University of Sargodha

M.A/M.Sc Part- II/Composite, 1st-A/2014

Mathematics: XIII

Number Theory

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

	Objective Part		
Q. 1	Give short answers.	20	
(i)	If $(273, 81) = 3$ then find $< 273, 81 >$.		
(ii)	If p is prime and p/ab where a and b are integers then either p/a		Ì
-	or p/b .		
(iii)ر	Define order of an integer modulo m.		
(iv)	Find the primitive root of 3.		
(v)	Evaluate $(\frac{2}{43})$.		
(vi)	Define Mobius function.		
(vii)	State the necessary condition that the class number of a field is 1.		ļ
(viii)	State the property that is equivalent to unique factorization in		}
	R[heta]		
(ix)	Define symmetric polynomial.		
(x)	Define Norm of α where $\alpha \in R(\theta)$.		
	(Subjective Part)		
	(555,555,555,555,555,555,555,555,555,55		
	Note: Attempt any four questions.		
Q. 2	(a) Prove that if z is an integer and $y, z > 0$ then	.10	
	xy . x .		-
	$\left[\frac{[xy]}{z}\right] = \left[\frac{x}{yz}\right].$		1
	·		
}	(b) If $F(n) = \sum_{d n} f(d)$ and F is multiplicative then prove that f	10	
	is multiplicative.		
Q.3	(a) if $(b,c)=1$ then show that $(a,bc)=(a,b)(a,c)$.	10	
	(b) Show that if $n > 1$, then the sum of the positive integers less	10	
	than n and prime to it is $\frac{n\phi(n)}{2}$, where $\phi(n)$ is Eulers function.	10	
Q.4	(a) State and prove Chinese Remainder Theorem.	. 10	-
	(b) Given that 2 is a primitive root of 9, construct a table of	10	
	indices and use to solve the following congruence		
	$10x \equiv 8 \pmod{18}.$		
0.5			
Q. 5	(a) Let $R(\theta)$ be an algebraic number field then prove that every	10	
	$\alpha \in R(\theta)$ is an algebraic number and every field conjugate of α is		
	also a conjugate of α .		ł
	(b) If α is a zero of the monic polynomial with coefficients in Z,	10	
Q. 6	then prove that α is an algebraic integer.	- 0	ſ
2.0	 (a) Prove that R√-5 is not a unique factorization domain. (b) Prove that the product ideal AB oes not depend on the rep- 	10	
	resentation chosen for ideals A and B .	10	ľ
Q. 7	(a) Prove that the discriminant of the cyclotomic field K_p is	10	
			1
	$(-1)^{\frac{p-1}{2}}p^{p-2}$.		
		-	
1	(b) An element of $R[\theta]$ is a unit iff its norm is ± 1 .	10	ļ