

University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st -A/2013

Mathematics-V Topology & Functional Analysis

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

Q.1. Write short answer of the following.

i. Prove that every point p in a discrete space X has a finite local base. ii. If X be a co finite topological space, then find the closure of any subset A of X in both cases when A is finite or infinite. iii. Show that any subspace of first countable space is first countable. iv. Define Hausdorff space. v. Show that every finite T_1 space is discrete. vi. If (X, d) be a metric space, then for any $x, y \in X$ show that $d(x, y) \ge |d(x, A) - d(y, A)|$. vii. Find the largest possible value of c for linearly independent set of vectors $\{x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1)\}$ satisfying $a_1x_1 + a_2x_2 + a_3x_3 \ge c(|a_1| + |a_2| + |a_3|)$. viii. Prove by giving an example, that an infinite dimensional subspace need not to be closed. ix. Define Dual space. x. If Y is closed subspace of a Hilbert space H, then show that $Y = Y^{\perp \perp}$.

Subjective Part

,			
Q.2.	b.	Show that $\bar{A} = int(A) \cup b(A)$. If β is a class of subsets of a non-empty set X . Then show that β is a base for some topology on X if following two properties exist in X .	(10) (10)
0.3.	a.	topology of X if following two properties A : $X = \bigcup \{B : B \in \beta\}$ ii. For any $B, B^* \in \beta$, $B \cap B^*$ is the union of members of β . Prove that the function $f: X \to Y$ is continuous if and only if for every subset A of	(10)
Q.o.		$X, f[A] \subset f[A]$. If d be a metric on a non-empty set X, then show that the function	(10)
		$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is also a metric on X.	(10)
Q.4.	a. b.	State and prove Bair's Category theorem. In an inner product and the corresponding normed space prove the inequality	(10)
0.5.		$ \langle x, y \rangle \le x y $. Show that the space $C[a, b]$ is not an inner product space and hence not a Hilbert	(10)
Q.o.		space. If $T: D(T) \to Y$ be a linear operator, where $D(T) \subset X$ and X , Y are normed spaces,	(10)
0.6		then show that T is continuous iff T is bounded. State and prove F. Riesz's lemma.	(10)
Q.6.	a. b.	Show that every closed ball is a closed set. If a normed space X is finite dimensional, then prove that every linear operator on X	(10) (10)
Q.7.		is bounded. The following space H then show that the span of M is dense in	(10)
	b.	For any subset $M \neq \theta$ of a Hilbert space H , then show that the H if and only if $M^{\perp} = 0$	

Available at

www.mathcity.org