UNIVERSITY OF GUJRAT ### (M.A/M.Sc Part-I) [Mathematics ### Topology and Functional Analysis | Roll No | o: | _ | | |---------|-------|---|--| | in wo | ords: | _ | | Cutting, Overwriting, Erasing, Fluid painting and use of Lead Pencil will earn no marks. Write answer of the Question No.1 and 2 on this sheet and handover it to the supervisory staff of examination within first 35 minutes. | Tir | ne | Al | lowed | d: 35 | M_{i} | inı | ıtes | | |-----|----|----|-------|-------|---------|-----|------|--| | _ | | | _ | _ | | | _ | | (OBJECTIVE PART) Max. Marks: 32 1x4 Sign of Supdt. 1- a) Tick or Encircle the correct answer: i) Let $T: N \to M$ be a bijective linear operator and dim N = n then dim M is a) n+1 b) c) n-1 - d) n+2 - ii) A continuous image of a compact space is - a) Connected - b) Compact c) Neither - d) Both - iii) In a normed space V, ||x y|| = 0 iff - a) x > y b) x < y c) x = y - d) $x \neq y$ - iv) Let $X = \{1, 2, 3\}$ and $T = \{x, \varphi, \{1\}, \{3\}\}$ then T is - a) Topology on X - b) Not topology - c) T₁- Space d) Regular Space #### b) Indicate True or False: vi) 1x8 i) Product of two linear operators is linear operator. True / False ii) The closed ball in a metric space is not closed set. - True / False - iii) Let $T: N \to M$ be a linear operator then the Kernel of T is closed in N. Every first countable space is second countable space. True / False True / False iv) Every normal space is an inner product space. True / False v) The union of topologies on X is a topology on X. True / False vii) Every T_1 - Space is T_2 - Space True / False viii) A closed continuous image of a normal space is normal. True / False #### c) Fill in the blanks meaningfully: 1x4 - $i) \quad (AUB)^{\perp} = \underline{\hspace{1cm}}.$ - ii) Every closed subspace of a compact space is ______ - iii) Every compact subspace of a Housdorff space is ______. - iv) A topology consisting all subsets of X is called_____ | | i) Define Cofinite Topology. | | | | | | | |-------|--|--|--|--|--|--|--| | | | | | | | | | | | ii) Define Normal Space. | | | | | | | | _ | | | | | | | | | iii) | Define Finite Intersection Property. | | | | | | | | | | | | | | | | | iv) | Prove that Indiscrete Space is connected. | | | | | | | | | | | | | | | | | v) | Define Completely Regular Space. | vi) | Define Banach Space. | vii) | Define Hilbert Space. | | | | | | | | | | | | | | | | | viii) | Define Equivalent Norms on a Normed Space X. | ### (M.A/M.Sc Part-I) (Mathematics) ## Topology and Functional Analysis | Roll No: | | | |--------------|---|----------| | Time Allowed | : | 2:25 hrs | | Moy Morks | | 69 | Attempt any FOUR Questions in all. All Questions carry equal marks. | | <u>SUBJECTIVE PART</u> | | |----|---|--------| | 3- | a) A topological space X is T_1 – Space iff each singleton set is closed. | 9 | | | b) Let X be a topological space and A is a connected subspace of X such that $A \subseteq B \subseteq \bar{A}$. Then B is connected. In particular \bar{A} is connected. | 8 | | 4- | a) Prove that every closed subset of a compact space is compact.b) Prove that every second countable space is separable. | 9
8 | | 5- | a) A family B of subsets of a topological space $(x, 7)$ is a base for 7 iff i) $X = UB_{\alpha}$, that is, every point of X is in some $B_{\alpha} \in B$. | 9 | | | ii) For B₁, B₂ ∈ B and x ∈ B₁ ∩ B₂ the there is B₃ ∈ B such that x ∈ B₃ ⊆ B₁ ∩ B₂. b) Let (x, d) be a metric space and A ⊆ X then Ā is the smallest closed subset of X which contains A. | 8 | | 6- | a) Prove that ℓ^∞ is Banach Space. b) Prove that any two norms on a finite dimensional linear space are equivalent. | 9
8 | | 7- | a) Let X and Y be normed subspaces over the field F and T : X → Y be a linear operator Then T is continuous iff T is bounded. b) Let Y be a closed subspace of a Hilbert Space H. Then H = Y ⊕ y[⊥] | 8
9 | | 8- | a) Let V be an complex inner space V and $x, y \in V$ then | | | | $\langle x, y \rangle = \frac{1}{4} \left[x + y ^2 - x - y ^2 + i x + i y ^2 - i x - i y ^2 \right]$ | 8 | | | b) Prove that the dual space of ℓ^1 is ℓ^{∞} | 9 | ***M.A/M.Sc-I(11/A) (MTH-V) (N)***