s+e

Since{%} is . (~ stands for monotonically decreasing )
\ s-e<s<§ <§ <st+e forn>n
P s-e<§ <s+e for n>n
b |S,- s|<e for n>n,
Thus L|®rQSn S
Note

A monotonic sequence can not oscillate infinitely.

Example:

Consider {S,} = , 8 +19§

As shown earlier it isan increasi ng sequence

Tak =cl+—=
€ S & 2nég

Then +—
SZn 8 2n ﬂ

anﬂo 10

\/_ 82n+1g \/_ 8 2n+1g

Using Bernoulli’ s Inequality we have
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p -1 s N 5,01 -8 1 04y 0
/sZn 2n+1 2n 2 8 2n+lg@ 2n+1

p S, < 2 "'n=123.......

p S, <4 "'n=123.........

b S <S, <4 "'n=123.........

Which show that the sequence { S} is bounded one.
Hence {S,} isaconvergent sequence the number to which it convergesiis its
supremum, which is denoted by ‘€ and 2<e<3.

Recurrence Relation

A sequence is said to be defined recursively or by recurrencerelation if the
general term is given as arelation of its preceding and succeeding terms in the sequence
together with some initial condition.

Example
Let t,>0 and let {t,} be defined by tn+1>2-ti ©ns1
b t>0 " n31
1

Also t -t =t -2+=

n
n

:trf_ 2, +1 — (tn'l)2

>0
tn tn
Pt >t. " n31l
Thisimpliesthat t, is monotonically decreasing.
Since t, >1 " n3l

P t,isbounded below P t, isconvergent.
L et us suppose Ii®r§1tn =t

Then Ilimt . =limt
n® ¥ n+l n® ¥ n

. & o_.
p Ilm(‘~,2-i+:llmtn
n®¥e t n® ¥

b 2_1‘:]: b 2t_—1:
t t

b (t-1)°=0 b t=1

t b 2t-1=t> b t?-2t+1=0

Example

Let {S} bedefinedby S,,=,/S,+b ;n3land S=a>b.
Itisclearthat S, >0 " n3land S,>S and

Sva- S =(S,+b)- (S,, +b)

:Sn' Sn—l
p (Sn+1+$1)($1+1_ Sn):Sn_ Sn—l
R

SinceS,,+S, >0 " n31
Therefore S,,- S, and S, - S, ; have the same sign.
e. §,,>S, ifandonlyif S >S , and
S.<S ifandonlyif § <SS ;.
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But we know that S, > S therefore S,>S,, S,>S;, and soon.
Thisimplies the sequence is an increasing sequence.

Also S,- §=({/5,+b) - =5, +b- §
(st 5-)

Since S, >0 " n3 1, therefore S, istheroot (+ive) of the

S~ §,- b=0

. _1++1+4b
Takethisvalueof S, asa wherea T For equation ax +bx+ ¢ =0
- i —C
the other root of equation is therefore -b The product of rootsis ab A
a
SinceS,,>S, " n31l i.e. the other root b =——

aa

Also - (Sn'a)é%n-l-aggzsﬁﬂ' S§>O

\ sn+a9>o o -(S,-a)30
p S <a " n3l1
which showsthat S, is bounded and hence it is convergent.
Suppose L|® rQSn =s
. 2 —1:
Then lim(S,,,)" =1im(S, +D)
P s=s+b b s*-s-b=0

Which showsthat a = 1+vi+4o ;M'b is the limit of the sequence.
Theorem
Every Cauchy sequence of real numbers has a convergent subsequence.
Proof

Suppose {S,} isa Cauchy sequence.
Let e >0 then $ apositive integer n, 2 1 such that

‘Snk-Snkl<% " n,n_, K=1,23,.........
Pit b =(S,- S, )+(S,- S,)* +(s,-s,.)

b |bK|=‘(5nl S,)*(S, - S, )+ +(s, - s,)
5‘(%5%)‘+‘(5n25m)‘+ ............ +‘(Snk'snk1)
<E.&, + &

AT AR =
e 1 +i0:eg%(l' 21k)2:eael‘_ 16
8 2 T ZKB 8 1- 1 % 8 ZkB
b |<e " k31

b {h} isconvergent
. h(:snk- Sno \ Snk:bK+$10
Where S, isa certain fix number therefore { S, } which is a subsequence of {S}is
convergent.
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Theorem (Cauchy’s General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.
Proof

Necessary Condition

Let {S,} be aconvergent sequence, which convergesto s.
Then for given e >0 $ apositive integer n,, such that

S-s[<5 " n>n,
Now for n>m>n,

[Si- Sal =[S, 5+S,- 8

E]S,- s|+[S,- s
e e _
<§+§ = e

Which showsthat { S} isa Cauchy sequence.
Sufficient Condition

Let us suppose that { S} is a Cauchy sequence then for e >0, $ apositive
integer m such that
e . .
|Sn-Sm|<§ nm>m .......... (i)
Since{S,} isaCauchy sequence

therefore it has a subsequence { Snk} converging to s (say).
P $ apositive integer m, such that

<_+_:e n

n > max(m,m,)
which showsthat { S} is a convergent sequence.

Example
Let {S} bedefineby 0<a<§<S,<b andaso

S =SS, N>2 ..., (i)
Here S,>0," n3land a<§<b
Let for some k > 2

a<§ <b
then a®°<aS <SS.,=(S.) <b’ VS TS S
e a®<S, <b’
P a<§,<b
b a<S <b " nI N
i>§
Sa b

" +1>=+1
+1
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S +S., S at+b
S b

n+l

p 3 5a >8I g isreplaceby S, | S, <5,

n

And Sn2+1-Sn2:Sn>Gn_1-Sn2 v SaTVS Sy
:sn(sn S)

Sia- S |= |S..- S|

b

S+S
® s, s

® |55,

a+b

S

n-1

p |Sn+1_Sn| -Sn: h

a+b

b
§a+b°|sn S,

b
<6€ 9|Snz'Sn3|

Take r =
a+b

Then for n>m we have
|Sn'Sm|:|Sn_Sn—1+Sn—1-Sh-2+ .............. +Sm+1-Sm|
E|S,- Sut #|Sia- SuolF e +|Sp- Syl
<(r”'2 " +rm'1)(b- a)
=e
Thisimpliesthat { S} isa Cauchy sequence, therefore it is convergent.

Example
Let {t,} bedefined by
t —1+1+1+ ............... o1
2 3
For m,nl N, n>m we have
It - t,|= SIS +=
m+1 m+2 n
> (n- m)1 =1
n
In particular if n=2m then
|tn' tm|>1
2

Thisimpliesthat {t,} is not a Cauchy sequence therefore it is divergent.

»

“
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Theorem (nested intervals)
Suppose that {I,} isasequence of the closed interval suchthat 1, =[a,.b,] .
l..1 1," n31,and (b,- a,)® 0O asn® ¥ then NI, contains one and only one
point.
Proof
Sincel ., | 1,
\ <3, <a <. <a,_,<a,<b,<b , <..... <b,<b,<b
{an} IS increasing sequence, bounded above by b, and bounded below by a,.
And {b } IS decreasing sequence bounded below by a and bounded above by b, .

b {a,} and{h} both are convergent.
Suppose {a,} convergestoa and {h,} convergesto b.
But |a- b|=|a- a,+a,- b,+h,- b]
£|a,- a|+|a,- b|+|b,-b| ® 0 a n® ¥.
P a=b
and a ,<a<b, " n31l

Theorem (Bolzano-Weierstrass theorem)
Every bounded sequence has a convergent subsequence.
Proof
Let {S,} beabounded sequence.
Take a, =inf S, and b =supS,
Then a, <SS <b " n31.
Now bisect interval [a,,l] such that at least one of the two sub-intervals contains

infinite numbers of terms of the sequence.
Denote this sub-interval by [a,,b,].

If both the sub-intervals contain infinite number of terms of the sequence then choose
the one on the right hand.
Thenclearly a £a,<b,£Db.

Suppose there exist a subinterval [a,,b,] suchthat
afaf...... £a <b £...... £b £b

1
b (b - ak):?(bl_ a)
Bisect the interval [a,,by] in the same manner and choose [a,,,,b.,] to have

afaf...... £a fa.,<b,Eb £...... £b, £b

1
and B - ak+1:F(b1' al)

Thisimplies that we obtain a sequence of interval [a,,b,] such that
b, - an:%(bl- a)® 0 as n® ¥.

P we have aunique point s such that

s=M[a,.b)]
there are infinitely many terms of the sequence whose length is e >0 that contain s.
For e =1 there are infinitely many values of n such that

55| <1

Let n, be one of such value then

S, <1
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Again choose n, >n, such that
1
-s|l < =
S5 < 3
Continuing in this manner we find a sequence { Snk} for each positive integer k such
that n <n,, and

'S, - s| <% " K=1,2,3
Hence there is a subsequence { Snk} which convergesto s.

Limit Inferior of the sequence
Suppose {S,} is bounded then we define limit inferior of { S} as follow

Ilm(lnfSn)—IlmU where U, =inf{S,:n3 k}

n® ¥

If S, isbounded below then
lim(inf S,) =-

n® ¥

Limit Superior of the sequence
Suppose {S,} is bounded above then we define limit superior of {S,} asfollow

Ilm(supSn)—IlmV where V, =inf{S,:n3 k}

n® ¥
If S, isnot bounded above then we have

lim(supS,) =+

n® ¥

Note:
(i) A bounded sequence has unique limit inferior and superior
(i) Let {S,} containsall the rational numbers, then every real number is a

subsequencial limit then limit superior of S, is +¥ and limit inferior of S, is - ¥
(iii) Let {S} =(- 1)”§i‘+19
n

then limit superior of S, is1 and limit inferior of S is - 1.
(iv) Let U, =inf{S,:n3 k}

=inf }ghigcoskp ,ghkiﬂgcos(k +1)p ,gH

10
—CoS(K+2)P,.ceeeerennnns
kﬂ APy s(k +2)p tv)

‘Ir ¢ _coskp if kisodd

Ig?\[+—_cos(k+1)p if kiseven

P lim(inf S) =limu, =-1

n® ¥
Also V, —sup{Sn.n3 k}
ig +i_cos(k+1)p if kis odd

Igi+—_coskp if kiseven

b I|m(|nf8n) imv, =1

n® ¥
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Theorem
If {S,} isaconvergent sequence then
limS = L|®r9(|nf8n) = LI@fQ(SUpSn)

n® ¥

Proof
Let L|®rQSn = s then for areal number e >0, $ apositive integer n, such that
S, - s|<e "N3 Ny e (i)
i.e. S-e<§,<s+e "ndn
If V. =sup{S,:n2 k}
Then s-e<V,<s+te " k3n,
P s-e<limV <s+e "kIny . (i)

from (i) and (ii) V\Il(silave
s=lim sup{S}

k® ¥
We can have the same result for limit inferior of {S,} by taking

U, =inf{S,:n3 k}

-15 -
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Infinite Series

¥
Given a sequence {an} , We use the notation é a, or smply é a, to denotesthe
i=1
sum a, +a, +a; t..eens and called ainfinite series or just series.

The numbers S, = é a, are called the partial sum of the series.
k=1
If the sequence { 31} converges to s, we say that the series converges and write
¥

é a, = s, the number sis called the sum of the series but it should be clearly
n=1
understood that the ‘s’ is the limit of the sequence of sums and is not obtained simply
by addition.

If the sequence {S,} diverges then the series is said to be diverge.

Note:
The behaviors of the series remain unchanged by addition or deletion of the certain
terms

Theorem
¥

I éan convergesthen lima, =0.

=1 n® ¥

Proof
Let S =a +a,+a,+....... +a,
Take imS =s=§ a,

n® ¥
Since a,=§,- S.;
Therefore  lima, = lim(S, - S,.)

n® ¥

=lims,- s,

=s-s=0
Note:
The converse of the above theorem is false

Example

¥
Consider the series 1
n=1 n

We know that the sequence {S,} where S, = 1+% +% Forrreeeeens +% is divergent

¥
therefore é E is divergent series, although Ii®ngan =0.

n=1

Thisimplies that if Ii®ngan1 0, then é a, isdivergent.
It is know as basic divergent test.

Theorem (General Principle of Convergence)
A series é a, isconvergent if and only if for any real number e >0, there exists a
positive integer n, such that

;
a a|<e

i=m+1

I’]>I’T]>I’]0

Proof

Let S, =a +a,+a, +............. +a,
then {S,} is convergent if and only if for e >0 $ apositive integer n, such that
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|S,- S./<e " n>m>n,
éa‘z|sn-sm|<e

i=m+1

b

Example
3 1
If |x|<1 then g x"=—
n=0 1- x
¥
Andif |x|2 1then g x" isdivergent.
n=0
Theorem
Let  a, beaninfinite series of non-negative termsand let {S} be a sequence of
its partial sumsthen § a, isconvergent if {S} isbounded and it divergesif {S} is
unbounded.
Proof
Sincea,*0 " n30
S\ =S ta, > S, " n30
therefore the sequence { Sn} IS monotonic increasing and hence it is converges if
{S} isbounded and it will diverge if it is unbounded.
Hence we conclude that é a, isconvergent if {Sn} is bounded and it divergent if
{S} isunbounded.

Theorem (Comparison Test)
Suppose é a, and é b, areinfinite seriessuchthat a, >0, b >0 " n.Also
suppose that for a fixed positive number | and positiveinteger k, a, <l b, " n3 k
Then é a, converges if é b, is converges and é b, isdivergesif é a, isdiverges.

Proof
Suppose é b, is convergent and
a,<lb "n3k......... (i)
then for any positive number e >0 there exists n, such that
g e
a q <— n>m>n,
i=m+1
from (i)
P §a<l dbh<e , n>m>n
i=m+1 i=m+1

P é a, isconvergent.

Now suppose g a, isdivergent then {S} is unbounded.
P $ area number b >0 such that

éq>lb , n>m
i=m+l
from (i)
P Ah>>§a>b . n>m

i=m+1 i=m+1

P & b, is convergent.
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Example

We know that § 1is divergent and
n

n3 \/ﬁ " n31
b g1
n+/n
= é_i is divergent as é_l is divergent
Jn n .

Example

The series § ia is convergent if a >1 and divergesif a £1.
n

1 1 1
Let =1+ —+—+ ., + —
> 2 F n®
If a>1 then
1 1
< and —«<
Sh SZn na (n_l)a
1 1 1 1 u
Now =al+—+—+—............
S 31 » 3 4 (2n)* H
e 1 1 1 u é1 1 1 1 u
=g+t —+—+....... SOt e ot e =0
e 3a 5 (Zn-l) u eza 4 6 (2n)
e 1 1 1 u 1¢ 1 1 1 u
=al+—+—+............ 1+ aAl+—+—+............ +
Slsa 5 (2n- 1° Y 2631 > 3 (n?* §
e 1 1 1 u 1
<@ttt 0t o
e 2a 4 (2n- 2) u 2a
replacing 3 by 2, 5 by 4 and so on.
1é¢ 1 1 u 1
=l+—al+—+..... —ut =S,
31 2 (n-1)*H4 22
1 1 1 1
=1+— +— =1+—S +— <S <
ZaSn—l ZaSh ZaSZn Za%n Sn—l Sh SZn
2
=1+—
ZaSZn
1
p SZn 1+2a-182n
16 a?t-10 2t
b H. =% <1 b 2S <1 b
8 1 Szn g -1 ﬂSZn SZn 2a1_1
. v
l.e. < <
Sh SZn 2a-1_1

P {Sn} is bounded and also monotonic. Hence we conclude that é_ ia IS
n

convergent when a >1.

If a £1 then
n" £n " n31
ST
n n

: é_ 1 Is divergent therefore é_ ia isdivergent when a £1.
n

n
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Theorem
Let a, >0, b >0 and |i®r9%:| 1 0 thenthe series § a, and g b, behave alike.
Proof
Since limr =
n®¥bn
b |&.||<e " n3 Ny -
Usee=—
2
an I n
b | 2-]| |<— ns3
b, 2 k
P | -|—<5<| +|_
2 b 2
b I_<$<i
2 b 2
then we got

a,<>h ad b <la

Hence by comparison test we conclude that é a, and é b, converge or diverge
together.

Example

o 1. X . .
To check g —sin’~ diverges or converges consider
n n

1. .Xx 1
=—sin“— andtake b =—
& n n " ond
then &=p2gn2X
b, n
sin?> &in* O
1 ¢ x -
" &n o
en g

Applying limitas n® ¥

2 2
%nfg &® sinfg
im3 = lim x2d— 0 =xdlim—NI =) =

ne¥ [ ne¥ X ey X .
n Q — - Q — =
eng e n o
p é a, and é b, have the similar behavior " finite values of x except x = 0.

: 1. : : .
Since é_ — is convergent series therefore the given series is also convergent for
n

finite values of x except x = 0.
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Theorem ( Cauchy Condensation Test )
Let 8.2 0,a, >a, " n31,thenthe series é a, and é 2”‘1a2n_1 converges or

diverges together.

Proof
L et us suppose

S=at+ta,+ta ... +a,
and t,=a +2a, + 2%, * e, +2"g ..

+a30 ad n<2"<2'-1
\ S <S,:1<S,, for n>2
then
S, Tatatat....ta,
=a +(a,+a,)+(a*ataga) ot (B F A, YA, Fet Ry )
<a+(a,+a,)+(a,+a,+8,+8,) * ot (B + s F By ot Ay
<at+2a,+2°a,+....+2"a,, =t

P S, <t,

P S <t,<2S, ..ccoiiiiin. (i)
Now consider

szn:a1+a2+a3+ ............... +a2n

:al+az+(ag+z;14)+(a,5 +a, +a7+a8)+ _______ +(a2n_l+1+a2n_l+2+a2n_l+3+____+a2n)
1
>Ea1+a2+(a4+a4)+(a8+a8+a8+a8)+ ______ +(a2n+a2n+a2n+ _____ +a2n)

=%a1+a2+2a4+22a8+ ................ +2"a,
=%(a1+2a2+23a4+23a8+ ................ +2”a2n)
p 82n>%tn ............ (i)
P 282n>tn

From (i) and (ii) we see that the sequence S, and t are either both bounded or both
unbounded, implies that é a, and é 2”‘1a2n_1 converges or diverges together.

Example

Consider the series é_ ip
n

If p£0 then Iimip1 0

n®¥ n
therefore the series divergeswhen p£0.
If p>0 then the condensation test is applicable and we are lead to the series

3 1 d 1

a2—--=a
o (2P (L 2¥F
¥ 1 _fel o
_2'02('0'1)" - 2—0 2D &
— 52(1 Pk
k=0

Now 2P < 1 iff 1- p <0 i.e.when p>1
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And the result follows by comparing this series with the geometric series having
common ratio less than one.

The series divergeswhen 2" ° =1 (i.e. when p=1)
The seriesisalso divergent if 0< p<1.

Example

¥
If p>1, 3
P2 i)

If p£1 theseriesisdivergent.

converges and

. . 1 1 0
-+ {Inn} isincreasing \ im%‘decreas&

and we can use the condensation test to the above series.

Wehave a, = .
n(Inn)
1 1
P a,=—— b 2"a, =
© 2(in27)’ Z (nin2)°
P we havethe series
o n o 1 1 o 1
a2a2n: = —

a (nin2)P (|n2)'O a nP
which convergeswhen p>1 and divergeswhen p£1.

Example

i 1
Consider 3 —
a Inn

Since {Inn} isincreasing there ili%l decreases.
rInn

And we can apply the condensation test to check the behavior of the series

sl oy gl
s Inn 2 In2"
so 2"a,= 2 p 2'a,= 2
2 In2" 2 nln2
since 2—>1 " n31l
n n

and é_ % is diverges therefore the given seriesis also diverges.

-21-
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Alternating Series
A series in which successive terms have opposite signs is called an alternating series.
o (-D™ 1 1 1

e.o. =1- —+—- —+ .. IS an alternating series.
9 a n 2 3 4 9

Theorem (Alternating Series Test or Leibniz Test)
Let {an} be a decreasing sequence of positive numbers such that lima, =0 then the

n® ¥

¥
aternating series é (-D™a =a-a,+a;- 3t converges.

n=1
Proof

Looking at the odd numbered partial sums of this series we find that

Spa=@- a)t(@-a,)t(@- a)t... +(Qn.1- &) Ty
Since {a,} is decreasing therefore all the terms in the parenthesis are non-negative

PS>0 " n
Moreover

Sones = S ™ ez F s
=S~ (Bunez ™ Bonea)

Since Qnr2 = Sones 3 0 therefore Szn+3 £ S2n+1

Hence the sequence of odd numbered partial sum is decreasing and is bounded below
by zero. (asit has +ive terms)

It is therefore convergent.

Thus S,,,, convergesto some limit | (say).

Now consider the even numbered partial sum. We find that

S2n+2 = S2n+1 - a2n+2
and

L|®r9 S2n+2 = L|®r9 ( S2n+1 - a2n+2)

=lim - lim
n® ¥ S2n+1 n® ¥ a2n+2

=1-0=l Ii®r9an:O
so that the even partial sumis also convergent to | .
P both sequences of odd and even partial sums converge to the same limit.

Hence we conclude that the corresponding series is convergent.

Absolute Convergence
é a, issaid to converge absolutely if é | an| converges.

Theorem
An absolutely convergent series is convergent.
Proof:
If & |a,| is convergent then for areal number e >0, $ a positive integer n, such that

<&lal<e " nm>n

i=m+1

P the series é a, isconvergent. (Cauchy Criterion has been used)

a a

i=m+1

Note
The converse of the above theorem does not hold.

o (-1)™
o 80

. 1.
is convergent but § = is divergent.
n
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Theorem (The Root Test)
: Y _
Let limSup|a,|™=p
Then é a, converges absolutely if p<1 and it divergesif p>1.

Proof
Let p<1 then we can find the positive number e >0 suchthat p+e<1
p |an|% < p+e<l " n>n,
b |a) < (p+e) <1
> & (p+e)" isconvergent because it is a geometric series with |r|<1.
\ " a|a,| is convergent
p é a, converges absolutely.
Now let p>1 then we can find anumber e, >0 such that p- e >1.
p |an|% > p+e >1
b |a,| > 1 forinfinitely many values of n.
> lima, 0
b

é a, isdivergent.

Note:
The above test give no information when p=1.

1
n?’

Qo

e.g. Consider the series é_% and

(BN

For each of these series p =1, but é_ — isdivergent and é_ iz IS convergent.
n

5

Theorem (Ratio Test)
The series é a,

G
a

(i) Convergesif I|®r£1 SUp‘ <1

(ii) Divergesif ‘ﬂ >1 for n3 n,, where n, issome fixed integer.
a,

Proof
If (i) holdswe can find b <1 and integer N such that
il forn3 N
a,
In particular

a'N+1 < b
aN

b |ay.,| < blay|

D |aN+2 < b|aN+1 < b2|aN|

b |ay.| < b’la]

b ‘amp < b’|a|

-23 -
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la,| <b""|a,| weput N+p=n.
ie |a|<|a|bb" forn3 N.
é b" isconvergent because it is geometric series with common ration <1.
Therefore é a, isconvergent (by comparison test)

Now if
&% |a,| forn3n
1
then L|® ma, 0
P a a, isdivergent.
Note
The knowledge G |2 implies nothing about the convergent or divergent of series.
a,
Example

én &nou
§n+1 8n+1g 0

Consider the series a, with a, =

n
—x<1 \ >0 " n
n+1 %
1 é n+1u'1
1 n a&n o
Also n = @ -
(a“) gn+1 8n+1g 0
, nal na-l
_an+16€ an oYU _an+lp€ an+lo U
=o—=:8-c——:0 T —:8-c—=
n gg éntlgy 8“&@8“&@
. el
-.e e u
- 5,105 . 5,10}
€ npg & ngg
-1
-.e nu
lima, = Iima?[+12§1- a?[+19 0
n® ¥ n®¥8 nﬂ" 8 nﬂ V4
e ¢!
-1
é 5" U
= Iimai+12 lim@l- aﬁ+12 G
n®¥8 nﬂ n®¥ A 8 nﬂ V4
e ¢!
. il & 10 _ ée-1y _ ée
= 1x -ellzg-_, = . = >1
BCH g Tfel Bt
P the seriesis divergent.
Theorem (Dirichlet)
Supposethat {S}, S,=a,+a, + a3 +.ccvvveenne. +a, isbounded. Let { b} be positive
term decreasing sequence such that I|®rQ b, =0, then é a, b, isconvergent.

Proof
-+ {S,} isbounded
\ $ apositive number | such that

|Sn|<l " n3l
Then h=(S-S.)b foris 2
:Sq SELY
=Sh-S,0+3b,-Sh,
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:S(h_ h+1)_ 3—1h+3h+1
P aah=a S(b-0.)- (Sibm- Sib)

i=m+1 i=m+1

-+ {b} isdecreasing

\ |4 ab|=|a S(b-0.)- Syb+Sb.
i=m+1 i=m+1
<A {Slb-9..)} +|Su|bns +] S, [bra
i=m+1
<a{l (a-b. )+ b+l b, | §)<l
i=m+1
=1 08 (B~ B) By, b0
8i=m+1 (4]
=1 (B - ) By +051) =21 (B,0)
b én ab|<e where e =2| (b,,,) acertain number
i=m+1

b Thed a, b, isconvergent. ( We have use Cauchy Criterion here. )

Theorem
Suppose that é a, isconvergent and that { bn} IS monotonic convergent sequence

then é a, b, isalso convergent.

Proof
Suppose { b} is decreasing and it convergesto b.
Put c,=b,-b

P ¢,20 andlimc,=0
n® ¥
é a, isconvergent

\ {S} S,=atatata +a_ isconvergent
P Itisbounded

p é a, ¢, isbounded.
- a,b,=a,c, +a,b and é a,c, and é a, b are convergent.
\ é a b, isconvergent.
Now if { b} isincreasing and convergesto b thenwe shall put ¢, =b- b,.

Example
2 is convergent if a >1 and divergent if a £1.
(nlnn)?
To see this we proceed as follows
1
%= (nlnn)?

Teke b= 2a, = — 2 _ = 2 _
(2"In27) (2" nin2)
2" 1

2™ n* (In2)° 2= "n? (In2)*
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ﬁ_o_(a—l)n
_ 1 g2p
(n2f

(a-Dn

. O
&2
converges to 0. Therefore b, is convergent

Since ia is convergent when a >1 and is decreasing for a >1 and it
n

o .
P a a, isalso convergent.
Now é b, isdivergent for a £1 therefore é a, divergesfora £1.

Example
To check é ¥ Is convergent or divergent.
n*Inn
Wehave a, =
% n" Inn

Tke b =2a,=—2 _ =_2 _
" % (2")* (In2") 2" (nIn2)

.(a-Dn

g 0
1 y‘zﬂ'a)” _ 1 )gzg

In2  n N2 n
o 1 . . T@-(.jn(a_l) ’ . . )
© a — isdivergentathough |c-+ vy isdecreasing, tending to zero for a >1
n ngﬂ b

therefore é b, isdivergent.
o . .
P a a, isdivergent.

The seriesalso divergent if a £1.
l.e. it is always divergent.

References: (1) Lectures (2003-04)

Prof. Syyed Gull Shah
Chairman, Department of Mathematics.
University of Sargodha, Sargodha.

(2) Book
Principles of Mathematical Analysis
Walter Rudin (McGraw-Hill, Inc.)

Made by: Atig ur Rehman (mathcity@gmail.com)

Available online at http://www.mathcity.org in PDF Format.
Page Setup: Legal (88" 144)

Printed: October 20, 2004. Updated: October 11, 2005



mailto:(mathcity@gmail.com)
http://www.mathcity.org

