University of Sargodha

M.A/M.Sc Part- 1/Composite, 2nd-A/2014

Mathematics: V Topology & Functional Analysis

Maximum Marks: 100 Time Allowed: 3 Hours

Note:

(b)

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

Q.1.	Write short answer of the following. $(10 \times 2=20)$	
i.	Define discrete topology.	
ii.	Define sub-base for a topology.	
iii.	Let X be a topological space and $A, B \subset X$, show that $A \subset B \Rightarrow \overline{A} \subset \overline{B}$.	
iv.	Differentiate between dual space and second dual space.	
v.	Define equivalent norms.	
vi.	If (x_n) converges to $x \in X$, then show that every subsequence (x_n) also converges to $x \in X$.	
vii.	Define Completely Regular space.	
viii.	Find the interior of set of rational numbers over usual topology on R (set of real numbers).	
ix.	Show that every Cauchy sequence is bounded.	
х.	Show that the operator $T: X \to X$ by $Tx(t) = x'(t)$ is linear.	
Subjective Part		
Q.2.	(a) Show that the space $\mathbb{C}[a, b]$ is complete. (10)	
	(b) Let X and Y be two topological spaces, $f: X \to Y$ is continuous iff, for every subset	
•	$A ext{ of } X, f(\overline{A}) \subset \overline{f(A)}.$ (10)	
Q.3.	(a) Let (X, d) be a metric space, $A \subset X$ is dense if and only if A has non-empty	
V.5.	intersection with any open-subset of X . (10)	
(1.)	(10)	

iff Y is closed and bounded. (10)(a). Show that any two norms of a finite dimensional space are equivalent. (10)(b) State and prove Cauchy-Schwartz inequality for inner product space. (10)Q.5. (a) Let A and B be disjoint compact subsets of a Hausdorff space X. Show that there (10)

Show that in a finite dimensional normed space X, any subspace $Y \subset X$ is compact

exists disjoint open sets G and H such that $A \subset G$ and $B \subset H$.

Suppose that A and B are connected sets which are not separated. Show that their (b) union $A \cup B$ is also connected.

(a) Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ be a topology on X, let $A = \{b, c, d\}$. Find interior, exterior, closure, boundary and limit points of A. (10)

(b) Show that every metric space is T_2 space. Off. (a) State and prove F. Riesz's Lemma.

(b) Show that the compact subset of a metric space is closed and bounded.

(10)(10)

(10)

(10)