University of Sargodha

wider

M.A/M.Sc Part-1 / Composite, 1st-A/2015

Mathematics: V Topology & Functional Analysis

Maximum Marks: 100 Time Allowed: 3 Hours

Note: Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

Q1. Write short answers of the following:

(10x2=20)

10

- (i) Define homeomorphism and Topological Property.
- (ii) Show that any two equivalent norms on N define the same topology on N.
- (iii) Prove that interior of a subset of topological space is an open set.
- (iv) Give example of a reflexive space.
- (v) Prove that e very metric space is a Hausdorff space.
- (vi) What do you know about singletons in a T₁-space.

generated by $\{x_1, x_2, ..., x_n\}$ and $\{e_1, e_2, ..., e_n\}$ are the same.

(b) State and prove Riesz Representation theorem

- (vii) State the condition for a normed space to be an inner product space and give an example.
- (viii) Write all closed subsets of X= {a, b,c} with respect to its indiscrete topology
- (ix) For a subset A of a Hilbert space H show that A is closed subspace of H.
- (x) Prove Bessel's inequality.

Subjective Part

Subjective Fart	
Q2. (a) Prove that dual space X' of a normed space X is a Banach space (whether or not X is). \checkmark (b) Show that a bounded linear operator T: $D(T) \rightarrow Y$, where X is a normed space and Y a has an extension T': $(T) \rightarrow Y$ where T' is a bounded linear operator of norm $ T' = T $. 10	Banach space,
Q3. Prove that a family \Box of subsets of a topological space (X,τ) is a base for τ if and only in	f
(i) $X = U^-$, that is, every point of X is in some B $\in \square$	
(ii) For B_1 , $B_2 \in \Box$ and $x \in B_1 \cap B_2$, there is a $B \in \Box$ where $x \in B \subseteq B_1 \cap B_2$	10
χ (b) Let X= Π Xαbe the product space of topological spaces Xα, αείΩ. Prove that the αth product space of topological spaces Xα, αείΩ.	ojection
$\pi_{\alpha} : X \to X\alpha$ is both open and continuous.	10
Q4 (a) Prove that in a countably compact space X, every infinite subset of X has a limit point in	1 X. i0
(b) State and prove Cantor Intersection Theorem	10
Q5 (a) Prove that any two norms defined on a finite dimensional linear space are equivalent.	10
$ T = \sup_{\ x\ =1} Tx\ , x \in \mathbb{N}, T \in B(\mathbb{N}, \mathbb{M})$	10
Q6 (a) Prove that dual of \Box^1 is \Box^{∞} .	12
(b) Show that relation of 'being equivalent to 'among norms is an equivalence relation.	8
Q7. (a)Using Gram-Schmidt process show that if $\{x_1, x_2,, x_n\}$ be any (countable) linearly vectors in an inner product space V, then V contains an is orthonormal set $\{e_1, e_2,, e_n\}$ such	