University of Sargodha

M.A/M.Sc Part-II/Composite, 1st-A/2013

Mathematics: I/VI

Advance Analysis

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

Q.1.

Write short answers of the following in 2 or 3 lines only on your answer sheet.

2×10

- (i) Suppose that $A \approx B$ and $C \approx D$, then show that $A \times C \approx B \times D$.
- (ii) Let $\{E_n\}_1^{\infty}$ be a sequence in a σ -algebra \mathcal{A} of subsets of a set X. Let $\{F_n\}_1^{\infty}$ be the sequence defined by $F_1 = E_1, F_n = E_n \setminus \bigcup_{i=1}^{n-1} E_i$ for $n \geq 2$. Show that $\bigcup_{i=1}^{\infty} E_n = \bigcup_{i=1}^{\infty} F_n$.
- (iii) Given any two sets x and y, show that there is a unique set z whose elements are x and y.
- (iv) Let X be a nonempty set and μ^* , be an outer measure on P(X). If $\mu^*(E) = 0$ for some $E \in P(X)$, then show that every subset E_0 of E is μ^* -measurable.
- (v) Show that the Lebesgue measure space $(\mathbb{R}, \mathfrak{M}_L, \mu_L)$ is σ -finite measure space.
- (vi) Show that the converse of the statement "every step function is a simple function" is not true.
- (vii) Show that if f = 0 a.e. on a set $D \in A$ in a measure space (X, A, μ) , then $\int_{\Omega} f d\mu = 0$.
- (viii) Prove that the singletons are null sets in the Lebesgue measure space $(\mathbb{R}, \mathcal{M}_L, \mu_L)$.
- (ix). Show that $\int_{0}^{\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
- (x) State Zorn's Lemma.

(Sub)	ective	Part
(wub)	ecrive	I ditti

- Q: 2 (a) Given a measure space (X, A, μ) . Let f_1 and f_2 be bounded real valued A-measurable functions on a set $D \in A$ with $\mu(D) < \infty$. If $f_1 = f_2$ a.e. on D, then $\int_D f_1 d\mu = \int_D f_2 d\mu$.
 - (b) Let G be a group, then assuming Zorn's lemma, prove that G has a maximal abelian subgroup.
- Q.3 (a) Prove that $\mu_L^*(I) = l(I)$, where I is a finite closed interval.
 - (b) Prove that the function $\exp(\frac{z}{2}(t-\frac{1}{t}))$ generate the Bessel functions.
- Q.4 (a) Given a measure space (X, A, μ) . Let $\{f_n\}_{1}^{\infty}$ be a sequence of extended real valued A-measurable functions on a set $D \in A$ and $f = \lim_{n \to \infty} f_n$. Then prove that $\lim_{n \to \infty} \int_D f_n d\mu = \int_D f d\mu$.
 - (b) Prove that $(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$.
- Q. 5 (a) Show that if f and g are A-measurable functions on a set $D \in A$ in a measure space (X, A, μ) . Then prove that f + g and $\frac{f}{g}$, $g \neq 0$ are A-measurable.
- (b)Solve Bessel's equation by Frobenius method.
- Q. 6 (a) Given a measure space (X, A, μ) . Let f, f_1, f_2 be bounded real valued Ameasurable functions on a set $D \in A$ with $\mu(D) < \infty$. Then prove that
 - $\int_{D} c \int d\mu = c \int_{D} f d\mu$, where c is a constant.
 - $\int_{D} (f_1 + f_2) d\mu = \int_{D} f_1 d\mu + \int_{D} f_2 d\mu$
 - (b) Prove that the interval [0, 1] is uncountable.
- Q. 7 (a) Given a measure space (X, A, μ) . Let f be a bounded real valued Ameasurable function on a set $D \in A$ in a measure space (X, A, μ) . If $f \ge 0$ a.e. on D and $\int f d\mu = 0$, then prove that f = 0 a.e. on D.

06

08

(b) Evaluate the integral $\int_{-1}^{1} P_n(x) dx$.