University of Sargodha

M.A/M.Sc Part- II/Composite, 1st -A/2009

Math: II/VII Methods of Mathematical Physics

MathCity.org
Merging Man and maths

Maxidum Marks: 60

Time Allowed: 2:15 Hours

Subjective Part

Note:

Attempt any three questions. All questions carry equal marks.

Q.2 a) Given the following Ordinary / Partial differential equations, state which of them are linear/non linear and Homogeneous /non Homogeneous.

10

$$i) \ u_{xx} - \frac{1}{\alpha^2} u_t = 0$$

ii)
$$5y'' + xy' + 7y = x^2 + 7x$$

iii)
$$u'' + p(x)u' + q(x)u = 0$$

$$(iv) u'' + 3u' + 2u = e^x$$

$$v) u' + x Cosu = Sinx$$

b) Find the Fourier series for the function
$$f(t) = \begin{cases} 0 & -\pi \le t < 0 \\ \frac{t}{\pi} & 0 < t \le \pi \end{cases}$$

with $f(t+2\pi)=f(t)$

2.3 a) A string of length $\frac{a}{2}$ is stretched between two fixed points and is made to

vibrate by plucking it at the middle point through a short distance $\frac{h}{4}$. Formulate and Solve the

b) Drive one-dimensional heat equation.

10

$$\frac{d^2u}{dx^2} + \lambda u(x) = 0 \quad 0 \le x \le l$$

$$u'(0) = 0 = u'(l)$$
(4+4+2)

Verify the following results

There are infinite numbers of eigen values with a smallest but not largest.

The nth eigen function has exactly (n-1) zeroes.

The eigen functions are orthogonal.

b) Construct the green function of the following system

10

$$\left[\left(1 - x^2 \right) u' \right]' - \frac{h^2}{1 - x^2} u + \lambda r(x) u = 0$$

$$u(1) = finite$$

$$u(-1) = fixite$$

$$u(-1) = finite$$

1.5 a) Show that
$$F_x \{ f''(x) \} = k \sqrt{\frac{2}{\pi}} f(0) - k^2 F_x(k) \text{ if } f(x) \text{ is real, } |f(x)| \to 0 \text{ and } |f'(x)| \to 0 \text{ as } x \to \infty 10$$

v'(0) = 0

b) To Solv The Differential Equation by using Lap Lace Transformation

$$y'' + 4y' + 6y = 1 + e^{-t}$$

6 a) Find the equation of the path in space down which a particle will fall from One paint to another point in the shortest possible time.

Available at www.mathcity.org