

University of Sargodha

M.A/M.Sc Part- II/Composite, 1st-A/2014

Mathematics: VI

Advanced Analysis

Maximum Marks: 100

Time Allowed: 3 Hours

		Objective Part Compulsory	
		Note: Write short answers of following questions each in 2-3 lines only on the answer book having 2 marks each (To be attempted on answer book).	
	Q. 1		10×2 =20
	(i)	State Russel's Paradox	
	(ii)	Let (X, A) be a measuable space. Show that if f and g are A -measurable, then so is fg .	
	(iii)	Prove that empty set is subset of every set.	
	(iv)	Show that the set of rational numbers $\mathbb Q$ is null in the Lebesgue measure space $(\mathbb R,\mathcal M_L,\mu_L)$ and $\mathbb Q^c\in\mathcal M_L$ with $\mu_L(Q^c)=\infty$.	
	(v)	Give a bijection to prove that $\mathbb{N}\approx 2\mathbb{N}$.	
	(vi)	Show by giving an example that a step function need not be a simple function.	
	(vii)	Write Fourier Legender series for $f(x) = \sin x$ (leave answer in integral form).	
	(viii)	Let \mathcal{A} be σ -algebra of subsets of a set X . For every sequence $\{A_k\}_1^{\infty}$ in \mathcal{A} , the two sets $\liminf_{k\to\infty}A_k, \limsup_{k\to\infty}A_k\in\mathcal{A}$.	,
	(ix)	Prove that $J_{\nu}(0)=0$.	
	(x)	Let $\{E_n\}_1^{\infty}$ be a sequence in a σ -algebra \mathcal{A} of subsets of a set X . Let $\{F_n\}_1^{\infty}$ be the sequence defined by $F_1 = E_1, F_n = E_n \setminus \bigcup_{i=1}^{n-1} E_i$ for $n \geq 2$. Show that	
-		$\bigcup_{1}^{\infty} E_n = \bigcup_{1}^{\infty} F_n.$	
		(Subjective Part)	
		Note: Attempt four out of six questions. All questions carry equal marks.	
	Q. 2	(a) Given a measure space (X, \mathcal{A}, μ) . Let $\{f_n\}_1^{\infty}$ be a bounded sequence of real valued \mathcal{A} -measurable functions on a set $D \in \mathcal{A}$. If for every $\eta > 0$, there exists an \mathcal{A} -measurable subset E of D with $\mu(E) < \frac{1}{\eta}$ such that $\lim_{n \to \infty} f_n(x)$ exists for every $x \in D \setminus E$, then prove that $\lim_{n \to \infty} f_n(x)$ exists a.e. on D .	10

1	l .	
	(b) Show that the Legender polynomials are orthogonal over $[-1,1]$.	10
Q.3	(a) Prove that if f and g are A -measurable functions on a set $D \in A$ in a measure space (X, A, μ) , $f + g$ is A -measurable.	10
301	(b) Solve the Legender equation $(1-x^2)y'' - 2xy' + n(n+1)y = 0$ of degree n about the point $x = 0$ using Frobenius method.	10
Q.4	(a) Prove that every interval is Lebesgue measurable.	10
	(b) Prove that $J_1(x) = rac{2}{\pi} \int\limits_0^{rac{\pi}{2}} \sin(x \sin heta) \sin heta d heta$	10
Q. 5	(a) Let ψ be simple function defined on a set D in a measure space (X, \mathcal{A}, μ) . If D_1 and D_2 are disjoint measurable subsets of D with $D = D_1 \cup D_2$, then prove that $\int\limits_D \psi d\mu = \int\limits_{D_1} \psi d\mu + \int\limits_{D_2} \psi d\mu$.	10
	(b) Let X be a set of ordinals, then prove that • $\bigcup X$ is an ordinal	10
	• $\bigcup X$ is least upper bound for X .	
Q. 6	(a) Given a measure space (X, \mathcal{A}, μ) . Let f_1 and f_2 be bounded real valued \mathcal{A} -measurable functions on a set $D \in \mathcal{A}$ with $\mu(D) < \infty$. If $f_1 = f_2$ a.e. on D , then $\int_D f_1 d\mu = \int_D f_2 d\mu$	10
The	(b)Let $S(A)$ be the collection of all initial segments in a well-ordered set A and let $S(A)$ be ordered by set inclusion, then prove that $A \approx S(A)$	10
Q. 7	(a) Given a measure space (X, \mathcal{A}, μ) . Let $\{f_n\}_1^{\infty}$ be a bounded sequence of real valued \mathcal{A} -measurable functions on a set $D \in \mathcal{A}$ with $\mu(D) < \infty$. Let f be a bounded real valued \mathcal{A} -measurable function on D . If $f_n \to f$ a.e. on D , then prove that	10
	$\lim_{n o\infty}\int\limits_{D} f_{n}-f d\mu=0.$	•
	$\chi(\mathfrak{b}) \text{Prove that } 2^{\aleph_0} = c$	10