University of Sargodha

M.A/M. Sc. Part-1/Composite, 2nd-A/2015

Mathematics: II

Linear Algebra

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part (Compulsory)

Q.1. Write short answers of the following on your answer sheet.
i. Define normal subgroup. ii. Show that centralizer of a subset X in a group G is normal. iii. Differentiate between order of a group and order of a element. iv. Explain why a group of order 47 cannot have proper subgroups. v. Let G be a group and a ∈ G. Let H = {a^K | K ∈ Z}, then prove that H is a subgroup of G. vi. Define integral domain and give example of it. vii. If R is a ring and x² = x, ∀x ∈ R, then prove that R is commutative. viii. Define ideal of a ring. ix. Define characteristic of a ring. x. Define subspace of a vector space.

Subjective Part

Q.2.	a.~	Let $G = \langle a \rangle$ be finite cyclic group generated by a and $O(a) = n$, then a^K also generates G if and only if $(K, n) = 1$.	(10)
	b.~	Let H and K be two normal subgroups of G , then prove that HK is also normal in G .	(10)
Q.3.	a .	A group G is abelian if and only if the factor group $G/Z(G)$ is cyclic.	(10)
· · · - · · · ¬	b. <u>~</u>	Let (Z, t) and (E, t) be the two groups. Define a mapping $\phi: Z \to E$ such that $\phi(n) = 2n \forall b \in Z$ then show that ϕ is an isomorphism.	(10)
Q.4.	a. ³	Prove that any two cyclic groups of same order are isomorphic to each other.	(10)
	b.~	State and prove Cayley's theorem.	(10)
Q.5.	a	A commutative ring R is an integral domain if and only if cancellation law under multiplication holds in R .	(10)
	Ø×	Let R be a commutative ring with identity and P be an ideal of R , then P is prime ideal if and only if R/P is an integral domain.	(10)
Q.6.	a .	If U and W are subspaces of a vector space V , then show that $U+W$ is the smallest subspace containing both U and V .	(10)
	b.	<u>-</u>	(10)
Q.7.	a.	If T is an isomorphism of V_1 onto V_2 , then prove that T maps a basis of V_1 onto a basis of V_2 .	(10)
	b.	Let $T: U \to V$ be a linear transformation from an n dimensional vector space U to a vector space V over the same field F , then prove that $\dim N(T) + \dim R(T) = n$	(10)