UNIVERSITY OF GUJRAT

(M.A/M.Sc Part-I)

Complex Analysis & Differential Geometry

1	Roll No:	
•	in words:	
٠,		

(Mathematics) Differential Geometry

Cutting, Overwriting, Erasing, Fluid painting and use of Lead Pencil will earn no marks.

Write answer of the Question No.1 and 2 on this sheet and handover it to the supervisory staff of examination within first 35 minutes.

	k or Encircle the	e correct answe	TECTIVE PART) r: mal is denoted by	Max. Marks: 32 1x4	Sign of Supdt.		
	a) σ	b) ~	c) K	d) (***************************************		
ii) A curve traced	by complex valu	ed function $z = f(t)$ su	$ch that f(t_1) \neq f(t_2) for t_1$	\neq t ₂ is called \star		
	a) Smooth Cu	rve	b) Closed C	urve	, , , , , , , , , , , , , , , , , , ,		
	c) Simple Curv			d) Jordan Curve			
ii	$f(z) = \frac{2}{z^2} - \frac{4}{z^7} +$	$\frac{5}{z}$ has pole of c	order				
	a) Zero	b) 3	c) 5	d) None of the	ese		
iv) If a function $f($	(z) involves \overline{Z} , the	nen without verifying	C. R equations we can say	y the function is		
	a) Harmonic		b) Not anal	ytic			
	c) Analytic		d) None of	these			
b) Indica	ate True or Falso	e:			1x8		
i)	$\operatorname{Cos} i \ z = i \operatorname{Cos} hz $ True / Falson						
ii)	Curvature of spherical indicatrix of tangent = $\frac{K}{\sqrt{K^2 + 7^2}}$						
iii)	$\int_{C} f(z) dz / \leq$	True / False					
iv)	$f(z) = \left/z\right/^2$ is differentiable at $z = z_0$						
v)	$Arg (z_1 z_2) = Agr (z_1) + Arg(z_2) $ True / False						
vi)	$\int_{C} \frac{\cosh z + z^{2}}{(Z+5)(Z^{2}-6)} dz = 0 C: Z = 1.$ True / Fal						
vii)	$f(z) = e^{z}$ is an entire function. True / False						
viii)	If two function u and v are to be Harmonic Conjugate of each other then both must be constant						
	function				True / False		
c) Fill in	the blanks mean	ningfully:			1x4		
i)	A value of arg z satisfying $0 \le \arg z < 2\pi$ is called						
ii)	The necessary condition for convergence of product $\prod_{n=1}^{\alpha} (1 + a_n)$ is that						
iii)	A singularity of first order is called						
iv)	Spherical indicatrix lies on the surface of a						

i) Write Laplae equations in polar form.

ii) Prove that $\underline{\mathbf{n}}' = \mathbf{7} \, \underline{\mathbf{b}} - \mathbf{K} \underline{\mathbf{t}}$.

iii) Prove that Log $(-1 + i) = \frac{1}{2} \ln 2 + \frac{3\pi}{4} i$.

- iv) State Mittag Leffer's Expansion Theorem.
- v) Write symbols of the fundamental magnitudes of the first and second order
- vi) Find radius of Convergence $\sum_{n=0}^{\alpha} \frac{z^n}{n!}$
- vii) State Laurent's Series and name its parts.

viii) Writ T^{-1} (W) of the transformation $T(Z) = \frac{Z}{Z+4}$

Pass Marks: 40%

8

(M.A/M.Sc Part-I) (Mathematics)

Complex Analysis & Differential Geometry

Roll No: _______ Time Allowed : 2:25 hrs

Attempt **FOUR** Questions in all. Select **TWO** Questions from **Section A** and **TWO** Questions from **Section B.** All Questions carry equal marks.

SUBJECTIVE PART

SECTION-A

- **3-** a) Find the fixed points and normal form of bilinear transformation $w = \frac{3iz + 1}{z + i}$
 - b) Show that the function $f(z) = \operatorname{Exp} C\left(z + \frac{1}{z}\right)$ can be expanded as Laurent's Series. $\sum_{-\alpha}^{\alpha} a_n Z^n$ for |z| > 0

Where
$$a_n = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{2C \cos \theta}{e} \cos n\theta \, d\theta$$

- 4- a) Prove by Contour Integration $\int_{-a}^{a} \frac{a\cos x + x \sin x}{x^2 + a^2} dx = 2\pi e^{-a}, a > 0$
 - b) Prove that $\int_{0}^{2\pi} \frac{d\theta}{(a+b \cos \theta)^{2}} = \frac{2\pi a}{(a^{2}-b^{2})^{3/2}}$
- 5- a) Prove that every bilinear transformation with two fixed points α , β can be put in the normal form

$$\frac{W - \alpha}{W - \beta} = K \frac{(Z - \alpha)}{(Z - \beta)}$$

b) State and prove Cauchy's Integra Formula.

SECTION-B

6- a) Prove that the position vector f the current point on a curve satisfies the differential equation,

$$\frac{d}{ds} \left\{ \sigma \frac{d}{ds} \left(\ell - \frac{d^2 \underline{r}}{ds^2} \right) \right\} + \frac{d}{ds} \left(\frac{6}{\ell} - \frac{d\underline{r}}{ds} \right) + \frac{\ell}{6} \frac{d^2 \underline{r}}{ds^2} = 0$$

b) If ψ is the angle between two directions determined by; $Pdu^2 + Qdudv + Rdv^2 = 0 \text{ then show that}$

$$\tan \psi = \frac{H\sqrt{Q^2 - 4PR}}{ER - FQ + GP}$$

- 7- a) The envelope of the plane $\ell x + my + nz = p$ where $p^2 = a^2 \ell^2 + b^2 m^2 + c^2 n^2$ is an ellipse.
 - b) Derive Serret Frent Formulae.
- 8- a) Prove that $f(z) = \begin{cases} \frac{x^3 (1+i) y^3 (1-i)}{x^2 + y^2} & \text{when } z \neq 0 \\ 0 & \text{when } z = 0 \end{cases}$ Cauchy's Riemann equations

are satisfied at origin but f'(0) fails to exist.

b) Find the curvature and torsion of the curve $x = a \cos u$, $y = a \sin u$, $z = a \cos u$