		Universi			_			
	M.A/M.Sc Part-1 / Composite, 1 st -A/2011 Math. IV							
Aaximum Marks: 40 Time Allowed: 45 Min.		<u>Math: IV</u>		<u>Mechanic</u>		щ.		
		<u>Objective</u> Part		Fictitious #: Signature of CSO:				
lote:	Cutting, Eras	ing, overwriting will be consider	g and use of					
1(a)	Tick the correct or	tion in the follow	wing	<u></u>	· · · · · ·	<u> </u>		
	(i) The direction co	osines of $x_3 - ax$	cis are				05	
	a) (0,0,1)	b) (1,0,0)	_ c	(0,1,0)		d) (0,1,1)		
	(ii) If \vec{A} is conserv	vative field, ther	1					
	a) $\nabla . \vec{A} = 0$	b) $\nabla \times \vec{A} =$	0 c	both "a" &	"b"	d) none		
	(iii) Time derivativ	ve of Euler's ang	les represen	s the				
	a) linear velocit	y b) angular	velocity o) linear acce	leration	d) none		
	(iv) The most ger	eral rigid body	motion is		motion.			
	a) rectilinear	b) screw	Ċ) projectile	d) si	mple harmoi	nic	
	(v) Mechanics of	f the elastic solid				•		
	a) liquids	b) . solids	c) gases	• .	d) all of the	ese	
1(b)	(i) Temperature v	with in a body is	a vector poin	it function.		T /	F 10	
	(ii) First partial derivatives are the directional derivatives in the direction of							
	coordinate axe	es.	, i			Τ /	F	
	(iii) In curvilinear coordinate system the coordinate curves are straight lines. T \neq F							
	(iv) An index whic	h is repeated in	a given expr	ession is calle	d free ind			i
	(v) The table of direction cosines is called transformation matrix. T / F							
	(vi) The operator Δ is called a scalar invariant operator if its form is unchanged							
		tion of coordina				T /	_	
	(Hydrodynami			B	مال لماريك	Τ/ . Τ /		
	(viii) The defining condition of a rigid is called the constraint of rigidity. T / F (ix) A rigid body can have no motion of translation and rotation. T / F							
							1	i
	(x) In rotational motion moment of inertia plays the same role as mass in linear motion T / F							
	monon					- /	•	

- (iii) An axis of symmetry is always a _____ axis.
- (iv) The rotation of a rigid body about a point can be described by using _ angular coordinate system
- (v) For non trivial solution the angular velocity of the system is _
- Q. No 2 Write short answers of the following
- i) If $r^2 = x_1^2 x_2^2 + x_3^2$, then show that $\frac{\partial r}{\partial x_k} = \frac{x_k}{r}$
- ii) If $\varphi = r^2 e^{-r}$. Find $\nabla \varphi$.
- iii) Determine the constant "a" so that $\vec{V} = (x+3y)\hat{i} + (y-2x)\hat{j} + (x+az)\hat{k}$ is solenoidal.

(20)

- iv) Find the area of the region bounded by the ellipse.
- v) Express the gradient of a scalar point function in cartesian coordinates by using curvilinear coordinate system.
- vi) If $A_i \& B_i$ are two first order tensors, then show that their product $A_i B_i$ is a second order tensor.
- vii) Differentiate between inertial and non inertial frame of references.
- viii) Using operators show that the fixed and rotating coordinate systems can be written as $D_f = D_r + \bar{\omega}X$

ix) Show that
$$I = Md^2$$

x) In torque free motion of a rigid body abut "O" has equal principal axis of inertia. Prove that it must rotate with constant angular velocity.

÷ <u>. Anderware</u> . .

University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st -A/2011

Mechanics

Time Allowed: 2:15 Hours

Maximum Marks: 60

Subjective Part

Note:

Attempt any three questions. All questions carry equal marks.

Math: IV

Q.No.3

- a) Verify the Stokes 's theorem in the plane $\bar{A} = (2x y)\hat{i} yz\hat{j} y^2z\hat{k}$, where "S" is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and "C" is its boundary.
- Derive an expression for curl of a vector in curvilinear coordinate system. b)

O:No.4

- a) Prove that $\nabla \left[\frac{\vec{A} \cdot \vec{r}}{r^3} \right] + \nabla \times \left[\frac{\vec{A} \cdot \times \vec{r}}{r^3} \right] = \vec{0}$, for any arbitrary constant vector \vec{A} .
- b) Verify that the transformation between b the coordinates x_1, x_2, x_3

and
$$x'_1, x'_2, x'_3$$
 given by $x'_1 = \frac{1}{3}(2x_1 + 2x_2 - x_3) x'_2 = \frac{1}{3}(2x_1 - x_2 + 2x_3), x'_3 = \frac{1}{3}(-x_1 + 2x_2 + 2x_3)$

is orthogonal and left handed. A vector \overline{A} referred in $ox_1x_2x_3$ has components (2,1,-2). Find its components in the new system $ox_1'x_2'x_3'$.

⊘.№0.5

- a) Show that the finite rotation of rigid body don't commute, but infinitesimal rotations commute. Also show that sum of angular velocities is also an angular velocity.
- b) If $\hat{i} + \hat{j} + \hat{k}$ denotes the unit vectors associated with a rotating coordinate system, obtain

expressions for the derivatives $\frac{d\hat{i}}{dt}$ etc by an alternative method.

Q.No.6

a) Find the moment of inertia of a uniform triangular lamina of a mass "M" about one of its sides.

b) Describe momental ellipsoid.

Q.No 7

- Derive Euler's equation for rigid body motion in a force field. Use these to obtain a a) complete solution of problem of free rotation of a symmetrical rigid body.
- Describe how-Euler's equation can be used to discuss the motion of solid cylinder rolling (n) down on an inclined plane.