	ibject: Math: IV-VI(iv		y. Superintendent.
. *	Availabl	Cut Here e at http://www.MathCi	
		iversity of Sargod	
	<u>M.A/</u>	M.Sc Part-II / Composite, 1 st -A/	<u>′2011</u>
	Math:	IV-VI(iv)/IX-XI(iv) Rings & M	<u>lodules</u>
Maximum	Marks: 40		Fictitious #:
Time Allo	wed: 45 Min.	Objective Part	Signature of CSO:
Note:	Cutting, Erasing, first attempt will b	overwriting and use of Lead Pen be considered.	icil are strictly prohibited. Only
Q.1	(a) Encircle the correc	ct choice in the following MCQ's	(5)
(i)	A ring which is commu	itative with identity element and havi	ing no zero divisor is
	calleed		
	(a) Division Ring	(b) Integral domain	
	(c) Prime Ring	(d) Primary ring	
(ii)	If $R \& R'$ be arbitrary ring $\phi: R \to R'$ is ring homomorphism such that		
	$\phi(a) = 0 \forall \ a \in R$	then $Ker \phi = $	
	(a) R'	(b) 0	
	(c) R	(d) None of these	
(iii)	Degree of zero polynomial is		
	(a) 1 (b) 0	(c) Not defined	(d) 2
(iv)	Every R- module is isomorphic to a of a free R-module		
	(a) Direct summand	(b) Quotient m	odule
(v)	(c) Projective module A ring with zero characteristic is		
	(a) Z	(b) Z_2	
	(c) Z_3	(d) $Z_2 \times Z_3$	
(b)		Fill in the Blanks	(5)
(i)	A field is a commutative	e ring.	

In monic polynomial the leading coefficient of the polynomial is ----- of R. If U is an ideal of a ring R then homomorphic image of $R = \dots$

In the ring Z of integers the primary ideals are those of the form

An R-module M is said to be irreducible if its only submodule are

(ii) (iii)

(iv)

(v)

- (i) In the ring of rational numbers the subring of integers is an ideal.
- (ii) If R is commutative then all left and right ideal ideals of R are ideals of R.
- (iii) All sub-rings of Z_m are ideals.
- (iv) The degree of polynomial $4x^3 + 2x^2 + x + 4$ is 4
- (v) A finite extension E of F is always algebraic.
- (vi) A finitely generated module is always a free modules.
- (vii) A submodule of a free module over a ring R is always a free module.
- (viii) The rings of integers is not a principal ideal ring
- (ix) The ring of integers is not a principal ideal ring.
- (x) The ring $Z_6 = \{0,1,2,3,4,5\}$ w.r.t. + modulo 6 contains no zero divisor.

Q.2

SHORT QUESTIONS

(20)

Define the following

- i) Torsion Module
- ii) Principal Module and principal ideal ring
- iii) Algebraic element
- iv) Show that the homomorphic image of a

commutative ring is commutative.

- v) Euclidean domain
- vi) Primary Ideal
- vii) If R is a commutative ring and $a \in R$ then show that $aR = \{ar : r \in R\}$ is a two sided ideal.
- viii) Canonical Homomorphism of a Module
- ix) Quotient Module
- x) Is $1+x^2$ irreducible over the field of real numbers? Justify your answer

University of Sargodha

M.A/M.Sc Part- II/Composite, 1st -A/2011

Math: IV-VI(iv)/IX-XI(iv) Rings & Modules

Maximum Marks: 60

Time Allowed: 2:15 Hours

Subjective Part

Note: Attempt any four questions, selecting two question from each section. All questions carry equal marks.

SECTION I

- 3(a) Let R be commutative ring with identity prove that an ideal M of R is maximal (8) if and only if R/M is a field.
- Let R be a ring with $a^2 = a \ \forall \ a \in R$ prove that

 (i) $2a = 0 \ \forall \ a \in R$ (ii) $ab = ba \ \forall \ a \in R$
- 4(a) If R is integral domain then prove that R[x] the polynomial ring over R is integral domain. (8)
- (b) Let R be a ring and $f: R \to R$ be a ring homomorphism. Show that the set $S = \{a \in R: f(a) = a\} \text{ is a subring of R.}$
- Let D be unique factorization Domain, then prove that every irreducible element (15) of D[x] is prime.

SECTION II

- 6(a) Let R be a Euclidean ring then show that any finitely generated R-module M is (8) the direct sum of a finite number of cyclic submodule.
- (b) If A and B are submodule of a module C, then prove that A+B is a submodule (7) of C.
- 7(a) If M is R-module and if $r \in R$. Prove that the set $rM = \{rm : m \in M\}$ is an (8) R-module.
- (b) It T is a homorphism of M on to N with K(T) = A, Prove that N is isomorphic to (7) M/A.
- 8 Show that there exists a free R-module on any set S. (15)