Subject: Math: I/VIM.A/M.Sc: Part- II/Composite, 2nd - A/10Sig of Dy. Superintendent.

Roll 140.

Note:

Cut Here -----

University of Sargodha

M.A/M.Sc Part-II/Composite, 2nd -A/2010

Math: I/VI

Advance Analysis

Maximum Marks: 40

Time Allowed: 45 Min.

Signature of CSO: _____

Fictitious #:

Objective Part

Cutting, Erasing, overwriting and use of Lead Pencil are strictly prohibited. Only

	first attempt will be considered.			
Q.1 . <i>A</i>	A: Write true or false.	(10)		
i.	A well ordered set need not satisfy the descending chain condition.			
ii.	Suppose $f: A \to B$ & $g: A \to B$ are two order isomorphism then $f = g$.	• بو		
. iii.	A well ordered set is order isomorphic to one of its initial segments.	· _		
IV. - V	A set E equipped with the relation a divides of is totally ordered.			
vi.	If E is a null set in a measure space (X, \mathcal{A}, μ) then every subset of E is also a null set.			
- vii.	Limit of a monotone sequence of sets always exists.			
viii.	Product of two simple functions is a simple function.			
ix.	Countable union of countable sets is countable.			
Х. В.	For two sets A and B $A \times B = B \times A$ Fill in the Planks	(10)		
- В :	Fin in the Dianks. If $\{E_i\}^{\infty}$ is an increasing sequence of subsets of a set X then $\lim E_i =$			
1.	If $(E_n)_1$ is an increasing sequence of subject of a point $\frac{1}{n \to \infty} = \frac{1}{n}$	(P) this property		
ii.	If A and B are two sets in a measure space (X, A, μ) with $A \subseteq B$ then $\mu(A)$	$\leq \mu(D)$ this property		
	is called	if		
111.	Let μ be an outer measure on a set λ . then a subset E of λ is μ -inclusion of μ			
	$\mu'(A) = \mu (A B) + \underline{\qquad} \text{ noids for every } A \text{ in } P$	(Λ) .		
iv.	Let D be collection of all open sets in a topological space λ , then the <i>i</i> -algebraic space λ , the <i>i</i> -algebraic space λ is the <i>i</i> -algebraic space λ .	Ta generated by D I		
	called	of ϕ then the		
٧.	f If ϕ is a simple function and (a_1, a_2, \dots, a_n) is the set of the s	, _		
	Let u^* be an outer measure on a set X If $F \in P(X)$ and $u^*(F) = 0$ then			
∨1.	Let μ be an outer measure on a set X . If D , $I \in I(X)$ and $\mu(X) = 0$ and $\mu(X) = 0$			
	$\mu (E \cup F) = \underline{\qquad}$			
vii.	If $\{En\}_{1}^{\infty}$ is a decreasing sequence of subsets of a set X. then $\lim_{n \to \infty} E_n =$			
viii.	For a disjoint sequence $\{E_n\}_1^\infty$ in a measure space (X, A, μ) we have $\mu \left(\bigcup_{n=1}^\infty E_n\right)$	$_{n} = \sum_{n=1}^{\infty} \mu(E_{n}).$ this		
	property is called			

University of Sargodha

		M.A/M.Sc Part-II/Composite, 2nd -A/2010	ly.org
1. ·		Math: I/VI Advance Analysis	and maths
Aaxim	um M	arks: 60 Time Allowed: 2:15	
-	Hours		
		Subjective Part	
Note:		Attempt any three questions. All questions carry equal marks.	
Q.3.	a.	Given a measure space (X, \mathcal{A}, μ) . Let ϕ be a non-negative simple function on X.	(10)
		prove that the function $V(A) = \int_A \phi d\mu$ for $A \in \mathcal{A}$ is a measure.	
	b.	Show that the function	(10)
		$f(x) = \begin{cases} 0, & x \text{ is rational } x \in [0,1] \\ 1, & x \text{ is irrational } x \in [0,1] \end{cases}$	
		is not Riemann integrable but it is Lebesgue integrable.	
Q.4.	a.	Let μ^* be an outer measure on a set X and let $m(\mu^*)$ be the collection of all μ^*	(12)
		measurable subsets of X. Prove that μ^* when restricted to $m(\mu^*)$ is a measure	
		on $m(\mu^*)$.	
	b.	Let (X, A) be a measurable space and let $E \in P(X)$ then prove that the	(8)
x		characteristic function χ_E on X is A measurable function iff $E \in A$	
· Q.5.	a. •	Show that $J_{\frac{1}{2}}(x) = \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \sin x.$	(10)
	b.	Prove that $x^2 J_n''(x) = n(n-1)J_n(x) - (2n+1)xJ_{n+1}(x) + x^2 J_{n+2}(x)$	(10)
0.6.	а.	Let (X, \leq) & (X^1, \leq') be two well ordered sets. If X is order isomorphic to	(10)
~		X^{\dagger} , then prove that there exists only one order isomorphism between X and X^{\dagger} .	
	b.	Prove that the interval [0, 1] is not countable.	(10)
Q.7.	a.	Use series solution Frobensus method to solve the following differential	(12)
		equation $x(x-1)y'' + (3x-1)y' + y = 0$	(9)
	, b.	Show that the function $F(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}}$ generates polynomial $P_n(x)$	(8)
		then show that $\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$	
,			

Available at www.mathcity.org

ì