		M.A/M.Sc Part-1	/ Composite, 2 ⁿ	^d -A/2010		
		Math- IV		lechanics		
laximum Marks: 40		Objective Part		Fictitious #:		
ime All	owed: 45 Min.		•	Signature of C	50:	
ote:	first attem	rasing, overwriting pt will be considered		l Pencil are strictly	prohibit	ed. Onl
1(a)	Tick the correct option in the following					05
	(i) If \vec{V} is irro	tational vector function	on, then $\nabla \times \vec{A} =$			05
	(a) 1	(b) 2	(c) 3	(d) 0		
	(ii) Scale factor	rs for Cartesian coord	dinate system are			
	(a) 1,1, 1	(b) 1, 2, 1	(c) 2, 1,1	(d) 1,1,2		
	(iii) The directi	on cosines of $x_3 - ax$	xis are			
	(a) (0,1,0)	(b) (0,0,1) (c)) (1,0,0)	(d) (0,0,0)	
	(iv) Kronecker delta symbols is a Cartesian tensor of rank					
	(a) 1	(b) 2	(c) 3	(d) 4		
	(v) Physically the rate of change of scalar field at a certain point in normal					
	direction is said to be					
	(a) gradien	t (b) divergence	(c) directional of	derivative (d) none	; ;	
1(b)	Identify the following as true or False					
	(i) Temperature with in a body is a scalar point function. T / F					10
	(ii) Angular velocity vector measures the rate of translation of a rigid					
	body. T / F					
	(iii) Angle between the surfaces at a point is the angle between the normals to					
	the surfaces at that point. T / F					
	(iv) A right handed orthogonal transformation is proper transformation. T / F					•
	(v) Laplace operator is the square root of the del operator. T / F					
	(vi) A tensor of order zero is called a scalar invariant T / F					
	(vii) Tensors of different ranks can be added. T / F					
	(viii) Subtraction of tensors is associative. T / F					
	(ix) The most general rigid body motion is the linear motion T /			T / F		
	(x) Physically	y scalar triple product	t gives the volum	e of sphere.	T / F	
1(c)	Fill in the blanks					05
	(i) $\underline{\omega}$ is independent of the choice of the					
	 (ii) The rotation of a rigid body about a point can be described by using angular coordinates. 					
	(iii) Time derivatives of Euler's angles represents the					
	(iv)		n cam be shrunk			
	(v)	is a vecto		-	11 - 0	

Q.2. Solve the followings:

i. If $\nabla \varphi = 2r^4 \vec{r}$ find φ ii. Calculate the area of the region R bounded by a simple closed curve C. iii. Prove that u_1, u_2, u_3 , are orthogonal curvilinear coordinates, then $|\nabla uj| = h_j^{-1}$ iv. If φ is a differentiable scalar point function, then prove that $\nabla \times (\nabla \varphi) = 0$ v. State Gauss divergence theorem. vi. Show that the hoop of mass "m" and radius $a/\sqrt{2}$ is equimomental with circular plate of mass "m" and radius "a". vii. Show that if $\varphi(x, y, z)$ is any solution of Laplace's equation, then show that $\nabla \varphi$ is irrotational. viii. Show that rotational K.E of a rigid body is $\frac{1}{2} \underline{\omega}.T$ ix. Calculate body cone semi vertical angle if all components of the angular velocity are same. x. Express linear displacement in terms of the angular displacement.

3 11-· · · ÷ ÷ ۰, ۰. ÷

Available at http://www.MathCity.org

(20)

University of Sargodha

M.A/M.Sc Part-1 / Composite, 2nd -A/2010

Mechanics

<u>Math- IV</u>

Maximum Marks: 60

Time Allowed: 2:15 Hours

Subjective Part

3	(a) Verify the Stokes theorem for the vector function			
	$\vec{A} = z^2 i + x^2 j + y^2 k$ when S is the surface of the parabolied	10		
	$z = 4 - x^2 - y^2$, lying above xy-plane			
	(b) Find the transformation matrix for a rotation of angle $\frac{\pi}{4}$ in the negative	10		
	sense about $x_1 - axis$.			
4	(a) Evaluate			
	$\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \frac{1}{1+x^{2}+y^{2}+z^{2}} dz dy dx$			
	(b)Show that the finite rotation of rigid body don't commute, but			
	infinitesimal rotation commute. Also show that sum of angular velocities	10		
	is also an angular velocity.			
5	(a) State and prove parallel axis theorem.			
	(b) Find the moment of inertia of a solid homogeneous cube with edge length			
	2a about the concurrent axes and also their product of inertia.			
6	(a) Show that any one of the three principal moments of inertia cannot be			
	greater than the sum of other two.			
	(b) Find the K.E. and angular momentum in terms of Eulerian angles.			
7	(a) Derive Euler's equations of motion for a rigid body with a fixed point in a			
	body.			
	(b) A rigid body is rotating about a fixed point with angular velocity $\underline{\omega}$.			
	Assuming The coordinate axes coincide with the principal axes, If T stands			
	for K.E. and \underline{G} for external torque acting on the body. Show that			
	$\frac{dT}{dt} = \vec{G}.\underline{\omega}$			