University of Sargodha

M.A/M. Sc. Part-1/Composite, 2nd-A/2015

Mathematics: V Topology & Functional Analysis

Topolog, de Lancisco

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

(Compulsory)

Q1. Write short answers of the following:

(10x2=20)

- i. Prove that an open ball centered at a limit point x of a subset A in a metric space X contains infinitely many points of set A.
- ii. Define the product topology and write its base.
- iii. Prove that every metric space is a topological space.
- iv Define reflexive space.
- v. Show that every normed space is a metric space.
- vi. State the condition for a normed space to be an inner product space and give an example.
- vii. Definean orthonormal system in an inner product space.
- viii. Prove that T_2 axiom implies T_1 -axiom as well as T_0 -axiom.
 - ix. Show that R² is a Banach space.
 - x. Define completion of a metric space.

Subjective Part

Q2. (a)Prove that if a normed space X has the property that the closed unit ball $M = \{x \mid x \}$	≤1}	
is compact, then X is finite dimensional.		
(b) Show that he space l^p with $1 \le P < \infty$ is separable.	10	
\mathbb{C}^3 . (a) Let X and Y be topological spaces. Show that a function f: $X \to Y$ is continuous if and	only	if
$f(Cl(A)) \subseteq Cl(f(A))$		10
(b) Show that closed subspaces of Lindelof space are also Lindelof.		10
Q4. (a) Show that in a Hausdorff space, any sequence converges to at most one limit point.		10
(b) Prove that a topological space (X,τ) is normal if and only if for any closed set A and ar	n	
open set U containing A, there exists at one open set V containing A such that	į	
$A \subseteq V \subseteq Cl(V) \subseteq U$.		10
Q5. (a) Let X be aT ₁ - space, prove that X is countably compact if and only if X satisfies		
Bolzano-Weierstrass property.		10
(b) Prove that R ⁿ is a complete metric space.	10	
Q6. (a) Let Y be proper closed subspace of a normed space X and $a \in (0,1)$, there is an $x_a \in X$ s	uch	
that $ x_a = 1$ and $ x - x_a \ge a$ for all $x \in Y$.	10	10
(b) Prove that dual of R ⁿ is R ⁿ .	l.	10