Subject: Math-V

M.A/M.Sc: Part- I / Composite, 2nd -A/10 Sig of Dy. Superintendent.

Fictitious #:

Signature of CSO: _

- Cut Here -----

University of Sargodha

M.A/M.Sc Part-1 / Composite, 2nd -A/2010

Math-V Topology & Functional Analysis

Maximum Marks: 40

Time Allowed: 45 Min.

Note:

Objective Part

Cutting, Erasing, overwriting and use of Lead Pencil are strictly prohibited. Only first attempt will be considered.

Q.1. A i.	Fill in the blanks. If A is a closed set then $F_r(A)$	(10)
ii. íii.	A subset A of a topological space X is said to be dense in X if \overline{A} Every open hall in a metric space is an	
iv.	Every closed hall in a metric space Vis a	· · · · · · · · ·
v.	If (X, \mathcal{F}) is a door topology then every member of \exists is both	
vi.	For A and B subsets of a metric space (X, d) . if $A \subset B$ implies $A^d \subset A^d$	
vii.	Any two norms defined on a finite dimensional linear space N are	
viii.	For any subsets A and B of a topological space (X, \mathcal{F}) $\overline{A \cap B}$	$\overline{A} \cap \overline{B}$
ix.	A complete normed space called space.	
х.	A complete inner product space called space.	
B:	Write true or false against each statement.	(10)
i.	In usual metric space R the set of integers have no limit point.	(10)
11.	ϕ and X are both open and closed sets in a metric space \mathbf{x}	
iii.	In metric spaces a sequence may converge to two points	
iv.	In normed space ℓ^{∞} is a Banach space.	
v .	In metric space every convergent sequence is a Cauchy Sequence.	
vi.	Every compact subset of a Hausdorff space is closed.	•
V11.	A closed subspace of a compact space may not be compact.	
V111.	The real line R is not connected.	
1X.	A completely regular space may not be regular.	
Х.	A^{\perp} may not be a closed subspace of Hilbert Space H.	
Q.2.	Give short answer of the following:	(20)
i.	Discuss open ball in descrete metric space.	()
ii.	In usual metric space R find A^o and \overline{A} if $A =]2,5]$	
iii.	If $X = \{a, b, c\}$ write discrete topology on X.	
iv.	Discuss Cauchy Sequence in discrete metric space.	
v.	Show that the space Q of rationals as a subspace of real line R is not complete.	

Roll No.

Give an example of a metric space having two disjoint dense subsets. vi.

If A and B are subsets of a metric space X, then show that $A \subseteq B$ implies $A^d \subseteq B^d$. vii.

Let \mathcal{F} be a topological space on N containing ϕ and all the subsets of the form viii. $En = \{n, n+1, n+2, ___\}, n \in N$, list all the open sets containing positive integer 6. Show that the orthonormal set is linearly independent. ix.

For complex inner product space V state the polarization identity. х.

.

Ē - .

1 • • • • • • • •

University of Sargodha

<u>M.A/M.Sc Part-1 / Composite, 2nd -A/2010</u> <u>Math- V</u> <u>Topology & Functional Analysis</u>

Maximum Marks: 60

Time Allowed: 2:15 Hours

Subjective Part

Note:		Attempt any three questions. All questions carry equal marks.	
Q.3.	a.	Let (X, \mathcal{F}) be a topological space and A be any arbitrary subset of X. then	(10)
		show that $\overline{A} = A \bigcup A^d$.	
	b.	Prove that the closed subspaces of Lindelof space are Lindelof.	(10)
Q.4.	a.	Every subspace of a Tychonoff Space is a Tychonoff Space.	(10)
	b.	Prove that every closed subspace of a compact space is compact.	(10)
Q.5.	a.	Show that ℓ^{∞} is a Banach Space.	(10)
	b.	Prove that the continuous image of a connected space is connected.	(10)
Q.6 .	a.	Prove that any two norms on a finite dimensional linear space are equivalent.	(10)
•	b.	State and prove Riesz and Fischer theorem on Hilbert Spaces.	(10)
Q.7.	a.	Let A be a proper complete subspace of an inner product space V then prove	(10)
		that $V = A \oplus A^{\perp}$	
	b.	Let H be a Hilbert Space and f be any linear functional on H then there is a	(10)
		unique y in H such that $f(x) = \langle x, y \rangle$ for all x in H.	
