

University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st -A/2009

Mathematics-V Topology & Functional Analysis

Maximum Marks: 60

Note:

Time Allowed: 2:15 Hours

Subjective Part

Attempt any three questions.

	<i>(</i> -)	Let (X, \mathcal{I}) be a topological space and $A \subset X$, then $\overline{A} = A \cup A'$	(10)
Q.3.	(a)	Let (X, J) be a topological space.	(10)
Q.4.	(b) (a)	Define a normal space. Show that a metric space is a normal space. Define a Lebesgue number. Show that every sequentially compact metric	(10)
	(b)	space has a Lebesgue number. State the Cartesian product of two connected spaces X and Y is	(5)
-	(¢)	connected. Define a totally disconnected space. Show that a totally disconnected	(5)
Q.5.	(a)	space is a Hausdorrf space. Define continuity in metric spaces. Show that $T:(X,d) \to (Y,d')$ is	(10)
Q.o.		continuous iff the inverse image of every open subset of Y is open in X . Prove: An absolutely convergent series in a normed space x is convergent	(10)
	(b)	if and only if X is a Banach Space. Define a bounded linear operator. Show that if a normed space X is finite	(10).
Q.6.	(a)	dimensional, then every linear operator on x is bounded. Define dual of a linear space N. Let N be an n-dimensional linear space,	(10)
·	(b)	then its dual N° also is n-dimensional.	(10)
Q.7.	(a)		
	(b)	every $x \in X$, $\sum_{k=1}^{\infty} \langle x, e_k \rangle ^2 \le x ^2$. Let A be a closed subspace of a Hilbert space H . Then $H = A \oplus A^{\perp}$	(10)