University of Sargodha

M.A/M.Sc Part- II/Composite, 1st-A/2014

Mathematics: VII Methods of Mathematical Physics

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective

Q. 1. Give the short answers of the followings:

i). State principle of superposition,

ii). State existence theorem

iii). Define eigenvalue problem

iv). Define orthogonal functions.

v). State Lagrange's identity

vi). Define Laplace transform

vii). Define pole of a function of order n also give special example.

viii). Show that $L\{f'(t)\} = s F(s) - f(0)$

ix). Define a functional

x). Define homogeneous Fredhalm integral equation

SUBJECTIVE

Q 2. a). Solve $\frac{d^2x}{dt^2} + \lambda x = 0$ for all possible values of the parameter λ with the

boundary conditions
$$x(0) = 0$$
, $x(a) = 0$. (10)

b). Determine eigenvalues and eignfunctions of the system $\frac{d^2u}{dt^2} + (\lambda + 1)u = 0$

with the boundary conditions,
$$x(0) = 0$$
, $x(\pi) = 0$. (10)

Q 3. a). Prove that, for Laplace transform, the following relation holds:

$$L\{f''(t)\} = s''F(s) - s''^{-1}f(0) - s''^{-2}f(0) - \dots, f''^{-1}(0)$$
 (10)

b). Find Laplace transform of Bessel function of first kind of order zero, i.e.,

$$J_0(t) = \frac{1}{\pi} \int_0^{\pi} \cos(t \sin \theta) d\theta.$$
 (10)

Q 4. a). Find the Fourier transform of $f(x) = \frac{a}{x^2 + a^2}$ for all possible values

- **b).** Find the Fourier sine transform of $f(x) = e^{-x} \cos x$ (10)
- **Q 5.** (a). Construct Green's function associated with the problem $u'' + \lambda u = 0$, with bc's u(0)=0, u(1)=0 (10)
 - b). Solve the problem by using Green's function

$$\frac{du^2}{dx^2} = f(x) \quad \text{with bc's} \quad \text{u(0)} = \alpha, u(l) = \beta$$
 (10)

Q 6. a). Define stationary value and find the external curve of the functional J, given by

$$J = \int_{A}^{B} y'(1 + x^{2} y') dx,$$

which passing through A(1,3) and B(2,5). (10)

- b). State and prove fundamental theorem of calculus of variations (one independent variable).(10)
- Q 7. a). Solve the Fredhalm integral equation, given by

$$\phi(s) = s + \lambda \int_{0}^{1} (st^{2} + s^{2}t) \phi(t) dt.$$
 (10)

 b). Obtain the general method for obtaining the solution of the Fredholm I.E. of second kind when kernel is separable. (10)