University of Sargodha

M.A/M.Sc Part-1 / Composite, 2nd-A/2013

Mathematics: V Topology & Functional Analysis

Maximum Marks: 100

Time Allowed: 3 Hours

Note: O

Objective part is compulsory. Attempt any four questions from subjective part.

(Objective Part)

	(==3=====)	1
Q. 1	Answer the following short questions.	20
(i)	Define cofinite topology.	l
(ii)	For any subset A of a discrete topological space X , show that	1
	derived set of A is empty.	
(iii)	Show that the plane \Re^2 satisfies the second axiom of countability.	
(iv)	Define metrizable topology.	1
(1/)	Prove that every T_3 space is also a Hausdroff space.	
(vi)	For any metric space (X, d) define neighbourhood of a point.	1
(vii)	Show that a metric d induced by a norm on a normed space X	İ
	satisfies $d(\alpha x, \alpha y) = \alpha d(x, y)$.	
(viii)	Define Schauder basis.	
(ix)	If normed space X is finite dimensional, then show that every	1 !
	linear operator on X is bounded.	
(x)	For any bounded linear operator T show that $x_n o x$ implies	
	$Tx_n \to Tx$.	
	(Subjective Part)	
Q. 2	(a) Show that a function $f: X \to Y$ is continuous if and only if	10
	the inverse image of every closed subset of Y is closed subset of X.	
	(b) If β be the class of subsets of a non empty set X . Then the	10
	topology τ on X generated by β is the intersection of topologies	
	on X which contain β .	
Q.3	(a) Let X be a T_1 space which satisfies the first axioms of count-	10
	ability then show that if $p \in X$ is an accumulation point of $A \subset X$	
	then there exists a sequence of distinct terms in A converging to	
	p.	
	(b) Let A be any subset of a topological space (X, τ) and let τ_A	10
	be the relative topology on A. Then show that A is $ au$ connected iff	
	A is τ_A connected.	
Q.4	(a) State and prove Cantor's Intersection theorem.	10
	(b) Show that set of real numbers is complete.	10
Q. 5	(a) Show that in a finite dimensional normed space X, any subset	10
	M of X is compact if and only if M is closed and bounded.	
	(b)Prove that the property of being a Hausdroff space is hereditry	10
Q. 6	(a) If Y is a Banach space, then show that $B(X,Y)$ is also a	10
	Banach space.	1
	(b)State and prove minimizing vector theorem.	10
Q. 7	(a) Show that a complete metric space is of second category.	10
	(b) Show that the dual space of \Re^n is \Re^n .	10