Roll No.

Subject: Math: IV-VI(x)/IX-XI(x) M.A/M.Sc: Part- II / Composite, 1st -A/2011

Sig of Dy. Superintendent. ---- Cut Here -----

Available at http://www.MathCity.org

University of Sargodha

M.A/M.Sc Part-II / Composite, 1st -A/2011

Math: IV-VI(x)/IX-XI(x) Operations Research

Maximum Marks: 40				Fictitious #:				
Time Allowed: 45 Min. <u>O</u>			Objective Part	S	ignature of CSO:			
Note:	Cutting, first atte	Erasing, overv mpt will be con	writing and use o nsidered.	f Lead Pencil are	e strictly prohibited. Only			
Q1:	(a) Fill in the fo	llowing blanks			(10)			
i.	The three ba	sic components in	n an LP model are va	riables, objectives ar	nd			
ii.	The constraints variables can 't assume negative values this restriction is called							
<i>iii.</i>	The study of t	 the sensitivity of c	optimal solution is ca	lled				
ív.	In LP modal the amount by which left hand side exceeds the minimum limits represents							
v.	Graphical solution of an LP modal solution space consists of many feasible points.							
vi.	A resource is designated as if the variables of the modal use the resource completely.							
vii.	If the objective function is parallel to the binding constraints, then the objective function will assume the value called optima							
viii.	A dual constra	int is defined for	each	variables.				
ix. Transportation model can be converted to a regular transportation method by using the								
x.	A is a sequence of distinct arcs that join two nodes through other nodes							
(b) W	regardless of t rite true or fai	ne direction of flo	ow in each arcs.		(5)			
(<i>)</i> •••	The feesible re							
	The M-mothod is also called method of new ski							
	Revised simple	a is also called the	ulou of penalty.					
iv	A dual constra	Revised simplex method is better than simplex method. T/F						
۷.	he transsnip	nent model recog	dizes that it may be	cheaper to ship thro	bugh the transient nodes			
(0) 5-	before reaching	ig the final destina	ation.		T/ F			
(C) Se	lect the correc	tanswer	made in the second s		(5)			
1.	Feasible solution space is said to form set if line joining two distinct feasible points							
	fails in the set	•						
••	(a) convex	(b) concave	(c) negative	(d) positive				
11.	The arcs repre	The arcs represent the routes linking the source and the						
•••	(a) lines	(b) curves	(c) destinations	(d) result				
111.	The relationship between the method of and the simplex method can be							
	explained on t							
	(a) multiplier	(b) constant	(c) variables	(d) transshipm	ent			
ív.	The optimum solution.	solution of a linea	r program is always	associated with a	feasible			
	(a) basic	(b) non-basic	(c) zero	(d) non-zero				

٧.	The transportation algorithm follows the exact steps of method.	
	(a) M-method (b) Multiplier (c) Graphical (d) simplex	
Q2. W	rite short answer of the following.	(20)
1.	Define pseudo-optimal solution for an LP model.	
2.	Explain dual optimality condition.	
3.	Explain the Northwest-Corner method.	
4.	Define a basic solution of a LP model.	
5.	Define pure and mixed integer program.	
6.	What is the logic of M-technique.	
7.	Define assignment model.	
8.	Define duality theorem.	
9.	Explain the term branching in integer programming.	

10. Write a note on dual feasibility condition.

i	
<u></u>	
ii	
iii	
	
iv	
v	
vi	
vii	
viii	
ix	
x	
· · · · · · · · · · · · · · · · · · ·	

Available at http://www.MathCity.org

M.A/M.Sc Part- II/Composit

Operations Research Math: IV-VI(x)/IX-XI(x)

Maximum Marks: 60

Time Allowed: 2:15 Hours

(12)

Subjective Part

Note:

Attempt any five questions. All questions carry equal marks.

Q: 3. A company produces both interior and exterior paints from two raw materials M1

and M2 as given below: Tons of raw material per ton of

Max. daily Interior Exterior availability(tons) paint paint 24 4 6 **Raw material M1** 6 2 1 **Raw material M2** 1 5 Profit/ ton (Rs 1000)

A market survey indicates that the daily demand for interior paint cannot exceed that of the exterior paint by more than one ton. Also, maximum daily demand of interior paint is 2 tons. Use graphical method to determine how the two products should be mixed to obtain the maximum daily profit. (12)

Q: 4 Use Simplex method to minimize $z = 2x_1 - x_2 + 4x_3$

Subject to $5x_1 + 2x_2 - 3x_3 \ge -7$ $2x_1 - 2x_2 + 3_3 \le 8$ $x_1 + 2x_2 \ge 4$ all variables are nonnegative (12)

Q: 5 Use two-phase method solve the problem

Minimize: $z = x_1 + 2x_2 + 3x_3$ Subject to: $x_1 - 2x_2 + x_3 \ge 1$ $3x_1 - 4x_2 + 6x_3 \le 8$ $2x_1 - 4x_2 + 2x_3 \le 2$ all variables are nonnegative

Q: 6 Use M-technique Minimize: $z = 10 x_1 + 2x_2 - x_3$ Subject to: $x_1 + x_2 \le 50$, $x_1 + x_2 \le 10$ $x_2 + x_3 \leq 30$, $x_2 + x_3 \geq 7$ all variables are nonnegative (12) Q: 7 Solve the parametric linear programming Maximize: $z = (3+t)x_1 + (2+2t)x_2 + (5-t)x_3$ Subject to: $x_1 + 2x_2 + 2x_3 \le 40$

 $x_1 + 4x_2 \le 30$ all variables are nonnegative **Q: 8** The optimal basis for the following LP is $B = (P_1, P_4)$, write the dual and find its optimal (12) solution using the optimal primal basis.

 $3x_1 + 2x_3 \le 60$

Maximize: $z = 3x_1 + 5x_2$ Subject to: $x_1 + 2x_2 + x_3 = 5$ $-x_1 + 3x_2 + 2x_4 = 2$ all variables are nonnegative

(12)

Q: 9 using branch and bound algorithm solve the following problem

Maximize:
$$z = 3x_1 + 4x_2$$

Subject to: $2x_1 + x_2 \le 6$
 $2x_1 + 3x_2 \le 9$ $x_1 \le 1, x_2 \ge 2$

Q: 10 A car rental company is faced with an allocation problem resulting from the rental agreements that allow cars to be returned to locations other than those at which they were originally rented. At the present time there are two locations with 15 and 13 surplus cars, respectively, and four locations requiring 9, 6, 7 and 9 cars resp. unit transformation costs between the locations are

	Dest. 1	Dest. 2	Dest.3	Dest. 4
Source 1	45	17	21	30
Source 2	14	18	19	31

Solve this transportation problem.

Available at http://www.MathCity.org

(12)

(12)