

University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st -A/2013

Mathematics-I

Real Analysis

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

12028 (20)

Q.1. Write short answer of the following.

i. What do you mean by the least upper bound of a set? ii. Write a short note on the derivative of a function. iii. Define a continuous function and give an example of a continuous function on R. iv. Differentiate between differential and differential coefficient of a function. v. Give an example of a function which is undefined at a certain point but has got the limit at that point. vi. What is the difference between local maximum and absolute maximum of a function over an interval? vii. When a function of two variables is said to be differentiable at a point? viii. Define the terms "partition" of an interval [a, b] and "refinement of a partition" of an interval [a, b]. ix. Show that the total variation of a function f on an interval [a, b] is zero if f is a constant function. x. Define a convergent sequence of functions.

Subjective Part

Give the definition of an ordered field and prove that the following statements are (10)(i) If $x \neq 0$ then $x^2 > 0$, in particular 1 > 0(ii) If 0 < x < y then $0 < \frac{1}{y} < \frac{1}{x}$ true in every ordered field.

b. Suppose that $y_n \to \ell$ as $n \to \infty$ and $Z_n \to \ell$ as $n \to \infty$. If $y_n \le x_n \le z_n$ (n = 1, 2, ..., n), then prove that $x_n \to \ell$ as $n \to \infty$. (10) $(n = 1, 2, \dots, n)$, then prove that $x_n \to \ell$ as $n \to \infty$.

Let A: = R and let f be defined by $f(x) = \begin{bmatrix} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{bmatrix}$ (10)prove that f is

not continuous at any point of R. b. If z be a function of two variables x and y and $x = r \cos \theta$, y $\sin \theta$, prove that (10)

 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r}$

Q.4. a. If P^* is a refinement of a partition P of an interval [a, b], then prove that (10)

(10)

Let $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ show that $f(x) = \begin{bmatrix} x \cos \frac{\pi}{2x}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$ (10)on [0,1]

 $S_n(x) = x^n (0 \le x \le 1)$. Show that x = 1 is a point of non-uniform (10)b. Let convergence of the sequence.

a. If f is continuous on [a, b], then show that $f \in R(\alpha)$ on [a, b]. (10)b. If x = u - v + w, $y = u^2 - v^2 - w^2$ and $z = u^3 + v$, evaluate the Jacobian (10)

 $\partial(x,y,z)$

Q.7. a. Show that the series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^4}$ is uniformly and absolutely convergent for all x. (10)

(10)b. Prove Cauchy's generalized theorem of the mean.

> Available at www.mathcity.org