University of Sargodha

M.A/M.Sc Part-II/Composite, 1st-A/2014

Mathematics: VIII Numerical Analysis

Maximum Marks: 100 Time Allowed: 3 Hours

Note: Objective part is compulsory. Attempt five questions from subjective part by selecting two questions from section-I, two questions from section-II and one questions from section-III.

Objective Part

- Q.1. Give short answers to the following questions. Cutting, overwriting, erasing and lead pencil are strictly prohibited. Only first attempt will be considered. (10*2)
- (i) If Δ , ∇ and δ denotes the forward, backward and central differences then show that

$$\mu\delta = \frac{\nabla + \Delta}{2}$$

(ii) Construct the forward difference table for the given data

	х	0.1	0.3	0.5	0.7	0.9	1.1	1.3	
	у	0.003	0.067	0.148	0.248	0.370	0.518	0.697	

- (iii) What do you mean by inverse interpolation, what are the limitations for using Newton's interpolation method and write down the formula for Newton's forward difference interpolation method?
- (iv) Write down the types of errors and discuss convergence criteria for a numerical computation.
- (v) What do you mean by modified Trapezoidal rule?
- (vi) Give the general expression of modified Euler's method?
- (vii) Write down the error term generated in Trapezoidal rule?
- (viii) Discuss the types of finite differences by giving at least one example to each method.
 - (ix) What do you mean by iterative method and discuss the stability criteria of iterative schemes?
 - (x) What is the difference between Bisection method and the method of false position?

Subjective Part (16*5 = 80 Marks)

Section-I

Q.2. Use Bisection method to find out the root of the function describing the drag coefficient of parachutist given by

$$f(c) = \frac{667.38}{c} (1 - \exp(-0.146843c)) - 40$$

where c = 12 to c = 16. Perform at least two iterations.

Q.3. Find out the highest Eigen value and the corresponding Eigen vector for the following matrix

$$A = \begin{bmatrix} 3.556 & -1.778 & 0 \\ -1.778 & 3.556 & -1.778 \\ 0 & -1.778 & 3.556 \end{bmatrix}$$

Use the vector $(1.778, 0, 1.778)^T$ as an initial guess.

Q.4. Find the solution of the following system of Eqs. by using Gauss-Seidal iteration method for

$$x_{1} - \frac{1}{4}x_{2} - \frac{1}{4}x_{3} = \frac{1}{2}$$

$$-\frac{1}{4}x_{1} + x_{2} - \frac{1}{4}x_{4} = \frac{1}{2}$$

$$-\frac{1}{4}x_{1} + x_{3} - \frac{1}{4}x_{4} = \frac{1}{4}$$

$$-\frac{1}{4}x_{2} - \frac{1}{4}x_{3} + x_{4} = \frac{1}{4}$$

Calculate the first three iterations.

Section-II

Q.5. Prove that

$$\int_{a}^{b} f(x)dx = (b-a)\frac{f(a)+f(b)}{2}$$

and use Simpson's 3/8 rule to find the value of

the function y(80) for the given data

	2 (/	- /			<u> </u>					
į	X	0	10	20	30	40	50	60	70	80
	у	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

Q.6. Use Newton's Quadratic interpolation formula to calculate the value of the function at $x = \frac{2\pi}{3}$ when

$$f(x) = \frac{x + \cos x}{2}; \quad -\pi \le x \le \pi$$

Use step size as
$$\frac{\pi}{4}$$
.

Q.7. Using the Taylor's Series method, find the solution of the initial value problem

$$\frac{dy}{dt} = t + y; y(1) = 0$$

at t = 1.2 with h = 0.1 and compare the result with closed form solution (exact solution).

Section-III

Q.8. Use the concept of vector form of Euler's method to solve the given differential Eq. by calculating the first two iterations when

$$\frac{d^2y}{dx^2} + 0.5 \frac{dy}{dx} + 7y = 0$$

Subjected to y(0) = 4 and y'(0) = 0, where the value of step size is equal to 0.5.

Q.9. Use the predictor-corrector method to find the approximate value of y(2) if y(t) is the solution of the Eq.

$$\frac{dy}{dt} = \frac{1}{2}(t+y)$$

where y(0) = 2, y(0.5) = 2.636, y(1) = 3.595 and y(0) = 4.968.

