## Gkapter 2 - Sequerces ard Series

Subject: Real Analysis Level: M.Sc.
Source: Syed Gul Shah (Chairman, Department of Mathematics, UoS Sargodha)
Collected \& Composed by: Atiq ur Rehman(mathcity@ gmail.com), http://www.mathcity.org

## Sequence

A sequence is a function whose domain of definition is the set of natural numbers.

Or it can also be defined as an ordered set.

## Notation:

An infinite sequence is denoted as
$\left\{S_{n}\right\}_{n=1}^{\infty}$ or $\left\{S_{n}: n \in \mathbb{N}\right\}$ or $\left\{S_{1}, S_{2}, S_{3}, \ldots \ldots \ldots.\right\}$ or simply as $\left\{S_{n}\right\}$
e.g. i) $\{n\}=\{1,2,3, \ldots \ldots \ldots$.
ii) $\left\{\frac{1}{n}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots \ldots \ldots \ldots \ldots\right\}$
iii) $\left\{(-1)^{n+1}\right\}=\{1,-1,1,-1$, $\qquad$

## Subsequence

It is a sequence whose terms are contained in given sequence.
A subsequence of $\left\{S_{n}\right\}_{n=1}^{\infty}$ is usually written as $\left\{S_{n_{k}}\right\}^{\infty}$.

## Increasing Sequence

A sequence $\left\{S_{n}\right\}$ is said to be an increasing sequence if $S_{n+1} \geq S_{n} \quad \forall n \geq 1$.

## Decreasing Sequence

A sequence $\left\{S_{n}\right\}$ is said to be an decreasing sequence if $S_{n+1} \leq S_{n} \quad \forall n \geq 1$.

## Monotonic Sequence

A sequence $\left\{S_{n}\right\}$ is said to be monotonic sequence if it is either increasing or decreasing.
$\left\{S_{n}\right\}$ is monotonically increasing if $S_{n+1}-S_{n} \geq 0$ or $\frac{S_{n+1}}{S_{n}} \geq 1, \forall n \geq 1$
$\left\{S_{n}\right\}$ is monotonically decreasing if $S_{n}-S_{n+1} \geq 0$ or $\frac{S_{n}}{S_{n+1}} \geq 1, \quad \forall n \geq 1$

## Strictly Increasing or Decreasing

$\left\{S_{n}\right\}$ is called strictly increasing or decreasing according as

$$
S_{n+1}>S_{n} \text { or } S_{n+1}<S_{n} \quad \forall n \geq 1
$$

## Bernoulli's Inequality

Let $p \in \mathbb{R}, p \geq-1$ and $p \neq 0$ then for $n \geq 2$ we have

$$
(1+p)^{n}>1+n p
$$

## Proof:

We shall use mathematical induction to prove this inequality.
If $n=2$
L.H.S $=(1+p)^{2}=1+2 p+p^{2}$
R.H.S $=1+2 p$
$\Rightarrow$ L.H.S $>$ R.H.S
i.e. condition $I$ of mathematical induction is satisfied.

Suppose $(1+p)^{k}>1+k p$ $\qquad$ where $k \geq 2$
Now $(1+p)^{k+1}=(1+p)(1+p)^{k}$

$$
\begin{array}{lr}
>(1+p)(1+k p) & \text { using }(i) \\
=1+k p+p+k p^{2} & \\
=1+(k+1) p+k p^{2} & \\
\geq 1+(k+1) p & \text { ignoring }
\end{array}
$$

$$
\Rightarrow(1+p)^{k+1}>1+(k+1) p
$$

Since the truth for $n=k$ implies the truth for $n=k+1$ therefore condition II of mathematical induction is satisfied. Hence we conclude that $(1+p)^{n}>1+n p$.

## Example

Let $S_{n}=\left(1+\frac{1}{n}\right)^{n} \quad$ where $n \geq 1$
To prove that this sequence is an increasing sequence, we use $p=\frac{-1}{n^{2}}, n \geq 2$ in Bernoulli's inequality to have

$$
\begin{aligned}
& \left(1-\frac{1}{n^{2}}\right)^{n}>1-\frac{n}{n^{2}} \\
\Rightarrow & \left(\left(1-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\right)^{n}>1-\frac{1}{n} \\
\Rightarrow & \left(1+\frac{1}{n}\right)^{n}>\left(1-\frac{1}{n}\right)^{1-n}=\left(\frac{n-1}{n}\right)^{1-n}=\left(\frac{n}{n-1}\right)^{n-1}=\left(1+\frac{1}{n-1}\right)^{n-1} \\
\Rightarrow & S_{n}>S_{n-1} \quad \forall n \geq 1
\end{aligned}
$$

which shows that $\left\{S_{n}\right\}$ is increasing sequence.

## Example

Let $t_{n}=\left(1+\frac{1}{n}\right)^{n+1} \quad ; n \geq 1$
then the sequence is decreasing sequence.
We use $p=\frac{1}{n^{2}-1}$ in Bernoulli's inequality.

$$
\begin{equation*}
\left(1+\frac{1}{n^{2}-1}\right)^{n}>1+\frac{n}{n^{2}-1} . \tag{i}
\end{equation*}
$$

where

$$
\begin{align*}
& 1+\frac{1}{n^{2}-1}=\frac{n^{2}}{n^{2}-1}=\left(\frac{n}{n-1}\right)\left(\frac{n}{n+1}\right) \\
\Rightarrow & \left(1+\frac{1}{n^{2}-1}\right)\left(\frac{n+1}{n}\right)=\left(\frac{n}{n-1}\right) \cdots \cdots \cdots . \tag{ii}
\end{align*}
$$

Now $t_{n-1}=\left(1+\frac{1}{n-1}\right)^{n}=\left(\frac{n}{n-1}\right)^{n}$

$$
\begin{equation*}
=\left(\left(1+\frac{1}{n^{2}-1}\right)\left(\frac{n+1}{n}\right)\right)^{n} \tag{ii}
\end{equation*}
$$

$$
\begin{array}{ll} 
& =\left(1+\frac{1}{n^{2}-1}\right)^{n}\left(\frac{n+1}{n}\right)^{n} \\
>\left(1+\frac{n}{n^{2}-1}\right)\left(\frac{n+1}{n}\right)^{n} & \text { from }(i) \\
>\left(1+\frac{1}{n}\right)\left(\frac{n+1}{n}\right)^{n} & \because \frac{n}{n^{2}-1}>\frac{n}{n^{2}}=\frac{1}{n} \\
=\left(\frac{n+1}{n}\right)^{n+1}=t_{n} &
\end{array}
$$

i.e. $t_{n-1}>t_{n}$

Hence the given sequence is decreasing sequence.

## Bounded Sequence

A sequence $\left\{S_{n}\right\}$ is said to be bounded if there exists a positive real number $\lambda$ such that $\left|S_{n}\right|<\lambda \quad \forall n \in \mathbb{N}$

If $S$ and $s$ are the supremum and infimum of elements forming the bounded sequence $\left\{S_{n}\right\}$ we write $S=\sup S_{n}$ and $s=\inf S_{n}$

All the elements of the sequence $S_{n}$ such that $\left|S_{n}\right|<\lambda \quad \forall n \in \mathbb{N}$ lie with in the strip $\{y:-\lambda<y<\lambda\}$. But the elements of the unbounded sequence can not be contained in any strip of a finite width.

## Examples

(i) $\left\{U_{n}\right\}=\left\{\frac{(-1)^{n}}{n}\right\}$ is a bounded sequence
(ii) $\left\{V_{n}\right\}=\{\sin n x\}$ is also bounded sequence. Its supremum is 1 and infimum is -1 .
(iii) The geometric sequence $\left\{a r^{n-1}\right\}, r>1$ is an unbounded above sequence. It is bounded below by $a$.
(iv) $\left\{\tan \frac{n \pi}{2}\right\}$ is an unbounded sequence.

## Convergence of the Sequence

A sequence $\left\{S_{n}\right\}$ of real numbers is said to convergent to limit ' $s$ ' as $n \rightarrow \infty$, if for every positive real number $\varepsilon>0$, however small, there exists a positive integer $n_{0}$, depending upon $\varepsilon$, such that $\left|S_{n}-s\right|<\varepsilon \quad \forall n>n_{0}$.

## Theorem

A convergent sequence of real number has one and only one limit (i.e. Limit of the sequence is unique.)

## Proof:

Suppose $\left\{S_{n}\right\}$ converges to two limits $s$ and $t$, where $s \neq t$.
Put $\varepsilon=\frac{|s-t|}{2}$ then there exits two positive integers $n_{1}$ and $n_{2}$ such that

$$
\begin{aligned}
& \left|S_{n}-s\right|<\varepsilon \quad \forall n>n_{1} \\
& \text { and } \quad\left|S_{n}-t\right|<\varepsilon \quad \forall n>n_{2} \\
& \Rightarrow\left|S_{n}-s\right|<\varepsilon \text { and }\left|S_{n}-t\right|<\varepsilon \text { hold simultaneously } \forall n>\max \left(n_{1}, n_{2}\right) \text {. }
\end{aligned}
$$

Thus for all $n>\max \left(n_{1}, n_{2}\right)$ we have

$$
|s-t|=\left|s-S_{n}+S_{n}-t\right|
$$

$$
\begin{aligned}
& \leq\left|S_{n}-s\right|+\left|S_{n}-t\right| \\
& <\varepsilon+\varepsilon=2 \varepsilon \\
\Rightarrow|s-t| & <2\left(\frac{|s-t|}{2}\right) \\
\Rightarrow|s-t| & <|s-t|
\end{aligned}
$$

Which is impossible, therefore the limit of the sequence is unique.
Note: If $\left\{S_{n}\right\}$ converges to $s$ then all of its infinite subsequence converge to $s$.

## Cauchy Sequence

A sequence $\left\{x_{n}\right\}$ of real number is said to be a Cauchy sequence if for given positive real number $\varepsilon, \exists$ a positive integer $n_{0}(\varepsilon)$ such that

$$
\left|x_{n}-x_{m}\right|<\varepsilon \quad \forall m, n>n_{0}
$$

## Theorem

A Cauchy sequence of real numbers is bounded.

## Proof

Let $\left\{S_{n}\right\}$ be a Cauchy sequence.
Take $\varepsilon=1$, then there exits a positive integers $n_{0}$ such that

$$
\left|S_{n}-S_{m}\right|<1 \quad \forall m, n>n_{0} .
$$

Fix $m=n_{0}+1$ then

$$
\begin{aligned}
\left|S_{n}\right| & =\left|S_{n}-S_{n_{0}+1}+S_{n_{0}+1}\right| \\
& \leq\left|S_{n}-S_{n_{0}+1}\right|+\left|S_{n_{0}+1}\right| \\
& <1+\left|S_{n_{0}+1}\right| \quad \forall n>n_{0} \\
& <\lambda \quad \forall n>1, \text { and } \lambda=1+\left|S_{n_{0}+1}\right| \quad\left(n_{0} \text { changes as } \varepsilon \text { changes }\right)
\end{aligned}
$$

Hence we conclude that $\left\{S_{n}\right\}$ is a Cauchy sequence, which is bounded one.

## Note:

(i) Convergent sequence is bounded.
(ii) The converse of the above theorem does not hold.
i.e. every bounded sequence is not Cauchy.

Consider the sequence $\left\{S_{n}\right\}$ where $S_{n}=(-1)^{n}, n \geq 1$. It is bounded sequence because

$$
\left|(-1)^{n}\right|=1<2 \quad \forall n \geq 1
$$

But it is not a Cauchy sequence if it is then for $\varepsilon=1$ we should be able to find a positive integer $n_{0}$ such that $\left|S_{n}-S_{m}\right|<1$ for all $m, n>n_{0}$

But with $m=2 k+1, n=2 k+2$ when $2 k+1>n_{0}$, we arrive at

$$
\begin{aligned}
\left|S_{n}-S_{m}\right| & =\left|(-1)^{2 n+2}-(-1)^{2 k+1}\right| \\
& =|1+1|=2<1 \quad \text { is absurd. }
\end{aligned}
$$

Hence $\left\{S_{n}\right\}$ is not a Cauchy sequence. Also this sequence is not a convergent sequence. (it is an oscillatory sequence)

## Divergent Sequence

A $\left\{S_{n}\right\}$ is said to be divergent if it is not convergent or it is unbounded.
e.g. $\left\{n^{2}\right\}$ is divergent, it is unbounded.
(ii) $\left\{(-1)^{n}\right\}$ tends to 1 or -1 according as $n$ is even or odd. It oscillates finitely.
(iii) $\left\{(-1)^{n} n\right\}$ is a divergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the sequence itself is a divergent.

## Theorem

If $S_{n}<U_{n}<t_{n} \quad \forall n \geq n_{0}$ and if both the $\left\{S_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to same limits as $s$, then the sequence $\left\{U_{n}\right\}$ also converges to $s$.

## Proof

Since the sequence $\left\{S_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to the same limit $s$, therefore, for given $\varepsilon>0$ there exists two positive integers $n_{1}, n_{2}>n_{0}$ such that
i.e.

$$
\begin{array}{ll}
\left|S_{n}-s\right|<\varepsilon & \forall n>n_{1} \\
\left|t_{n}-s\right|<\varepsilon & \forall n>n_{2} \\
s-\varepsilon<S_{n}<s+\varepsilon & \forall n>n_{1} \\
s-\varepsilon<t_{n}<s+\varepsilon & \forall n>n_{2}
\end{array}
$$

Since we have given

$$
\begin{array}{lcl} 
& S_{n}<U_{n}<t_{n} & \forall n>n_{0} \\
& \therefore s-\varepsilon<S_{n}<U_{n}<t_{n}<s+\varepsilon & \forall n>\max \left(n_{0}, n_{1}, n_{2}\right) \\
\Rightarrow & s-\varepsilon<U_{n}<s+\varepsilon & \forall n>\max \left(n_{0}, n_{1}, n_{2}\right) \\
\text { i.e. } & \left|U_{n}-s\right|<\varepsilon & \forall n>\max \left(n_{0}, n_{1}, n_{2}\right) \\
\text { i.e. } & & \lim _{n \rightarrow \infty} U_{n}=s
\end{array}
$$

## Example

$$
\text { Show that } \lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1
$$

## Solution

Using Bernoulli's Inequality

$$
\left(1+\frac{1}{\sqrt{n}}\right)^{n} \geq 1+\frac{n}{\sqrt{n}} \geq \sqrt{n} \geq 1 \quad \forall n
$$

Also

$$
\begin{aligned}
& \left(1+\frac{1}{\sqrt{n}}\right)^{2}=\left[\left(1+\frac{1}{\sqrt{n}}\right)^{n}\right]^{\frac{2}{n}}>(\sqrt{n})^{\frac{2}{n}}>n^{\frac{1}{n}} \geq 1 \\
\Rightarrow & 1 \leq n^{\frac{1}{n}}<\left(1+\frac{1}{\sqrt{n}}\right)^{2} \\
\Rightarrow & \lim _{n \rightarrow \infty} 1 \leq \lim _{n \rightarrow \infty} n^{\frac{1}{n}}<\lim _{n \rightarrow \infty}\left(1+\frac{1}{\sqrt{n}}\right)^{2} \\
\Rightarrow & 1 \leq \lim _{n \rightarrow \infty} n^{\frac{1}{n}}<1 \\
& \text { i.e. } \lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1 .
\end{aligned}
$$

## Example

Show that $\lim _{n \rightarrow \infty}\left(\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\ldots \ldots \ldots \ldots .+\frac{1}{(2 n)^{2}}\right)=0$

## Solution

We have

$$
S_{n}=\left(\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\ldots \ldots \ldots \ldots .+\frac{1}{(2 n)^{2}}\right)
$$

and

$$
\begin{aligned}
& \frac{n}{(2 n)^{2}}<S_{n}<\frac{n}{n^{2}} \\
\Rightarrow & \frac{1}{4 n}<S_{n}<\frac{1}{n} \\
\Rightarrow & \lim _{n \rightarrow \infty} \frac{1}{4 n}<\lim _{n \rightarrow \infty} S_{n}<\lim _{n \rightarrow \infty} \frac{1}{n} \\
\Rightarrow & 0<\lim _{n \rightarrow \infty} S_{n}<0 \\
\Rightarrow & \lim _{n \rightarrow \infty} S_{n}=0
\end{aligned}
$$

## Theorem

If the sequence $\left\{S_{n}\right\}$ converges to $s$ then $\exists$ a positive integer $n$ such that $\left|S_{n}\right|>\frac{1}{2} s$.

## Proof

We fix $\varepsilon=\frac{1}{2}|s|>0$
$\Rightarrow \exists$ a positive integer $n_{1}$ such that

$$
\begin{aligned}
& \left|S_{n}-s\right|<\varepsilon \quad \text { for } n>n_{1} \\
\Rightarrow & \left|S_{n}-s\right|<\frac{1}{2}|s|
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{1}{2}|s| & =|s|-\frac{1}{2}|s| \\
& <|s|-\left|S_{n}-s\right| \leq\left|s+\left(S_{n}-s\right)\right| \\
\Rightarrow \frac{1}{2}|s| & <\left|S_{n}\right|
\end{aligned}
$$

## Theorem

Let $a$ and $b$ be fixed real numbers if $\left\{S_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to $s$ and $t$ respectively, then
(i) $\left\{a S_{n}+b t_{n}\right\}$ converges to $a s+b t$.
(ii) $\left\{S_{n} t_{n}\right\}$ converges to st.
(iii) $\left\{\frac{S_{n}}{t_{n}}\right\}$ converges to $\frac{s}{t}$, provided $t_{n} \neq 0 \quad \forall n$ and $t \neq 0$.

## Proof

Since $\left\{S_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to $s$ and $t$ respectively,

$$
\therefore\left|S_{n}-s\right|<\varepsilon \quad \forall n>n_{1} \in \mathbb{N}
$$

$$
\left|t_{n}-t\right|<\varepsilon \quad \forall n>n_{2} \in \mathbb{N}
$$

Also $\exists \lambda>0$ such that $\left|S_{n}\right|<\lambda \quad \forall n>1 \quad\left(\because\left\{S_{n}\right\}\right.$ is bounded $)$
(i) We have

$$
\begin{array}{rlr}
\left|\left(a S_{n}+b t_{n}\right)-(a s+b t)\right| & =\left|a\left(S_{n}-s\right)+b\left(t_{n}-t\right)\right| \\
& \leq\left|a\left(S_{n}-s\right)\right|+\left|b\left(t_{n}-t\right)\right| \\
& <|a| \varepsilon+|b| \varepsilon \quad \forall n>\max \left(n_{1}, n_{2}\right) \\
& =\varepsilon_{1} \quad \text { Where } \varepsilon_{1}=|a| \varepsilon+|b| \varepsilon \text { a certain number. }
\end{array}
$$

This implies $\left\{a S_{n}+b t_{n}\right\}$ converges to $a s+b t$.
(ii)

$$
\begin{aligned}
\left|S_{n} t_{n}-s t\right| & =\left|S_{n} t_{n}-S_{n} t+S_{n} t-s t\right| \\
& =\left|S_{n}\left(t_{n}-t\right)+t\left(S_{n}-s\right)\right| \leq\left|S_{n}\right| \cdot\left|\left(t_{n}-t\right)\right|+|t| \cdot\left|\left(S_{n}-s\right)\right| \\
& <\lambda \varepsilon+|t| \varepsilon \quad \forall n>\max \left(n_{1}, n_{2}\right) \\
& =\varepsilon_{2} \quad \text { where } \varepsilon_{2}=\lambda \varepsilon+|t| \varepsilon \text { a certain number. }
\end{aligned}
$$

This implies $\left\{S_{n} t_{n}\right\}$ converges to st.
(iii) $\left|\frac{1}{t_{n}}-\frac{1}{t}\right|=\left|\frac{t-t_{n}}{t_{n} t}\right|$

$$
\begin{array}{ll}
=\frac{\left|t_{n}-t\right|}{\left|t_{n}\right||t|}<\frac{\varepsilon}{\frac{1}{2}|t||t|} & \forall n>\max \left(n_{1}, n_{2}\right) \quad \because\left|t_{n}\right|>\frac{1}{2} t \\
=\frac{\varepsilon}{\frac{1}{2}|t|^{2}}=\varepsilon_{3} & \text { where } \varepsilon_{3}=\frac{\varepsilon}{\frac{1}{2}|t|^{2}} \quad \text { a certain number. }
\end{array}
$$

This implies $\left\{\frac{1}{t_{n}}\right\}$ converges to $\frac{1}{t}$.
Hence $\left\{\frac{S_{n}}{t_{n}}\right\}=\left\{S_{n} \cdot \frac{1}{t_{n}}\right\}$ converges to $s \cdot \frac{1}{t}=\frac{s}{t} . \quad($ from (ii) )

## Theorem

For each irrational number $x$, there exists a sequence $\left\{r_{n}\right\}$ of distinct rational numbers such that $\lim _{n \rightarrow \infty} r_{n}=x$.

## Proof

Since $x$ and $x+1$ are two different real numbers
$\because \exists$ a rational number $r_{1}$ such that

$$
x<r_{1}<x+1
$$

Similarly $\exists$ a rational number $r_{2} \neq r_{1}$ such that

$$
x<r_{2}<\min \left(r_{1}, x+\frac{1}{2}\right)<x+1
$$

Continuing in this manner we have

$$
\begin{aligned}
& x<r_{3}<\min \left(r_{2}, x+\frac{1}{3}\right)<x+1 \\
& x<r_{4}<\min \left(r_{3}, x+\frac{1}{4}\right)<x+1
\end{aligned}
$$

$$
x<r_{n}<\min \left(r_{n-1}, x+\frac{1}{n}\right)<x+1
$$

This implies that $\exists$ a sequence $\left\{r_{n}\right\}$ of the distinct rational number such that

$$
x-\frac{1}{n}<x<r_{n}<x+\frac{1}{n}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(x-\frac{1}{n}\right)=\lim _{n \rightarrow \infty}\left(x+\frac{1}{n}\right)=x
$$

Therefore

$$
\lim _{n \rightarrow \infty} r_{n}=x
$$

## Theorem

Let a sequence $\left\{S_{n}\right\}$ be a bounded sequence.
(i) If $\left\{S_{n}\right\}$ is monotonically increasing then it converges to its supremum.
(ii) If $\left\{S_{n}\right\}$ is monotonically decreasing then it converges to its infimum.

## Proof

Let $S=\sup S_{n}$ and $s=\inf S_{n}$
Take $\varepsilon>0$
(i) Since $S=\sup S_{n}$
$\therefore \exists S_{n_{0}}$ such that $S-\varepsilon<S_{n_{0}}$
Since $\left\{S_{n}\right\}$ is $\uparrow$ ( $\uparrow$ stands for monotonically increasing )
$\therefore S-\varepsilon<S_{n_{0}}<S_{n}<S<S+\varepsilon$ for $n>n_{0}$
$\Rightarrow S-\varepsilon<S_{n}<S+\varepsilon \quad$ for $n>n_{0}$
$\Rightarrow\left|S_{n}-S\right|<\varepsilon \quad$ for $n>n_{0}$
$\Rightarrow \lim _{n \rightarrow \infty} S_{n}=S$
(ii) Since $s=\inf S_{n}$
$\therefore \exists S_{n_{1}}$ such that $S_{n_{1}}<s+\varepsilon$
Since $\left\{S_{n}\right\}$ is $\downarrow$. ( $\downarrow$ stands for monotonically decreasing )
$\therefore s-\varepsilon<s<S_{n}<S_{n_{1}}<s+\varepsilon \quad$ for $n>n_{1}$
$\Rightarrow s-\varepsilon<S_{n}<s+\varepsilon \quad$ for $n>n_{1}$
$\Rightarrow\left|S_{n}-s\right|<\varepsilon \quad$ for $n>n_{1}$
Thus $\lim _{n \rightarrow \infty} S_{n}=s$

## Note

A monotonic sequence can not oscillate infinitely.

## Example:

Consider $\left\{S_{n}\right\}=\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$
As shown earlier it is an increasing sequence
Take $S_{2 n}=\left(1+\frac{1}{2 n}\right)^{2 n}$
Then $\sqrt{S_{2 n}}=\left(1+\frac{1}{2 n}\right)^{n}$

$$
\Rightarrow \frac{1}{\sqrt{S_{2 n}}}=\left(\frac{2 n}{2 n+1}\right)^{n} \Rightarrow \frac{1}{\sqrt{S_{2 n}}}=\left(1-\frac{1}{2 n+1}\right)^{n}
$$

Using Bernoulli's Inequality we have

$$
\begin{array}{lll}
\Rightarrow \frac{1}{\sqrt{S_{2 n}}} \geq 1-\frac{n}{2 n+1} & >1-\frac{n}{2 n}=\frac{1}{2} & \because\left(1-\frac{1}{2 n+1}\right)^{n} \geq 1-\frac{n}{2 n+1} \\
\Rightarrow \sqrt{S_{2 n}}<2 & \forall n=1,2,3, \ldots \ldots \ldots . & \\
\Rightarrow S_{2 n}<4 & \forall n=1,2,3, \ldots \ldots \ldots & \\
\Rightarrow S_{n}<S_{2 n}<4 & \forall n=1,2,3, \ldots \ldots \ldots &
\end{array}
$$

Which show that the sequence $\left\{S_{n}\right\}$ is bounded one.
Hence $\left\{S_{n}\right\}$ is a convergent sequence the number to which it converges is its supremum, which is denoted by ' $e$ ' and $2<e<3$.

## Recurrence Relation

A sequence is said to be defined recursively or by recurrence relation if the general term is given as a relation of its preceding and succeeding terms in the sequence together with some initial condition.

## Example

Let $t_{1}>0$ and let $\left\{t_{n}\right\}$ be defined by $t_{n+1}>2-\frac{1}{t_{n}} ; n \geq 1$

$$
\Rightarrow t_{n}>0 \quad \forall n \geq 1
$$

Also

$$
\begin{aligned}
t_{n}-t_{n+1} & =t_{n}-2+\frac{1}{t_{n}} \\
& =\frac{t_{n}^{2}-2 t_{n}+1}{t_{n}}=\frac{\left(t_{n}-1\right)^{2}}{t_{n}}>0 \\
\Rightarrow t_{n} & >t_{n+1} \quad \forall n \geq 1
\end{aligned}
$$

This implies that $t_{n}$ is monotonically decreasing.
Since $t_{n}>1 \quad \forall n \geq 1$
$\Rightarrow t_{n}$ is bounded below $\Rightarrow t_{n}$ is convergent.
Let us suppose $\lim _{n \rightarrow \infty} t_{n}=t$

$$
\text { Then } \begin{aligned}
& \lim _{n \rightarrow \infty} t_{n+1}=\lim _{n \rightarrow \infty} t_{n} \\
\Rightarrow & \lim _{n \rightarrow \infty}\left(2-\frac{1}{t_{n}}\right)=\lim _{n \rightarrow \infty} t_{n} \\
\Rightarrow & 2-\frac{1}{t}=t \quad \Rightarrow \frac{2 t-1}{t}=t \quad \Rightarrow 2 t-1=t^{2} \quad \Rightarrow t^{2}-2 t+1=0 \\
\Rightarrow & (t-1)^{2}=0 \quad \Rightarrow t=1
\end{aligned}
$$

## Example

Let $\left\{S_{n}\right\}$ be defined by $S_{n+1}=\sqrt{S_{n}+b} \quad ; n \geq 1$ and $S_{1}=a>b$.
It is clear that $S_{n}>0 \forall n \geq 1$ and $S_{2}>S_{1}$ and

$$
\begin{aligned}
& \quad S_{n+1}^{2}-S_{n}^{2} \\
& =\left(S_{n}+b\right)-\left(S_{n-1}+b\right) \\
& =S_{n}-S_{n-1} \\
\Rightarrow & \left(S_{n+1}+S_{n}\right)\left(S_{n+1}-S_{n}\right)=S_{n}-S_{n-1} \\
\Rightarrow & S_{n+1}-S_{n}=\frac{S_{n}-S_{n-1}}{S_{n+1}+S_{n}}
\end{aligned}
$$

Since $S_{n+1}+S_{n}>0 \quad \forall n \geq 1$
Therefore $S_{n+1}-S_{n}$ and $S_{n}-S_{n-1}$ have the same sign.
i.e. $S_{n+1}>S_{n}$ if and only if $S_{n}>S_{n-1}$ and $S_{n+1}<S_{n}$ if and only if $S_{n}<S_{n-1}$.

But we know that $S_{2}>S_{1}$ therefore $S_{3}>S_{2}, S_{4}>S_{3}$, and so on.
This implies the sequence is an increasing sequence.
Also $S_{n+1}^{2}-S_{n}^{2}=\left(\sqrt{S_{n}+b}\right)^{2}-S_{n}^{2}=S_{n}+b-S_{n}^{2}$

$$
=-\left(S_{n}^{2}-S_{n}-b\right)
$$

Since $S_{n}>0 \quad \forall n \geq 1$, therefore $S_{n}$ is the root (+ive) of the

$$
S_{n}^{2}-S_{n}-b=0
$$

Take this value of $S_{n}$ as $\alpha$ where $\alpha=\frac{1+\sqrt{1+4 b}}{2}$
the other root of equation is therefore $\frac{-b}{\alpha}$
Since $S_{n+1}>S_{n} \forall n \geq 1$

For equation $a x^{2}+b x+c=0$ The product of roots is $\alpha \beta=c / a$ i.e. the other root $\beta=\frac{c}{a \alpha}$

Also $-\left(S_{n}-\alpha\right)\left(S_{n}+\frac{b}{\alpha}\right)=S_{n+1}^{2}-S_{n}^{2}>0$

$$
\begin{aligned}
\therefore S_{n}+\frac{b}{\alpha}>0 \quad \text { or } & -\left(S_{n}-\alpha\right) \geq 0 \\
& \Rightarrow S_{n}<\alpha \quad \forall n \geq 1
\end{aligned}
$$

which shows that $S_{n}$ is bounded and hence it is convergent.
Suppose $\lim _{n \rightarrow \infty} S_{n}=s$
Then $\lim _{n \rightarrow \infty}\left(S_{n+1}\right)^{2}=\lim _{n \rightarrow \infty}\left(S_{n}+b\right)$

$$
\Rightarrow s^{2}=s+b \Rightarrow s^{2}-s-b=0
$$

Which shows that $\alpha=\frac{1+\sqrt{1+4 b}}{2}$ is the limit of the sequence.

## Theorem

Every Cauchy sequence of real numbers has a convergent subsequence.

## Proof

Suppose $\left\{S_{n}\right\}$ is a Cauchy sequence.
Let $\varepsilon>0$ then $\exists$ a positive integer $n_{0} \geq 1$ such that

$$
\begin{aligned}
& \left|S_{n_{k}}-S_{n_{k-1}}\right|<\frac{\varepsilon}{2^{k}} \quad \forall n_{k}, n_{k-1}, k=1,2,3, \ldots \ldots . . \\
& \text { Put } \quad b_{k}=\left(S_{n_{1}}-S_{n_{0}}\right)+\left(S_{n_{2}}-S_{n_{1}}\right)+\ldots \ldots \ldots . .+\left(S_{n_{k}}-S_{n_{k-1}}\right) \\
& \Rightarrow\left|b_{k}\right|=\left|\left(S_{n_{1}}-S_{n_{0}}\right)+\left(S_{n_{2}}-S_{n_{1}}\right)+\ldots \ldots \ldots \ldots .+\left(S_{n_{k}}-S_{n_{k-1}}\right)\right| \\
& \leq\left|\left(S_{n_{1}}-S_{n_{0}}\right)\right|+\left|\left(S_{n_{2}}-S_{n_{1}}\right)\right|+\ldots \ldots \ldots . .+\left|\left(S_{n_{k}}-S_{n_{k-1}}\right)\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2^{2}}+\ldots \ldots \ldots . .+\frac{\varepsilon}{2^{k}} \\
& =\varepsilon\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots \ldots \ldots \ldots+\frac{1}{2^{k}}\right)=\varepsilon\left(\frac{\frac{1}{2}\left(1-\frac{1}{2^{k}}\right)}{1-\frac{1}{2}}\right)=\varepsilon\left(1-\frac{1}{2^{k}}\right) \\
& \Rightarrow\left|b_{k}\right|<\varepsilon \quad \forall k \geq 1 \\
& \Rightarrow\left\{b_{k}\right\} \text { is convergent } \\
& \because b_{k}=S_{n_{k}}-S_{n_{0}} \quad \therefore S_{n_{k}}=b_{k}+S_{n_{0}}
\end{aligned}
$$

Where $S_{n_{0}}$ is a certain fix number therefore $\left\{S_{n_{k}}\right\}$ which is a subsequence of $\left\{S_{n}\right\}$ is convergent.

## Theorem (Cauchy's General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.

## Proof

Necessary Condition
Let $\left\{S_{n}\right\}$ be a convergent sequence, which converges to $s$.
Then for given $\varepsilon>0 \exists$ a positive integer $n_{0}$, such that

$$
\left|S_{n}-s\right|<\frac{\varepsilon}{2} \quad \forall n>n_{0}
$$

Now for $n>m>n_{0}$

$$
\begin{aligned}
\left|S_{n}-S_{m}\right| & =\left|S_{n}-s+S_{m}-s\right| \\
& \leq\left|S_{n}-s\right|+\left|S_{m}-s\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Which shows that $\left\{S_{n}\right\}$ is a Cauchy sequence.

## Sufficient Condition

Let us suppose that $\left\{S_{n}\right\}$ is a Cauchy sequence then for $\varepsilon>0, \exists$ a positive integer $m_{1}$ such that

$$
\begin{equation*}
\left|S_{n}-S_{m}\right|<\frac{\varepsilon}{2} \quad \forall n, m>m_{1} \tag{i}
\end{equation*}
$$

Since $\left\{S_{n}\right\}$ is a Cauchy sequence
therefore it has a subsequence $\left\{S_{n_{k}}\right\}$ converging to $s$ (say).
$\Rightarrow \exists$ a positive integer $m_{2}$ such that

$$
\begin{equation*}
\left|S_{n_{k}}-s\right|<\frac{\varepsilon}{2} \quad \forall n>m_{2} \tag{ii}
\end{equation*}
$$

Now

$$
\begin{array}{rlr}
\left|S_{n}-s\right| & =\left|S_{n}-S_{n_{k}}+S_{n_{k}}-s\right| \\
& \leq\left|S_{n}-S_{n_{k}}\right|+\left|S_{n_{k}}-s\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \forall n>\max \left(m_{1}, m_{2}\right)
\end{array}
$$

which shows that $\left\{S_{n}\right\}$ is a convergent sequence.

## Example

Let $\left\{S_{n}\right\}$ be define by $0<a<S_{1}<S_{2}<b$ and also

$$
\begin{equation*}
S_{n+1}=\sqrt{S_{n} \cdot S_{n-1}}, \quad n>2 \tag{i}
\end{equation*}
$$

Here $S_{n}>0, \forall n \geq 1$ and $a<S_{1}<b$
Let for some $k>2$

$$
a<S_{k}<b
$$

then $a^{2}<a S_{k}<S_{k} S_{k-1}=\left(S_{k+1}\right)^{2}<b^{2} \quad \because S_{n+1}=\sqrt{S_{n} S_{n-1}}$
i.e. $a^{2}<S_{k+1}^{2}<b^{2}$
$\Rightarrow a<S_{k+1}<b$
$\Rightarrow a<S_{n}<b \quad \forall n \in \mathbb{N}$
$\because \frac{S_{n}}{S_{n+1}}>\frac{a}{b}$
$\therefore \frac{S_{n}}{S_{n+1}}+1>\frac{a}{b}+1$

$$
\begin{aligned}
& \Rightarrow \frac{S_{n}+S_{n+1}}{S_{n+1}}>\frac{a+b}{b} \\
& \Rightarrow \frac{S_{n}+S_{n+1}}{S_{n}}>\frac{a+b}{b} \quad S_{n+1} \text { is replace by } S_{n} \therefore S_{n}<S_{n+1} \\
& \text { And } \quad S_{n+1}^{2}-S_{n}^{2}=S_{n} \cdot S_{n-1}-S_{n}^{2} \quad \because S_{n+1}=\sqrt{S_{n} S_{n-1}} \\
& =S_{n}\left(S_{n-1}-S_{n}\right) \\
& \Rightarrow\left|S_{n+1}-S_{n}\right|=\frac{S_{n}}{S_{n}+S_{n+1}}\left|S_{n-1}-S_{n}\right| \\
& <\frac{b}{a+b}\left|S_{n-1}-S_{n}\right| \\
& \Rightarrow\left|S_{n+1}-S_{n}\right|<\frac{b}{a+b}\left|S_{n}-S_{n-1}\right| \quad \because\left|S_{n-1}-S_{n}\right|=\left|S_{n}-S_{n-1}\right| \\
& <\left(\frac{b}{a+b}\right)^{2}\left|S_{n-1}-S_{n-2}\right| \\
& <\left(\frac{b}{a+b}\right)^{3}\left|S_{n-2}-S_{n-3}\right| \\
& \text {.................................... } \\
& <\left(\frac{b}{a+b}\right)^{n-1}(b-a)
\end{aligned}
$$

Take $r=\frac{b}{a+b}<1$
Then for $n>m$ we have

$$
\begin{aligned}
\left|S_{n}-S_{m}\right| & =\left|S_{n}-S_{n-1}+S_{n-1}-S_{n-2}+\ldots \ldots \ldots \ldots . . . . . . S_{m+1}-S_{m}\right| \\
& \leq\left|S_{n}-S_{n-1}\right|+\left|S_{n-1}-S_{n-2}\right|+\ldots \ldots \ldots \ldots .+\left|S_{m+1}-S_{m}\right| \\
& <\left(r^{n-2}+r^{n-3}+\ldots \ldots \ldots \ldots . .+r^{m-1}\right)(b-a) \\
& =\varepsilon
\end{aligned}
$$

This implies that $\left\{S_{n}\right\}$ is a Cauchy sequence, therefore it is convergent.

## Example

Let $\left\{t_{n}\right\}$ be defined by

$$
t_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots \ldots . .+\frac{1}{n}
$$

For $m, n \in \mathbb{N}, n>m$ we have

$$
\begin{aligned}
\left|t_{n}-t_{m}\right|= & \frac{1}{m+1}+\frac{1}{m+2}+\ldots \ldots \ldots \ldots .+\frac{1}{n} \\
& >(n-m) \frac{1}{n}=1-\frac{m}{n}
\end{aligned}
$$

In particular if $n=2 m$ then

$$
\left|t_{n}-t_{m}\right|>\frac{1}{2}
$$

This implies that $\left\{t_{n}\right\}$ is not a Cauchy sequence therefore it is divergent.

## Theorem (nested intervals)

Suppose that $\left\{I_{n}\right\}$ is a sequence of the closed interval such that $I_{n}=\left[a_{n}, b_{n}\right]$, $I_{n+1} \subset I_{n} \forall n \geq 1$, and $\left(b_{n}-a_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ then $\cap I_{n}$ contains one and only one point.
Proof
Since $I_{n+1} \subset I_{n}$

$$
\therefore a_{1}<a_{2}<a_{3}<\ldots \ldots \ldots \ldots . .<a_{n-1}<a_{n}<b_{n}<b_{n-1}<\ldots \ldots \ldots . .<b_{3}<b_{2}<b_{1}
$$

$\left\{a_{n}\right\}$ is increasing sequence, bounded above by $b_{1}$ and bounded below by $a_{1}$.
And $\left\{b_{n}\right\}$ is decreasing sequence bounded below by $a_{1}$ and bounded above by $b_{1}$.
$\Rightarrow\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both are convergent.
Suppose $\left\{a_{n}\right\}$ converges to $a$ and $\left\{b_{n}\right\}$ converges to $b$.

$$
\begin{aligned}
& \text { But } \begin{array}{l}
|a-b|=\left|a-a_{n}+a_{n}-b_{n}+b_{n}-b\right| \\
\quad \leq\left|a_{n}-a\right|+\left|a_{n}-b_{n}\right|+\left|b_{n}-b\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty . \\
\\
\text { and } \quad \begin{array}{l}
a=b
\end{array} \\
a_{n}<a<b_{n} \quad \forall n \geq 1 .
\end{array}
\end{aligned}
$$

## Theorem (Bolzano-Weierstrass theorem)

Every bounded sequence has a convergent subsequence.

## Proof

Let $\left\{S_{n}\right\}$ be a bounded sequence.
Take $a_{1}=\inf S_{n}$ and $b_{1}=\sup S_{n}$
Then $a_{1}<S_{n}<b_{1} \quad \forall n \geq 1$.
Now bisect interval $\left[a_{1}, b_{1}\right]$ such that at least one of the two sub-intervals contains infinite numbers of terms of the sequence.

Denote this sub-interval by $\left[a_{2}, b_{2}\right]$.
If both the sub-intervals contain infinite number of terms of the sequence then choose the one on the right hand.
Then clearly $a_{1} \leq a_{2}<b_{2} \leq b_{1}$.
Suppose there exist a subinterval $\left[a_{k}, b_{k}\right]$ such that

$$
\begin{aligned}
& a_{1} \leq a_{2} \leq \ldots \ldots \ldots . . \leq a_{k}<b_{k} \leq \ldots \ldots \ldots . . \leq b_{2} \leq b_{1} \\
\Rightarrow & \left(b_{k}-a_{k}\right)=\frac{1}{2^{k}}\left(b_{1}-a_{1}\right)
\end{aligned}
$$

Bisect the interval $\left[a_{k}, b_{k}\right]$ in the same manner and choose $\left[a_{k+1}, b_{k+1}\right]$ to have

$$
a_{1} \leq a_{2} \leq \ldots \ldots \ldots . . . \leq a_{k} \leq a_{k+1}<b_{k+1} \leq b_{k} \leq \ldots \ldots \ldots \ldots . . \leq b_{2} \leq b_{1}
$$

and

$$
b_{k+1}-a_{k+1}=\frac{1}{2^{k+1}}\left(b_{1}-a_{1}\right)
$$

This implies that we obtain a sequence of interval $\left[a_{n}, b_{n}\right]$ such that

$$
b_{n}-a_{n}=\frac{1}{2^{n}}\left(b_{1}-a_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

$\Rightarrow$ we have a unique point $s$ such that

$$
s=\bigcap\left[a_{n}, b_{n}\right]
$$

there are infinitely many terms of the sequence whose length is $\varepsilon>0$ that contain $s$. For $\varepsilon=1$ there are infinitely many values of $n$ such that

$$
\left|S_{n}-s\right|<1
$$

Let $n_{1}$ be one of such value then

$$
\left|S_{n_{1}}-s\right|<1
$$

Again choose $n_{2}>n_{1}$ such that

$$
\left|S_{n_{2}}-s\right|<\frac{1}{2}
$$

Continuing in this manner we find a sequence $\left\{S_{n_{k}}\right\}$ for each positive integer $k$ such that $n_{k}<n_{k+1}$ and

$$
\left|S_{n_{k}}-s\right|<\frac{1}{k} \quad \forall k=1,2,3, .
$$

Hence there is a subsequence $\left\{S_{n_{k}}\right\}$ which converges to $s$.

## Limit Inferior of the sequence

Suppose $\left\{S_{n}\right\}$ is bounded then we define limit inferior of $\left\{S_{n}\right\}$ as follow

$$
\lim _{n \rightarrow \infty}\left(\inf S_{n}\right)=\lim _{n \rightarrow \infty} U_{k} \text { where } U_{k}=\inf \left\{S_{n}: n \geq k\right\}
$$

If $S_{n}$ is bounded below then

$$
\lim _{n \rightarrow \infty}\left(\inf S_{n}\right)=-\infty
$$

## Limit Superior of the sequence

Suppose $\left\{S_{n}\right\}$ is bounded above then we define limit superior of $\left\{S_{n}\right\}$ as follow

$$
\lim _{n \rightarrow \infty}\left(\sup S_{n}\right)=\lim _{n \rightarrow \infty} V_{k} \text { where } V_{k}=\inf \left\{S_{n}: n \geq k\right\}
$$

If $S_{n}$ is not bounded above then we have

$$
\lim _{n \rightarrow \infty}\left(\sup S_{n}\right)=+\infty
$$

## Note:

(i) A bounded sequence has unique limit inferior and superior
(ii) Let $\left\{S_{n}\right\}$ contains all the rational numbers, then every real number is a
subsequencial limit then limit superior of $S_{n}$ is $+\infty$ and limit inferior of $S_{n}$ is $-\infty$
(iii) Let $\left\{S_{n}\right\}=(-1)^{n}\left(1+\frac{1}{n}\right)$
then limit superior of $S_{n}$ is 1 and limit inferior of $S_{n}$ is -1 .
(iv) Let $U_{k}=\inf \left\{S_{n}: n \geq k\right\}$

$$
\left.\begin{array}{l}
=\inf \left\{\left(1+\frac{1}{k}\right) \cos k \pi,\left(1+\frac{1}{k+1}\right) \cos (k+1) \pi,\left(1+\frac{1}{k+2}\right) \cos (k+2) \pi, \ldots \ldots . . . . . . . . . .\right\}
\end{array}\right\} \begin{aligned}
& \left(1+\frac{1}{k}\right) \cos k \pi \quad \text { if } k \text { is odd } \\
& =\left(1+\frac{1}{k+1}\right) \cos (k+1) \pi \quad \text { if } k \text { is even }
\end{aligned}
$$

$\Rightarrow \lim _{n \rightarrow \infty}\left(\inf S_{n}\right)=\lim _{n \rightarrow \infty} U_{k}=-1$
Also $V_{k}=\sup \left\{S_{n}: n \geq k\right\}$

$$
= \begin{cases}\left(1+\frac{1}{k+1}\right) \cos (k+1) \pi & \text { if } k \text { is odd } \\ \left(1+\frac{1}{k}\right) \cos k \pi & \text { if kis even }\end{cases}
$$

$\Rightarrow \lim _{n \rightarrow \infty}\left(\inf S_{n}\right)=\lim _{n \rightarrow \infty} V_{k}=1$
$\qquad$

## Theorem

If $\left\{S_{n}\right\}$ is a convergent sequence then

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\inf S_{n}\right)=\lim _{n \rightarrow \infty}\left(\sup S_{n}\right)
$$

## Proof

Let $\lim _{n \rightarrow \infty} S_{n}=s$ then for a real number $\varepsilon>0, \exists$ a positive integer $n_{0}$ such that

$$
\begin{array}{cc}
\left|S_{n}-s\right|<\varepsilon & \forall n \geq n_{0} \\
\text { i.e. } & s-\varepsilon<S_{n}<s+\varepsilon
\end{array} \quad \forall n \geq n_{0}
$$

$$
\text { If } \quad V_{k}=\sup \left\{S_{n}: n \geq k\right\}
$$

Then $\quad s-\varepsilon<V_{n}<s+\varepsilon \quad \forall k \geq n_{0}$

$$
\begin{equation*}
\Rightarrow s-\varepsilon<\lim _{k \rightarrow \infty} V_{n}<s+\varepsilon \quad \forall k \geq n_{0} \tag{ii}
\end{equation*}
$$

from (i) and (ii) we have

$$
s=\lim _{k \rightarrow \infty} \sup \left\{S_{n}\right\}
$$

We can have the same result for limit inferior of $\left\{S_{n}\right\}$ by taking

$$
U_{k}=\inf \left\{S_{n}: n \geq k\right\}
$$

## Infinite Series

Given a sequence $\left\{a_{n}\right\}$, we use the notation $\sum_{i=1}^{\infty} a_{n}$ or simply $\sum a_{n}$ to denotes the sum $a_{1}+a_{2}+a_{3}+$ $\qquad$ and called a infinite series or just series.
The numbers $S_{n}=\sum_{k=1}^{n} a_{k}$ are called the partial sum of the series.
If the sequence $\left\{S_{n}\right\}$ converges to $s$, we say that the series converges and write
$\sum_{n=1}^{\infty} a_{n}=s$, the number $s$ is called the sum of the series but it should be clearly
understood that the ' $s$ ' is the limit of the sequence of sums and is not obtained simply by addition.
If the sequence $\left\{S_{n}\right\}$ diverges then the series is said to be diverge.

## Note:

The behaviors of the series remain unchanged by addition or deletion of the certain terms

## Theorem

If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=0$.

## Proof

Let $S_{n}=a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots . .+a_{n}$
Take $\quad \lim _{n \rightarrow \infty} S_{n}=s=\sum a_{n}$
Since $\quad a_{n}=S_{n}-S_{n-1}$
Therefore $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(S_{n}-S_{n-1}\right)$

$$
=\lim _{n \rightarrow \infty} S_{n}-\lim _{n \rightarrow \infty} S_{n-1}
$$

$$
=s-s=0
$$

## Note:

The converse of the above theorem is false

## Example

Consider the series $\sum_{n=1}^{\infty} \frac{1}{n}$.
We know that the sequence $\left\{S_{n}\right\}$ where $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots . .+\frac{1}{n}$ is divergent therefore $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent series, although $\lim _{n \rightarrow \infty} a_{n}=0$.
This implies that if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ is divergent.
It is know as basic divergent test.

## Theorem (General Principle of Convergence)

A series $\sum a_{n}$ is convergent if and only if for any real number $\varepsilon>0$, there exists a positive integer $n_{0}$ such that

$$
\left|\sum_{i=m+1}^{\infty} a_{i}\right|<\varepsilon \quad \forall n>m>n_{0}
$$

## Proof

Let $S_{n}=a_{1}+a_{2}+a_{3}+$ $\qquad$ $+a_{n}$
then $\left\{S_{n}\right\}$ is convergent if and only if for $\varepsilon>0 \exists$ a positive integer $n_{0}$ such that

$$
\begin{aligned}
& \left|S_{n}-S_{m}\right|<\varepsilon \quad \forall n>m>n_{0} \\
\Rightarrow & \left|\sum_{i=m+1}^{\infty} a_{i}\right|=\left|S_{n}-S_{m}\right|<\varepsilon
\end{aligned}
$$

## Example

If $|x|<1$ then $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$
And if $|x| \geq 1$ then $\sum_{n=0}^{\infty} x^{n}$ is divergent.

## Theorem

Let $\sum a_{n}$ be an infinite series of non-negative terms and let $\left\{S_{n}\right\}$ be a sequence of its partial sums then $\sum a_{n}$ is convergent if $\left\{S_{n}\right\}$ is bounded and it diverges if $\left\{S_{n}\right\}$ is unbounded.

## Proof

$$
\begin{aligned}
& \text { Since } a_{n} \geq 0 \quad \forall n \geq 0 \\
& S_{n}=S_{n-1}+a_{n}>S_{n-1} \quad \forall n \geq 0
\end{aligned}
$$

therefore the sequence $\left\{S_{n}\right\}$ is monotonic increasing and hence it is converges if $\left\{S_{n}\right\}$ is bounded and it will diverge if it is unbounded.
Hence we conclude that $\sum a_{n}$ is convergent if $\left\{S_{n}\right\}$ is bounded and it divergent if $\left\{S_{n}\right\}$ is unbounded.

## Theorem (Comparison Test)

Suppose $\sum a_{n}$ and $\sum b_{n}$ are infinite series such that $a_{n}>0, b_{n}>0 \quad \forall n$. Also suppose that for a fixed positive number $\lambda$ and positive integer $k, a_{n}<\lambda b_{n} \quad \forall n \geq k$ Then $\sum a_{n}$ converges if $\sum b_{n}$ is converges and $\sum b_{n}$ is diverges if $\sum a_{n}$ is diverges.

## Proof

Suppose $\sum b_{n}$ is convergent and

$$
\begin{equation*}
a_{n}<\lambda b_{n} \quad \forall n \geq k \tag{i}
\end{equation*}
$$

then for any positive number $\varepsilon>0$ there exists $n_{0}$ such that

$$
\sum_{i=m+1}^{n} b_{i}<\frac{\varepsilon}{\lambda} \quad n>m>n_{0}
$$

from (i)

$$
\begin{aligned}
& \Rightarrow \sum_{i=m+1}^{n} a_{i}<\lambda \sum_{i=m+1}^{n} b_{i}<\varepsilon \quad, \quad n>m>n_{0} \\
& \Rightarrow \sum^{2} a_{n} \text { is convergent. }
\end{aligned}
$$

Now suppose $\sum a_{n}$ is divergent then $\left\{S_{n}\right\}$ is unbounded.

$$
\Rightarrow \exists \text { a real number } \beta>0 \text { such that }
$$

$$
\sum_{i=m+1}^{n} b_{i}>\lambda \beta \quad, \quad n>m
$$

from (i)

$$
\begin{aligned}
& \Rightarrow \sum_{i=m+1}^{n} b_{i}>\frac{1}{\lambda} \sum_{i=m+1}^{n} a_{i}>\beta \quad, \quad n>m \\
& \Rightarrow \sum^{2} b_{n} \text { is convergent. }
\end{aligned}
$$

## Example

We know that $\sum \frac{1}{n}$ is divergent and

$$
\begin{aligned}
& n \geq \sqrt{n} \quad \forall n \geq 1 \\
\Rightarrow & \frac{1}{n} \leq \frac{1}{\sqrt{n}} \\
\Rightarrow & \sum \frac{1}{\sqrt{n}} \text { is divergent as } \sum \frac{1}{n} \text { is divergent. }
\end{aligned}
$$

## Example

The series $\sum \frac{1}{n^{\alpha}}$ is convergent if $\alpha>1$ and diverges if $\alpha \leq 1$.
Let $\quad S_{n}=1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\ldots \ldots \ldots \ldots \ldots . .+\frac{1}{n^{\alpha}}$
If $\alpha>1$ then

$$
S_{n}<S_{2 n} \quad \text { and } \quad \frac{1}{n^{\alpha}}<\frac{1}{(n-1)^{\alpha}}
$$

Now $S_{2 n}=\left[1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\frac{1}{4^{\alpha}} \ldots \ldots \ldots . .+\frac{1}{(2 n)^{\alpha}}\right]$

$$
\begin{aligned}
& =\left[1+\frac{1}{3^{\alpha}}+\frac{1}{5^{\alpha}}+\ldots \ldots \ldots . .+\frac{1}{(2 n-1)^{\alpha}}\right]+\left[\frac{1}{2^{\alpha}}+\frac{1}{4^{\alpha}}+\frac{1}{6^{\alpha}}+\ldots \ldots \ldots . .+\frac{1}{(2 n)^{\alpha}}\right] \\
& =\left[1+\frac{1}{3^{\alpha}}+\frac{1}{5^{\alpha}}+\ldots \ldots \ldots .+\frac{1}{(2 n-1)^{\alpha}}\right]+\frac{1}{2^{\alpha}}\left[1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\ldots \ldots \ldots \ldots+\frac{1}{(n)^{\alpha}}\right] \\
& <\left[1+\frac{1}{2^{\alpha}}+\frac{1}{4^{\alpha}}+\ldots \ldots \ldots . .+\frac{1}{(2 n-2)^{\alpha}}\right]+\frac{1}{2^{\alpha}} S_{n}
\end{aligned}
$$

replacing 3 by 2 , 5 by 4 and so on.
$=1+\frac{1}{2^{\alpha}}\left[1+\frac{1}{2^{\alpha}}+\ldots \ldots \ldots . .+\frac{1}{(n-1)^{\alpha}}\right]+\frac{1}{2^{\alpha}} S_{n}$

$$
=1+\frac{1}{2^{\alpha}} S_{n-1}+\frac{1}{2^{\alpha}} S_{n}=1+\frac{1}{2^{\alpha}} S_{2 n}+\frac{1}{2^{\alpha}} S_{2 n} \quad \because S_{n-1}<S_{n}<S_{2 n}
$$

$$
=1+\frac{2}{2^{\alpha}} S_{2 n}
$$

$$
\Rightarrow \quad S_{2 n}<1+\frac{1}{2^{\alpha-1}} S_{2 n}
$$

$\Rightarrow\left(1-\frac{1}{2^{\alpha-1}}\right) S_{2 n}<1 \Rightarrow\left(\frac{2^{\alpha-1}-1}{2^{\alpha-1}}\right) S_{2 n}<1 \Rightarrow S_{2 n}<\frac{2^{\alpha-1}}{2^{\alpha-1}-1}$
i.e. $S_{n}<S_{2 n}<\frac{2^{\alpha-1}}{2^{\alpha-1}-1}$
$\Rightarrow\left\{S_{n}\right\}$ is bounded and also monotonic. Hence we conclude that $\sum \frac{1}{n^{\alpha}}$ is
convergent when $\alpha>1$.
If $\alpha \leq 1$ then

$$
\begin{aligned}
n^{\alpha} \leq n \quad & \forall n \geq 1 \\
\Rightarrow & \frac{1}{n^{\alpha}} \geq \frac{1}{n} \quad \forall n \geq 1
\end{aligned}
$$

$\because \sum \frac{1}{n}$ is divergent therefore $\sum \frac{1}{n^{\alpha}}$ is divergent when $\alpha \leq 1$.

## Theorem

Let $a_{n}>0, b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lambda \neq 0$ then the series $\sum a_{n}$ and $\sum b_{n}$ behave alike.

## Proof

Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lambda$

$$
\Rightarrow\left|\frac{a_{n}}{b_{n}}-\lambda\right|<\varepsilon \quad \forall n \geq n_{0}
$$

Use $\varepsilon=\frac{\lambda}{2}$

$$
\begin{aligned}
& \Rightarrow\left|\frac{a_{n}}{b_{n}}-\lambda\right|<\frac{\lambda}{2} \quad \forall n \geq n_{0} . \\
& \Rightarrow \lambda-\frac{\lambda}{2}<\frac{a_{n}}{b_{n}}<\lambda+\frac{\lambda}{2} \\
& \Rightarrow \frac{\lambda}{2}<\frac{a_{n}}{b_{n}}<\frac{3 \lambda}{2}
\end{aligned}
$$

then we got

$$
a_{n}<\frac{3 \lambda}{2} b_{n} \quad \text { and } \quad b_{n}<\frac{2}{\lambda} a_{n}
$$

Hence by comparison test we conclude that $\sum a_{n}$ and $\sum b_{n}$ converge or diverge together.

## Example

To check $\sum \frac{1}{n} \sin ^{2} \frac{x}{n}$ diverges or converges consider

$$
a_{n}=\frac{1}{n} \sin ^{2} \frac{x}{n} \quad \text { and take } \quad b_{n}=\frac{1}{n^{3}}
$$

then $\quad \frac{a_{n}}{b_{n}}=n^{2} \sin ^{2} \frac{x}{n}$

$$
=\frac{\sin ^{2} \frac{x}{n}}{\frac{1}{n^{2}}}=x^{2}\left(\frac{\sin \frac{x}{n}}{\frac{x}{n}}\right)^{2}
$$

Applying limit as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} x^{2}\left(\frac{\sin \frac{x}{n}}{\frac{x}{n}}\right)^{2}=x^{2}\left(\lim _{n \rightarrow \infty} \frac{\sin \frac{x}{n}}{\frac{x}{n}}\right)^{2}=x^{2}(1)=x^{2}
$$

$\Rightarrow \sum a_{n}$ and $\sum b_{n}$ have the similar behavior $\forall$ finite values of $x$ except $x=0$.
Since $\sum \frac{1}{n^{3}}$ is convergent series therefore the given series is also convergent for finite values of $x$ except $x=0$.
$\qquad$

## Theorem (Cauchy Condensation Test)

Let $a_{n} \geq 0, a_{n}>a_{n+1} \forall n \geq 1$, then the series $\sum a_{n}$ and $\sum 2^{n-1} a_{2^{n-1}}$ converges or diverges together.

## Proof

Let us suppose

$$
S_{n}=a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots \ldots \ldots . . .+a_{n}
$$

and

$$
t_{n}=a_{1}+2 a_{2}+2^{2} a_{2^{2}}+\ldots . \ldots \ldots \ldots \ldots . . . . . .2^{n-1} a_{2^{n-1}} .
$$

$\because a_{n} \geq 0$ and $n<2^{n-1}<2^{n}-1$
$\therefore S_{n}<S_{2^{n-1}}<S_{2^{n}-1}$ for $n>2$
then

$$
\begin{align*}
S_{2^{n-1}} & =a_{1}+a_{2}+a_{3}+\ldots . .+a_{2^{n}-1} \\
& =a_{1}+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{7}\right)+\ldots \ldots .+\left(a_{2^{n-1}}+a_{2^{n-1}+1}+a_{2^{n-1}+2}+\ldots . .+a_{2^{n}-1}\right) \\
& <a_{1}+\left(a_{2}+a_{2}\right)+\left(a_{4}+a_{4}+a_{4}+a_{4}\right)+\ldots \ldots .+\left(a_{2^{n-1}}+a_{2^{n-1}}+a_{2^{n-1}}+\ldots . .+a_{2^{n-1}}\right) \\
& <a_{1}+2 a_{2}+2^{2} a_{4}+\ldots \ldots . .+2^{n-1} a_{2^{n-1}}=t_{n} \\
\Rightarrow S_{n} & <t_{n} \\
\Rightarrow S_{n} & <t_{n}<2 S_{2^{n}} \ldots \ldots \ldots \ldots . .(i) \tag{i}
\end{align*}
$$

Now consider

$$
\begin{align*}
S_{2^{n}} & =a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots \ldots . .+a_{2^{n}} \\
& =a_{1}+a_{2}+\left(a_{3}+a_{4}\right)+\left(a_{5}+a_{6}+a_{7}+a_{8}\right)+\ldots \ldots .+\left(a_{2^{n-1}+1}+a_{2^{n-1}+2}+a_{2^{n-1}+3}+\ldots .+a_{2^{n}}\right) \\
& >\frac{1}{2} a_{1}+a_{2}+\left(a_{4}+a_{4}\right)+\left(a_{8}+a_{8}+a_{8}+a_{8}\right)+\ldots \ldots+\left(a_{2^{n}}+a_{2^{n}}+a_{2^{n}}+\ldots . .+a_{2^{n}}\right) \\
& =\frac{1}{2} a_{1}+a_{2}+2 a_{4}+2^{2} a_{8}+\ldots \ldots \ldots \ldots \ldots .+2^{n-1} a_{2^{n}} \\
& =\frac{1}{2}\left(a_{1}+2 a_{2}+2^{3} a_{4}+2^{3} a_{8}+\ldots \ldots \ldots \ldots \ldots . .+2^{n} a_{2^{n}}\right) \\
\Rightarrow & S_{2 n}>\frac{1}{2} t_{n} \ldots \ldots \ldots \ldots \text { (ii) } \\
\Rightarrow & 2 S_{2 n}>t_{n} \tag{ii}
\end{align*}
$$

From (i) and (ii) we see that the sequence $S_{n}$ and $t_{n}$ are either both bounded or both unbounded, implies that $\sum a_{n}$ and $\sum 2^{n-1} a_{2^{n-1}}$ converges or diverges together.

## Example

Consider the series $\sum \frac{1}{n^{p}}$
If $p \leq 0$ then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}} \neq 0$
therefore the series diverges when $p \leq 0$.
If $p>0$ then the condensation test is applicable and we are lead to the series

$$
\begin{aligned}
\sum_{k=0}^{\infty} 2^{k} \frac{1}{\left(2^{k}\right)^{p}} & =\sum_{k=0}^{\infty} \frac{1}{2^{k p-k}} \\
& =\sum_{k=0}^{\infty} \frac{1}{2^{(p-1) k}}=\sum_{k=0}^{\infty}\left(\frac{1}{2^{(p-1)}}\right)^{k} \\
& =\sum_{k=0}^{\infty} 2^{(1-p) k}
\end{aligned}
$$

Now $2^{1-p}<1$ iff $1-p<0$ i.e. when $p>1$

And the result follows by comparing this series with the geometric series having common ratio less than one.
The series diverges when $2^{1-p}=1$ (i.e. when $p=1$ )
The series is also divergent if $0<p<1$.

## Example

If $p>1, \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ converges and
If $p \leq 1$ the series is divergent.
$\because\{\ln n\}$ is increasing $\quad \therefore\left\{\frac{1}{n \ln n}\right\}$ decreases
and we can use the condensation test to the above series.
We have $a_{n}=\frac{1}{n(\ln n)^{p}}$

$$
\Rightarrow a_{2^{n}}=\frac{1}{2^{n}\left(\ln 2^{n}\right)^{p}} \quad \Rightarrow 2^{n} a_{2^{n}}=\frac{1}{(n \ln 2)^{p}}
$$

$\Rightarrow \quad$ we have the series

$$
\sum 2^{n} a_{2^{n}}=\sum \frac{1}{(n \ln 2)^{p}}=\frac{1}{(\ln 2)^{p}} \sum \frac{1}{n^{p}}
$$

which converges when $p>1$ and diverges when $p \leq 1$.

## Example

Consider $\sum \frac{1}{\ln n}$
Since $\{\ln n\}$ is increasing there $\left\{\frac{1}{\ln n}\right\}$ decreases.
And we can apply the condensation test to check the behavior of the series

$$
\because a_{n}=\frac{1}{\ln n} \quad \therefore a_{2^{n}}=\frac{1}{\ln 2^{n}}
$$

so $\quad 2^{n} a_{2^{n}}=\frac{2^{n}}{\ln 2^{n}} \quad \Rightarrow \quad 2^{n} a_{2^{n}}=\frac{2^{n}}{n \ln 2}$
since $\quad \frac{2^{n}}{n}>\frac{1}{n} \quad \forall n \geq 1$
and $\sum \frac{1}{n}$ is diverges therefore the given series is also diverges.

## Alternating Series

A series in which successive terms have opposite signs is called an alternating series.

$$
\text { e.g. } \quad \sum \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \ldots \ldots . . \text { is an alternating series. }
$$

## Theorem (Alternating Series Test or Leibniz Test)

Let $\left\{a_{n}\right\}$ be a decreasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots \ldots \ldots \ldots .$. converges.

## Proof

Looking at the odd numbered partial sums of this series we find that

$$
S_{2 n+1}=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right)+\ldots \ldots \ldots \ldots+\left(a_{2 n-1}-a_{2 n}\right)+a_{2 n+1}
$$

Since $\left\{a_{n}\right\}$ is decreasing therefore all the terms in the parenthesis are non-negative

$$
\Rightarrow S_{2 n+1}>0 \quad \forall n
$$

Moreover

$$
\begin{aligned}
S_{2 n+3} & =S_{2 n+1}-a_{2 n+2}+a_{2 n+3} \\
& =S_{2 n+1}-\left(a_{2 n+2}-a_{2 n+3}\right)
\end{aligned}
$$

Since $a_{2 n+2}-a_{2 n+3} \geq 0$ therefore $S_{2 n+3} \leq S_{2 n+1}$
Hence the sequence of odd numbered partial sum is decreasing and is bounded below by zero. (as it has +ive terms)

It is therefore convergent.
Thus $S_{2 n+1}$ converges to some limit $l$ (say).
Now consider the even numbered partial sum. We find that

$$
S_{2 n+2}=S_{2 n+1}-a_{2 n+2}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{2 n+2} & =\lim _{n \rightarrow \infty}\left(S_{2 n+1}-a_{2 n+2}\right) \\
& =\lim _{n \rightarrow \infty} S_{2 n+1}-\lim _{n \rightarrow \infty} a_{2 n+2} \\
& =l-0=l \quad \because \lim _{n \rightarrow \infty} a_{n}=0
\end{aligned}
$$

so that the even partial sum is also convergent to $l$.
$\Rightarrow$ both sequences of odd and even partial sums converge to the same limit.
Hence we conclude that the corresponding series is convergent.

## Absolute Convergence

$\sum a_{n}$ is said to converge absolutely if $\sum\left|a_{n}\right|$ converges.

## Theorem

An absolutely convergent series is convergent.

## Proof:

If $\sum\left|a_{n}\right|$ is convergent then for a real number $\varepsilon>0, \exists$ a positive integer $n_{0}$ such that

$$
\left|\sum_{i=m+1}^{n} a_{i}\right|<\sum_{i=m+1}^{n}\left|a_{i}\right|<\varepsilon \quad \forall n, m>n_{0}
$$

$\Rightarrow$ the series $\sum a_{n}$ is convergent. (Cauchy Criterion has been used)

## Note

The converse of the above theorem does not hold.
e.g. $\quad \sum \frac{(-1)^{n+1}}{n}$ is convergent but $\sum \frac{1}{n}$ is divergent.

## Theorem (The Root Test)

Let $\lim _{n \rightarrow \infty} \operatorname{Sup}\left|a_{n}\right|^{1 / n}=p$
Then $\sum a_{n}$ converges absolutely if $p<1$ and it diverges if $p>1$.

## Proof

Let $p<1$ then we can find the positive number $\varepsilon>0$ such that $p+\varepsilon<1$

$$
\begin{aligned}
& \Rightarrow \mid a_{n} 1^{1 / n}<p+\varepsilon<1 \quad \forall n>n_{0} \\
& \Rightarrow\left|a_{n}\right|^{<}<(p+\varepsilon)^{n}<1
\end{aligned}
$$

$\because \sum(p+\varepsilon)^{n}$ is convergent because it is a geometric series with $|r|<1$.
$\therefore \sum\left|a_{n}\right|$ is convergent
$\Rightarrow \sum a_{n}$ converges absolutely.
Now let $p>1$ then we can find a number $\varepsilon_{1}>0$ such that $p-\varepsilon_{1}>1$.

$$
\begin{aligned}
& \Rightarrow\left|a_{n}\right|^{1 / n}>p+\varepsilon>1 \\
& \Rightarrow\left|a_{n}\right|>1 \text { for infinitely many values of } n . \\
& \Rightarrow \lim _{n \rightarrow \infty} a_{n} \neq 0 \\
& \Rightarrow \sum a_{n} \text { is divergent. }
\end{aligned}
$$

Note:
The above test give no information when $p=1$.
e.g. Consider the series $\sum \frac{1}{n}$ and $\sum \frac{1}{n^{2}}$.

For each of these series $p=1$, but $\sum \frac{1}{n}$ is divergent and $\sum \frac{1}{n^{2}}$ is convergent.

## Theorem (Ratio Test)

The series $\sum a_{n}$
(i) Converges if $\lim _{n \rightarrow \infty} \operatorname{Sup}\left|\frac{a_{n+1}}{a_{n}}\right|<1$
(ii) Diverges if $\left|\frac{a_{n+1}}{a_{n}}\right|>1$ for $n \geq n_{0}$, where $n_{0}$ is some fixed integer.

## Proof

If (i) holds we can find $\beta<1$ and integer $N$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<\beta \text { for } n \geq N
$$

In particular

$$
\begin{aligned}
& \left|\frac{a_{N+1}}{a_{N}}\right|<\beta \\
\Rightarrow & \left|a_{N+1}\right|<\beta\left|a_{N}\right| \\
\Rightarrow & \left|a_{N+2}\right|<\beta\left|a_{N+1}\right|<\beta^{2}\left|a_{N}\right| \\
\Rightarrow & \left|a_{N+3}\right|<\beta^{3}\left|a_{N}\right| \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\Rightarrow & \left|a_{N+p}\right|<\beta^{p}\left|a_{N}\right|
\end{aligned}
$$

$$
\Rightarrow\left|a_{n}\right|<\beta^{n-N}\left|a_{N}\right| \quad \text { we put } N+p=n .
$$

i.e. $\left|a_{n}\right|<\left|a_{N}\right| \beta^{-N} \beta^{n}$ for $n \geq N$.
$\because \sum \beta^{n}$ is convergent because it is geometric series with common ration $<1$.
Therefore $\sum a_{n}$ is convergent (by comparison test)
Now if

$$
\begin{aligned}
& \left|a_{n+1}\right| \geq\left|a_{n}\right| \quad \text { for } n \geq n_{0} \\
\text { then } & \lim _{n \rightarrow \infty} a_{n} \neq 0 \\
\Rightarrow & \sum a_{n} \text { is divergent. }
\end{aligned}
$$

## Note

The knowledge $\left|\frac{a_{n+1}}{a_{n}}\right|=1$ implies nothing about the convergent or divergent of series.

## Example

Consider the series $\sum a_{n}$ with $a_{n}=\left[\frac{n}{n+1}-\left(\frac{n}{n+1}\right)^{n+1}\right]^{-n}$

$$
\because \frac{n}{n+1}<1 \quad \therefore \quad a_{n}>0 \quad \forall n .
$$

Also $\left(a_{n}\right)^{\frac{1}{n}}=\left[\frac{n}{n+1}-\left(\frac{n}{n+1}\right)^{n+1}\right]^{-1}$
$=\left(\frac{n+1}{n}\right)\left[1-\left(\frac{n}{n+1}\right)^{n}\right]^{-1}=\left(\frac{n+1}{n}\right)\left[1-\left(\frac{n+1}{n}\right)^{-n}\right]^{-1}$
$=\left(1+\frac{1}{n}\right)\left[1-\left(1+\frac{1}{n}\right)^{-n}\right]^{-1}$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)\left[1-\left(1+\frac{1}{n}\right)^{-n}\right]^{-1}$
$=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \lim _{n \rightarrow \infty}\left[1-\left(1+\frac{1}{n}\right)^{-n}\right]^{-1}$
$=1 \cdot\left[1-e^{-1}\right]^{-1}=\left[1-\frac{1}{e}\right]^{-1}=\left[\frac{e-1}{e}\right]^{-1}=\left[\frac{e}{e-1}\right]>1$
$\Rightarrow$ the series is divergent.

## Theorem (Dirichlet)

Suppose that $\left\{S_{n}\right\}, S_{n}=a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots . . . .+a_{n}$ is bounded. Let $\left\{b_{n}\right\}$ be positive term decreasing sequence such that $\lim _{n \rightarrow \infty} b_{n}=0$, then $\sum a_{n} b_{n}$ is convergent.

## Proof

$\because\left\{S_{n}\right\}$ is bounded
$\therefore \exists$ a positive number $\lambda$ such that

$$
\left|S_{n}\right|<\lambda \quad \forall n \geq 1 .
$$

Then

$$
\begin{aligned}
a_{i} b_{i} & =\left(S_{i}-S_{i-1}\right) b_{i} \quad \text { for } i \geq 2 \\
& =S_{i} b_{i}-S_{i-1} b_{i} \\
& =S_{i} b_{i}-S_{i-1} b_{i}+S_{i} b_{i+1}-S_{i} b_{i+1}
\end{aligned}
$$

$$
\begin{aligned}
& =S_{i}\left(b_{i}-b_{i+1}\right)-S_{i-1} b_{i}+S_{i} b_{i+1} \\
\Rightarrow \sum_{i=m+1}^{n} a_{i} b_{i} & =\sum_{i=m+1}^{n} S_{i}\left(b_{i}-b_{i+1}\right)-\left(S_{m} b_{m+1}-S_{n} b_{n+1}\right)
\end{aligned}
$$

$\because\left\{b_{n}\right\}$ is decreasing

$$
\begin{aligned}
\therefore\left|\sum_{i=m+1}^{n} a_{i} b_{i}\right| & =\left|\sum_{i=m+1}^{n} S_{i}\left(b_{i}-b_{i+1}\right)-S_{m} b_{m+1}+S_{n} b_{n+1}\right| \\
& <\sum_{i=m+1}^{n}\left\{\left|S_{i}\right|\left(b_{i}-b_{i+1}\right)\right\}+\left|S_{m}\right| b_{m+1}+\left|S_{n}\right| b_{n+1} \\
& <\sum_{i=m+1}^{n}\left\{\lambda\left(b_{i}-b_{i+1}\right)\right\}+\lambda b_{m+1}+\lambda b_{n+1} \quad \because\left|S_{i}\right|<\lambda \\
& =\lambda\left(\sum_{i=m+1}^{n}\left(b_{i}-b_{i+1}\right)+b_{m+1}+b_{n+1}\right) \\
& =\lambda\left(\left(b_{m+1}-b_{n+1}\right)+b_{m+1}+b_{n+1}\right)=2 \lambda\left(b_{m+1}\right) \\
\Rightarrow\left|\sum_{i=m+1}^{n} a_{i} b_{i}\right| & <\varepsilon \quad \text { where } \varepsilon=2 \lambda\left(b_{m+1}\right) \text { a certain number }
\end{aligned}
$$

$\Rightarrow$ The $\sum a_{n} b_{n}$ is convergent. (We have use Cauchy Criterion here.)

## Theorem

Suppose that $\sum a_{n}$ is convergent and that $\left\{b_{n}\right\}$ is monotonic convergent sequence then $\sum a_{n} b_{n}$ is also convergent.

## Proof

Suppose $\left\{b_{n}\right\}$ is decreasing and it converges to $b$.
Put $c_{n}=b_{n}-b$
$\Rightarrow c_{n} \geq 0$ and $\lim _{n \rightarrow \infty} c_{n}=0$
$\because \sum a_{n}$ is convergent
$\therefore\left\{S_{n}\right\}, S_{n}=a_{1}+a_{2}+a_{3}+$ $\qquad$ $+a_{n}$ is convergent
$\Rightarrow$ It is bounded
$\Rightarrow \sum a_{n} c_{n}$ is bounded.
$\because a_{n} b_{n}=a_{n} c_{n}+a_{n} b$ and $\sum a_{n} c_{n}$ and $\sum a_{n} b$ are convergent.
$\therefore \quad \sum a_{n} b_{n}$ is convergent.
Now if $\left\{b_{n}\right\}$ is increasing and converges to $b$ then we shall put $c_{n}=b-b_{n}$.

## Example

$$
\sum \frac{1}{(n \ln n)^{\alpha}} \text { is convergent if } \alpha>1 \text { and divergent if } \alpha \leq 1
$$

To see this we proceed as follows

$$
a_{n}=\frac{1}{(n \ln n)^{\alpha}}
$$

Take $b_{n}=2^{n} a_{2^{n}}=\frac{2^{n}}{\left(2^{n} \ln 2^{n}\right)^{\alpha}}=\frac{2^{n}}{\left(2^{n} n \ln 2\right)^{\alpha}}$

$$
=\frac{2^{n}}{2^{n \alpha} n^{\alpha}(\ln 2)^{\alpha}}=\frac{1}{2^{n \alpha-n} n^{\alpha}(\ln 2)^{\alpha}}
$$

$$
=\frac{1}{(\ln 2)^{\alpha}} \cdot \frac{\left(\frac{1}{2}\right)^{(\alpha-1) n}}{n^{\alpha}}
$$

Since $\sum \frac{1}{n^{\alpha}}$ is convergent when $\alpha>1$ and $\left(\frac{1}{2}\right)^{(\alpha-1) n}$ is decreasing for $\alpha>1$ and it converges to 0 . Therefore $\sum b_{n}$ is convergent
$\Rightarrow \sum a_{n}$ is also convergent.
Now $\sum b_{n}$ is divergent for $\alpha \leq 1$ therefore $\sum a_{n}$ diverges for $\alpha \leq 1$.

## Example

To check $\sum \frac{1}{n^{\alpha} \ln n}$ is convergent or divergent.
We have $a_{n}=\frac{1}{n^{\alpha} \ln n}$
Take $\quad b_{n}=2^{n} a_{2^{n}}=\frac{2^{n}}{\left(2^{n}\right)^{\alpha}\left(\ln 2^{n}\right)}=\frac{2^{n}}{2^{n \alpha}(n \ln 2)}$

$$
=\frac{1}{\ln 2} \cdot \frac{2^{(1-\alpha) n}}{n}=\frac{1}{\ln 2} \cdot \frac{\left(\frac{1}{2}\right)^{(\alpha-1) n}}{n}
$$

$\because \sum \frac{1}{n}$ is divergent although $\left\{\left(\frac{1}{2}\right)^{n(\alpha-1)}\right\}$ is decreasing, tending to zero for $\alpha>1$ therefore $\sum b_{n}$ is divergent.
$\Rightarrow \sum a_{n}$ is divergent.
The series also divergent if $\alpha \leq 1$.
i.e. it is always divergent.

References: (1) Lectures (2003-04)
Prof. Syyed Gull Shah
Chairman, Department of Mathematics.
University of Sargodha, Sargodha.
(2) Book

Principles of Mathematical Analysis
Walter Rudin (McGraw-Hill, Inc.)
Made by: Atiq ur Rehman (mathcity@gmail.com)
Available online at http://www.mathcity.org in PDF Format.
Page Setup: Legal ( $8^{\prime \prime} 1 / 2 \times 14^{\prime \prime}$ )
Printed: October 20, 2004. Updated: October 11, 2005

