
 

The rational number system is inadequate for many purposes, both as a field 
and as an order set for many purpose. This leads to introduction of so called irrational 
numbers. We can prove in many ways that the rational number system has certain 
gaps and hence we fail to use it as an ordered set and as a field.    q 
 

Í Theorem 
There is no rational  p such that 2 2p = . 

Proof 
Let us suppose that there exists a rational p such that 2 2p = . 

This implies we can write  
mp
n

=   where ,m n∈¢  & m, n have no common factor. 

Then 2 2p =     
2

2 2m
n

⇒ =     2 22m n⇒ =  
2m⇒  is even 

m⇒  is even  
m⇒  is divisible by 2 and so 2m  is divisible by 4. 

22n⇒  is divisible by 4 and so 2n  is divisible by 2. 2 22m n=∵  
i.e. 2n  is even n⇒  is even 
⇒   m and n both have common factor 2.  

Which is contradiction. (because m and n have no common factor.) 
Hence 2 2p =  is impossible for rational p.       q 

 

Í Theorem 
Let A be the set of all positive rationals p such that 2 2p <  and let B consist of 

all positive rationals p such that 2 2p >  then A contain no largest member and B 
contains no smallest member. 
Proof 

We are to show that for every p in A there exists a rational q A∈  such that 
p q<  and for all p B∈ we can find rational q B∈  such that q p< . 

Associate with each rational 0p >  the number 
2 2 2 2
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 ……………(ii) 

Now if p A∈  then 2 2p <    2 2 0p⇒ − <  

Since from (i)    
2 2

2
pq p
p

−
= −

+
    q p⇒ >  

And   
2

2
2( 2) 0
( 2)

p
p

−
<

+
   2 2 0q⇒ − <      2 2q⇒ <      q A⇒ ∈  

Now if p B∈   then  2 2p >    2 2 0p⇒ − >  
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Since form (i)     
2 2

2
pq p
p

−
= −

+
    q p⇒ <  

And    
2

2
2( 2) 0
( 2)

p
p

−
>

+
      2 2 0q⇒ − > 2 2q⇒ >    q B⇒ ∈  

The purpose of above discussion is simply to show that the rational number 
system has certain gaps, in spite of the fact that the set of rationals is dense i.e. we 
can always find a rational between any two given rational numbers. These gaps are 

filled by the irrational number. (e.g. if r s<  then 2
r sr s+< < .)        q 

 

Í Order on a set 
Let S be a non-empty set. An order on a set S is a relation denoted by “<” with 

the following two properties 
(i) If  x S∈  and y S∈ ,  
     then one and only one of the statement  x y<  , x y= ,  y x<  is true. 
(ii) If , ,x y z S∈  and if  x y< ,  y z<  then  x z< .      
 

Í Ordered Set 
A set S  is said to be ordered set if an order is defined on S.  
 

Í Bound 
Let S be an ordered set and E S⊂ . If there exists a Sβ ∈  such that 

x x Eβ≤ ∀ ∈ , then we say that E is bounded above, and β  is known as upper 
bound of E. 

Lower bound can be define in the same manner with ≥  in place of ≤ .  
 

Í Least Upper Bound (Supremum) 
Suppose S is an ordered set, E S⊂  and E is bounded above. Suppose there 

exists an Sα ∈  such that 
(i) α  is an upper bound of E. 
(ii) If γ α<   then γ  is not an upper bound of  E. 

Then α  is called the least upper bound of E or supremum of E and is written as 
sup E α= . 
In other words α  is the least member of the set of upper bound of E. 
      We can define the greatest lower bound or infimum of a set E , which is bounded 
below, in the same manner.          q 
 

Í Example 
Consider the sets 

{ }2: 2A p p p= ∈ ∧ <¤  

{ }2: 2B p p p= ∈ ∧ >¤      
where ¤  is set of rational numbers. 

  Then the set A is bounded above. The upper bound of A are the exactly the members 
of B. Since B contain no smallest member therefore A has no supremum in ¤ .  
   Similarly B is bounded below. The set of all lower bounds of B consists of A and  
r ∈¤  with 0r ≤ . Since A has no largest member, therefore, B has no infimum in ¤ . 

 

Í Example 
If α  is supremum of E then α  may or may not belong to E. 

Let { }1 : 0E r r r= ∈ ∧ <¤  
      { }2 : 0E r r r= ∈ ∧ ≥¤  
       then 1 2sup inf 0E E= =   and 10 E∉  and 20 E∈ .     q 
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Í Example 

Let E  be the set of all numbers of the form  1
n

, where n is the natural numbers. 

i.e. 1
1 1 1, , , .......
2 3 4

,..E  =  
 

 

   Then sup 1E =  which is in E, but inf 0E =  which is not in E.     q 
 

Í Least Upper Bound Property 
A set S is said to have the least upper bound property if the followings is true 
(i)  S is non-empty and ordered. 
(ii) If E S⊂  and E is non-empty and bounded above then supE exists in S. 

    Greatest lower bound property can be defined in a similar manner.    q 
 

Í Example 
Let S  be set of rational numbers and 

{ }2: 2E p p p= ∈ ∧ <¤  
then E ⊂ ¤ , E is non-empty and also bounded above but supremum of E is not in S, 
this implies that ¤  the set of rational numbers does not posses the least upper bound 
property.             q 
 

Í Theorem 
Suppose S is an ordered set with least upper bound property. B S⊂ , B is non-

empty and is bounded below. Let L be set of all lower bounds of B then sup Lα =  
exists in S and also inf Bα = . 

In particular infimum of B exists in S.     
OR 

An ordered set which has the least upper bound property has also the greatest 
lower bound property. 
Proof 

Since B is bounded below; therefore, L is non-empty. 
   Since L consists of exactly those y S∈  which satisfy the inequality. 

 y x≤      x B∀ ∈  
   We see that every x B∈  is an upper bound of L. 

⇒    L is bounded above. 
  Since S is ordered and non-empty therefore L has a supremum in S. Let us call it α . 
  If  γ α< ,  then γ  is not upper bound of L. 

Bγ⇒ ∉  
x x B Lα α⇒ ≤ ∀ ∈ ⇒ ∈  

   Now if α β<   then Lβ ∉  because  sup Lα = . 
   We have shown that Lα ∈  but  Lβ ∉  if β α> . In other words, α  is a lower 
bound of B, but β  is not if β α> . This means that inf Bα = .          q 
 

 
………………………

α 
L B 

γ 
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Í  Field  
A set F with two operations called addition and multiplication satisfying the 

following axioms is known to be field. 
Axioms for Addition: 

(i)   If ,x y F∈   then  x y F+ ∈ . Closure Law 
(ii)  ,x y y x x y F+ = + ∀ ∈ . Commutative Law 
(iii) ( ) ( ) , ,x y z x y z x y z F+ + = + + ∀ ∈ .  Associative Law 
(iv)  For any x F∈ , 0 F∃ ∈  such that 0 0x x x+ = + =   Additive Identity 
(v)   For any x F∈ , x F∃ − ∈  such that ( ) ( ) 0x x x x+ − = − + =       +tive Inverse 

 

Axioms for Multiplication: 
     (i)  If ,x y F∈   then  x y F∈ .  Closure Law 
     (ii)  ,x y y x x y F= ∀ ∈    Commutative Law 
     (iii)  ( ) ( ) , ,x y z x y z x y z F= ∀ ∈  
     (iv)  For any x F∈ , 1 F∃ ∈  such that 1 1x x x⋅ = ⋅ =   Multiplicative Identity 

     (v)  For any x F∈ , 0x ≠ ,  1 F
x

∃ ∈ ,  such that 1 1 1x x
x x

   = =   
   

  × tive Inverse. 

Distributive Law 
For any , ,x y z F∈ ,  (i)  ( )x y z xy xz+ = +  

(ii)  ( )x y z xz yz+ = +      q 
 

Í  Theorem 
The axioms for addition imply the following: 

(a)  If x y x z+ = +  then y z=  
(b)  If x y x+ =  then 0y =  
(c)  If 0x y+ =  then y x= − . 
(d)  ( )x x− − =  

Proof 
(a) Suppose  x y x z+ = + . 

Since   0y y= +  
     ( )x x y= − + +    0x x− + =∵  
     ( )x x y= − + +    by Associative law 
     ( )x x z= − + +    by supposition 
     ( )x x z= − + +    by Associative law 
     (0) z= +     0x x− + =∵  
     z=  

(b) Take 0z =  in (a) 
0x y x+ = +  

0y⇒ =  
(c) Take z x= −  in (a) 

( )x y x x+ = + −  
y x⇒ = −  

(d) Since ( ) 0x x− + =  
then (c) gives ( )x x= − −          q 
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Í  Theorem 
Axioms of multiplication imply the following. 

(a)  If 0x ≠  and x y x z=   then  y z= . 
(b)  If 0x ≠  and x y x=  then  1y = . 

(c)  If 0x ≠  and 1x y =   then  1y
x

= . 

(d)  If 0x ≠ , then 1
1 x

x
= . 

Proof 
(a) Suppose x y x z=  

Since 1y y= ⋅  1 x y
x

 = ⋅ 
 

  1 1x
x

⋅ =∵  

   ( )1 x y
x

=     by associative law 

        ( )1 x z
x

=     x y x z=∵  

   1 x z
x

 = ⋅ 
 

   by associative law 

   1 z z= ⋅ =  
(b) Take 1z =  in (a) 

1x y x= ⋅  1y⇒ =  

(c) Take 1z
x

=  in (a) 

1x y x
x

= ⋅     i.e. 1x y =  

1y
x

⇒ =  

(d)  Since       1 1x
x

⋅ =  

then (c) give  
1
1x

x
=         q 

 

Í  Theorem 
The field axioms imply the following. 
   (i)  0 0x⋅ =  
    (ii)  if 0x ≠ , 0y ≠  then 0xy ≠ . 

    (iii) ( ) ( ) ( )x y xy x y− = − = −  
    (iv) ( )( )x y xy− − =  
Proof 
(i)         Since  0 0 (0 0)x x x+ = +  

0 0 0x x x⇒ + =  
        0 0x⇒ =    0x y x y+ = ⇒ =∵  

(ii)  Suppose 0, 0x y≠ ≠  but 0x y =  

Since 11
( )( )

x y
x y

= ⋅  
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    11 (0)
( )( )x y

⇒ =   0 , 0 , 0xy x y= ≠ ≠∵  

   1 0⇒ =     from (i)     0 0x =∵  
a contradiction, thus (ii) is true. 

(iii)     Since ( ) ( ) 0 0x y xy x x y y− + = − + = = …….. (1) 
   Also          ( ) ( ) 0 0x y xy x y y x− + = − + = =  ……… (2) 
   Also          ( ) 0xy xy− + =  …………. (3) 
   Combining (1) and (2) 

       ( ) ( )x y xy x y xy− + = − +  
 ( ) ( )x y x y⇒ − = −  ………… (4) 

   Combining (2) and (3) 
( ) ( )x y xy xy xy− + = − +  

      ( )x y xy⇒ − = −  …………. (5) 
   From (4) and (5)  

      ( ) ( )x y x y xy− = − = −  
(iv)     [ ] [ ]( )( ) ( )x y x y xy xy− − = − − = − − =            using (iii)    q 
 

 
7⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅8 
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Í Ordered Field 
   An ordered field is a field F which is also an ordered set such that  

      i)  x y x z+ < +   if  , ,x y z F∈   and  y z< . 
     ii)  0xy >  if  ,x y F∈  ,  0x >  and 0y > . 

   e.g.  the set ¤  of rational number is an ordered field.      q 
  

Í Theorem 
The following statements are true in every ordered field. 

  i)  If 0x >  then 0x− <  and vice versa. 
ii)  If 0x >  and y z<  then  xy xz< . 

   iii)  If 0x <  and y z<  then  xy xz> . 
  iv)  If 0x ≠  then 2 0x >  in particular  1 0> . 

v)  If 0 x y< <  then 1 10
y x

< < . 

Proof 
 i)   If 0x >   then  0 0x x x= − + > − +    so that   0x− < . 

 If 0x <   then  0 0x x x= − + < − +    so that  0x− > . 
 ii) Since  z y>  we have  0z y y y− > − =  

which means that  0z y− > , Also  0x >  
∴    ( ) 0x z y− >  

   0xz xy⇒ − >  
0xz xy xy xy⇒ − + > +  

0 0xz xy⇒ + > +  
xz xy⇒ >  

 
iii) Since y z<    ⇒    y y y z− + < − +  

 0z y⇒ − >   
 Also  0x <    0x⇒ − >  
 Therefore    ( ) 0x z y− − >  

    0xz xy⇒ − + >   0xz xy xz xz⇒ − + + > +  
    xy xz⇒ >  

 

iv)   If 0x >  then  0x x⋅ >    2 0x⇒ >  
  If 0x <   then   0x− >   ( ) ( ) 0x x⇒ − − >   2( ) 0x⇒ − >    2 0x⇒ >  
  i.e.   if 0x >   then  2 0x > ,  since  21 1=   then 1 0> . 
 

v)    If 0y >  and 0v ≤    then   0yv ≤ , But 1 1 0y
y

 
= > 

 
    1 0

y
⇒ >  

 Likewise    1 0
x

>    as   0x >  

If we multiply both sides of the inequality x y<  by the positive quantity 1 1
x y

  
  
  

 

we obtain  1 1 1 1x y
x y x y

      <      
      

 

i.e.      1 1
y x

<  

 finally  1 10
y x

< <          q 
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Í Existence of Real Field 
   There exists an ordered field ¡  (set of reals) which has the least upper bound 
property and it contain ¤  (set of rationals) as a subfield.     q 
 

Í Theorem 
  a)  If x∈¡ , y ∈¡  and 0x >   then there exists a positive integer n such that 
       nx y> . (Archimedean Property) 
  b)  If x∈¡ , y ∈¡  and x y<  then there exists p∈¤  such that  x p y< <  . 
      i.e. between any two real numbers there is a rational number or ¤  is dense in ¡ . 
Proof 
a) Let { }: 0,A nx n x x+= ∈ ∧ > ∈¢ ¡  
   Suppose the given statement is false i.e.  nx y≤ . 

⇒   y is an upper bound of A. 
   Since we are dealing with a set of reals, therefore, it has the least upper bound 
property. 
   Let sup Aα =  

⇒  xα −  is not an upper bound of A. 
⇒  x mxα − <   where mx A∈  for some positive integer m. 
⇒  ( 1)m xα < +   where  m + 1 is integer, therefore ( 1)m x A+ ∈  

   Which is impossible because α  is least upper bound of A  i.e. sup Aα = . 
   Hence we conclude that the given statement is true i.e. nx y> . 
b) Since x y< ,  therefore 0y x− >  
   ⇒  ∃ a +ive integer n such that  

( ) 1n y x− >   (by Archimedean Property) 
        1ny nx⇒ > +  …………… (i) 

   We apply (a) part of the theorem again to obtain two +ive integers 1m  and 2m   
 such that  1 1m nx⋅ >   and  2 1m nx⋅ > −  

    2 1m nx m⇒ − < <  
   then there exists an integers  2 1( )m m m m− ≤ ≤  such that  

1m nx m− ≤ <  
 

   nx m⇒ <    and   1m nx≤ +  
   1nx m nx⇒ < < +  
   nx m ny⇒ < <     from (i) 

   mx y
n

⇒ < <  

  x p y⇒ < <     where   mp n=   is a rational.     q 
 

Í Theorem 
   Given two real numbers x and y, x y<  there is an irrational number u such that 
         x u y< <  
Proof 
   Take 0, 0x y> >  
   Then ∃ a rational number q such that  

0 x yq
α α

< < <   where α  is an irrational. 

     x q yα⇒ < <  
     x u y⇒ < <  

   Where u qα=  is an irrational as product of rational and irrational is irrational.  q 
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Í Theorem 
   For every real number x there is a set  E of rational number such that supx E= . 
Proof 
   Take { : }E q q x= ∈ <¤  where x is a real. 
   Then E is bounded above. Since E ⊂ ¡  therefore supremum of E exists in ¡ . 
   Suppose sup E λ= . 
   It is clear that  xλ ≤ . 
   If xλ =  then there is nothing to prove. 
   If xλ <  then ∃  q ∈¤  such that  q xλ < <  
   Which can not happen. Hence we conclude that real x is supE.    q 
 

Í Theorem  
   For every real 0x >  and every integer 0n > , there is one and only one real y such 
that ny x= .   

   This number y is written n x  or 
1

nx . 
Proof 
   Take 1 2,y y ∈¡  such that 1 20 y y< < . Then 1 2

n ny y<   i.e. there is at most one y ∈¡    
such that ny x= . This shows the uniqueness of y. 
   Let us suppose E be the set of all positive real numbers t such that nt x< . 

i.e. { : }nE t t t x= ∈ ∧ <¡  

   Take 
1

xt
x

=
+

 then 0 1t< < . 

   Hence nt t<  and we have nt x<  
nt t x⇒ < <  

t E⇒ ∈  and E is non-empty . 
   If 1t x> +  then nt t x> >  so that t E∉ . 
   Thus 1 x+  is an upper bound of E. 
   Since E is non-empty and bounded above therefore sup E  exists. 
   Take supy E=  
   To show that ny x=  we will show that each of the inequality ny x<   and ny x>  
leads to contradiction. 
   Consider 
           1 2 3 2 1( )( )n n n n n nb a b a b b a b a a− − − −− = − + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +   where n +∈¢ . 
   Which yields the inequality (each a is replaced by b on R.H.S of above) 
          1( )( ) ..................( )n n nb a b a nb i−− < −   where 0 a b< < .  
   Now assume ny x<  

   Choose h so that  0 1h< <   and  1( 1)

n

n
x yh

n y −

−
<

+
 

   Put a y=  and  b y h= +  in  (i) 

   Then  ( ) ( ) 1n nny h y nh y h −+ − < +  
              1( 1)nnh y −< +     1h <∵  

    nx y< −  

   ( )ny h x⇒ + <  
   y h E⇒ + ∈    

   Since  y h y+ >  therefore it contradict the fact that  y is sup E . 
   Hence ny x<  is impossible. 
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   Now suppose ny x>  

   Put 1

n

n
y xk
ny −

−
= ,  then 0 k y< <  

   Now if  t y k≥ −   we get 
      1( ) ( )n n n n n n ny t y y k y y nky −− < − − < − −   by binomial expansion 

     1n nkny y x−< = −  
         nt x⇒ − < −    nt x⇒ >   and  t E∉  
   It follows that y k−  is an upper bound of  E  but y k y− < , which contradict the 
fact that y is sup E . 
   Hence we conclude that ny x= .        q 
 

Í The Extended Real Numbers 
   The extended real number system consists of real field ¡  and two symbols +∞  
and −∞ , We preserve the original order in ¡  and define 
   x x− +∞ < < ∞ ∀ ∈¡ . 
   The extended real number system does not form a field. Mostly we write +∞ = ∞ .    
   We make following conventions 

i) If x is real then , , 0x xx x −
−

+ ∞ = ∞ − ∞ = ∞ = =
∞ ∞

      

ii) If 0x >  then ( ) , ( )x x − −∞ = ∞ ∞ = ∞ . 
iii) If 0x <  then ( ) , ( )x x− −∞ = ∞ ∞ =∞ . 

 

Í Euclidean Space 
   For each positive integer k, let k¡  be the set of all ordered k-tuples  
      1 2( , ,............., )kx x x x=    
   where 1 2, ,............, kx x x  are real numbers, called the coordinates of x . The elements 
of k¡  are called points, or vectors, especially when 1k > . 
   If 1 2( , ,..........., )ny y y y=  and α  is a real number, put 
   1 1 2 2( , ,.............., )k kx y x y x y x y+ = + + +  
    and  1 2( , ,..........., )kx x x xα α α α=  
   So that kx y+ ∈¡   and  kxα ∈¡ . These operations make k¡  into a vector space 
over the real field. 
   The inner product or scalar product of x  and y  is defined as  

   1 1 2 2
1

. ( .......... )
k

i i k k
i

x y x y x y x y x y
=

= = + + +∑  

   And the norm of x  is defined by 

   
12

1
2 2

1

( )
k

ix x x x = ⋅ =  
 
∑  

   The vector space k¡  with the above inner product and norm is called  
Euclidean k-space.           q 
 

�…………………..…………..� 
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Í Theorem 
   Let , nx y ∈¡  then 

i) 2x x x= ⋅  
ii) x y x y⋅ ≤   (Cauchy-Schwarz’s inequality) 

Proof 

i)  Since 
1
2( )x x x= ⋅   therefore 2x x x= ⋅  

ii)  For λ ∈¡  we have 
2

0 x yλ≤ −   ( ) ( )x y x yλ λ= − ⋅ −  

    ( ) ( ) ( )x x y y x yλ λ λ= ⋅ − + − ⋅ −  
    ( ) ( ) ( ) ( )x x x y y x y yλ λ λ λ= ⋅ + ⋅ − + − ⋅ + − ⋅ −  

    
22 22 ( )x x y yλ λ= − ⋅ +  

   Now put 2

x y

y
λ

⋅
=   (certain real number) 

 
( )( ) ( )2

22
2 40 2

x y x y x y
x y

y y

⋅ ⋅ ⋅
⇒ ≤ − +     

( )2

2
20

x y
x

y

⋅
⇒ ≤ −     

2 220 x y x y⇒ ≤ − ⋅  

( )( )0 x y x y x y x y⇒ ≤ + ⋅ − ⋅  
Which hold if and only if  

      0 x y x y≤ − ⋅  

i.e. x y x y⋅ ≤          q 
 

Í Question  
   Suppose , , nx y z ∈¡  the prove that 

a) x y x y+ ≤ +  

b) x z x y y z− ≤ − + −  

Proof 

 a)  Consider      ( ) ( )2
x y x y x y+ = + ⋅ +  

x x x y y x y y= ⋅ + ⋅ + ⋅ + ⋅  

   ( ) 22 2x x y y= + ⋅ +  

   
22 2x x y y≤ + +   .x y x y≥∵  

   ( )2
x y= +  

    x y x y⇒ + ≤ +   …………. (i) 

b) We have           x z x y y z− = − + −  

x y y z≤ − + −   from (i)    q 
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Í Question 
   If r is rational and x is irrational then prove that r x+  and r x  are irrational. 
Proof 
   Let r x+  be rational. 

ar x
b

⇒ + =    where ,a b∈¢  , 0b ≠  such that ( ), 1a b =  

ax r
b

⇒ = −  

   Since r is rational therefore cr
d

=   where ,c d ∈¢ , 0d ≠  such that ( ), 1c d =  

a cx
b d

⇒ = −    ad bcx
bd
−

⇒ =  

   Which is rational, which can not happened because x is given to be irrational. 
   Similarly let us suppose that r x  is rational then  

       ar x
b

=         for some ,a b∈¢ , 0b ≠  such that ( ), 1a b =  

1ax
b r

⇒ = ⋅  

   Since r is rational therefore cr
d

=   where ,c d ∈¢ , 0d ≠  such that ( ), 1c d =  

1a a d adx cb b c bcd
⇒ = ⋅ = ⋅ =  

   Which shows that x is rational, which is again contradiction; hence we conclude 
that r x+  and r x  are irrational.          q 

 

Í Question  
   If n is a positive integer which is not perfect square then prove that n  is irrational 
number. 
Solution 
   There will be two cases 
Case I. When n contain no square factor greater then 1. 
   Let us suppose that n  is a rational number. 

pn
q

⇒ =    where ,p q ∈¢ , 0q ≠  and ( ), 1p q =  

2

2
pn
q

⇒ =     2 2 ...............( )p nq i⇒ =  

2
2 pq

n
⇒ =  

2n p⇒     ................( )n p ii⇒   ( n p  means “ n divides p” ) 

   Now suppose  p c
n

=  where c∈¢  

p nc⇒ =  2 2 2p n c⇒ =  
   Putting this value of 2p  in equation (i) 

       2 2 2n c nq=  

2 2nc q⇒ =    
2

2 qc
n

⇒ =  

2n q⇒    .................( )n q iii⇒   
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   From (ii) and (iii) we get p and q both have common factor n i.e. ( , )p q n=  
   Which is a contradiction. 
   Hence our supposition is wrong. 
Case II  When n contain a square factor greater then 1. 
Let us suppose 2 1n k m= >  

n k m⇒ =   
Where k is rational and m   is irrational because m has no square factor greater than 
one, this implies n , the product of rational and irrational, is irrational.   q 
 

Í Question 
   Prove that 12  is irrational. 
Proof 
   Suppose 12  is rational. 

12 p
q

⇒ =   where ,p q ∈¢ , 0q ≠  and ( ), 1p q =  

2

212 p
q

⇒ =      2 212p q⇒ =  ………….. (i) 

2
2

12
pq⇒ =   

2
2

22 3
pq⇒ =

⋅
 

2 22 p⇒    and    23 p  

2 p⇒       and    3 p  
⇒   2 and 3 are prime divisor of  p. 

2 3 p⇒ ⋅    i.e.  6 p  

6
p c⇒ = ,  where c is an integer. 

6p c⇒ =  
   Put this value of  p in equation (i) to get 

     2 236 12c q=  

2 23c q⇒ =     
2

2

3
qc⇒ =  

23 q⇒          3 q⇒  

( ), 3p q⇒ = ,  which is a contradiction.  
   Hence  12  is an irrational number.        q 
 

Í Question 
   Let E be a non-empty subset of an ordered set, suppose α  is a lower bound of E 
and β  is an upper bound then prove that α β≤ . 
Proof 
   Since E is a subset of an ordered set S i.e. E S⊆ . 
   Also α  is a lower bound of E therefore by definition of lower bound  

xα ≤   x E∀ ∈  …………… (i) 
   Since β  is an upper bound of E therefore by the definition of upper bound 

x β≤   x E∀ ∈  …………… (ii) 
   Combining (i) and (ii) 

xα β≤ ≤  
    α β⇒ ≤   as required.          q 
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