UNIVERSITY OF GUJRAT

(M.A/M.Sc Part-I) [Mathematics

Topology and Functional Analysis

Roll No	o:	_	
in wo	ords:	_	

Cutting, Overwriting, Erasing, Fluid painting and use of Lead Pencil will earn no marks. Write answer of the Question No.1 and 2 on this sheet and handover it to the supervisory staff of examination within first 35 minutes.

Tir	ne	Al	lowed	d: 35	M_{i}	inı	ıtes	
_			_	_			_	

(OBJECTIVE PART)

Max. Marks: 32

1x4

Sign of Supdt.

1- a) Tick or Encircle the correct answer:

i) Let $T: N \to M$ be a bijective linear operator and dim N = n then dim M is

a) n+1

b)

c) n-1

- d) n+2
- ii) A continuous image of a compact space is
 - a) Connected
- b) Compact

c) Neither

- d) Both
- iii) In a normed space V, ||x y|| = 0 iff
 - a) x > y

b) x < y

c) x = y

- d) $x \neq y$
- iv) Let $X = \{1, 2, 3\}$ and $T = \{x, \varphi, \{1\}, \{3\}\}$ then T is
 - a) Topology on X
- b) Not topology
- c) T₁- Space

d) Regular Space

b) Indicate True or False:

vi)

1x8

i) Product of two linear operators is linear operator.

True / False

ii) The closed ball in a metric space is not closed set.

- True / False
- iii) Let $T: N \to M$ be a linear operator then the Kernel of T is closed in N.

Every first countable space is second countable space.

True / False
True / False

iv) Every normal space is an inner product space.

True / False

v) The union of topologies on X is a topology on X.

True / False

vii) Every T_1 - Space is T_2 - Space

True / False

viii) A closed continuous image of a normal space is normal.

True / False

c) Fill in the blanks meaningfully:

1x4

- $i) \quad (AUB)^{\perp} = \underline{\hspace{1cm}}.$
- ii) Every closed subspace of a compact space is ______
- iii) Every compact subspace of a Housdorff space is ______.
- iv) A topology consisting all subsets of X is called_____

	i) Define Cofinite Topology.						
	ii) Define Normal Space.						
_							
iii)	Define Finite Intersection Property.						
iv)	Prove that Indiscrete Space is connected.						
v)	Define Completely Regular Space.						
vi)	Define Banach Space.						
vii)	Define Hilbert Space.						
viii)	Define Equivalent Norms on a Normed Space X.						

(M.A/M.Sc Part-I) (Mathematics)

Topology and Functional Analysis

Roll No:		
Time Allowed	:	2:25 hrs
Moy Morks		69

Attempt any FOUR Questions in all. All Questions carry equal marks.

	<u>SUBJECTIVE PART</u>	
3-	a) A topological space X is T_1 – Space iff each singleton set is closed.	9
	b) Let X be a topological space and A is a connected subspace of X such that $A \subseteq B \subseteq \bar{A}$. Then B is connected. In particular \bar{A} is connected.	8
4-	a) Prove that every closed subset of a compact space is compact.b) Prove that every second countable space is separable.	9 8
5-	a) A family B of subsets of a topological space $(x, 7)$ is a base for 7 iff i) $X = UB_{\alpha}$, that is, every point of X is in some $B_{\alpha} \in B$.	9
	 ii) For B₁, B₂ ∈ B and x ∈ B₁ ∩ B₂ the there is B₃ ∈ B such that x ∈ B₃ ⊆ B₁ ∩ B₂. b) Let (x, d) be a metric space and A ⊆ X then Ā is the smallest closed subset of X which contains A. 	8
6-	a) Prove that ℓ^∞ is Banach Space. b) Prove that any two norms on a finite dimensional linear space are equivalent.	9 8
7-	 a) Let X and Y be normed subspaces over the field F and T : X → Y be a linear operator Then T is continuous iff T is bounded. b) Let Y be a closed subspace of a Hilbert Space H. Then H = Y ⊕ y[⊥] 	8 9
8-	a) Let V be an complex inner space V and $x, y \in V$ then	
	$\langle x, y \rangle = \frac{1}{4} \left[x + y ^2 - x - y ^2 + i x + i y ^2 - i x - i y ^2 \right]$	8
	b) Prove that the dual space of ℓ^1 is ℓ^{∞}	9

M.A/M.Sc-I(11/A) (MTH-V) (N)