

University of Sargodha

M.A/M.Sc Part- 1/Composite, 2nd-A/2014

Mathematics: II

Algebra

Maximum Marks: 100

Time Allowed: 3 Hours

Objective Part

Compulsory

				• •
l	Q. 1	Answer the following Short Questions.	20	
١	(i)	Define simple groups.	ì	
	(ii)	Define Characteristic subgroup.	. [
Ì	(iii)	Show that every subgroup of index two in a group is normal.	Ì	
		Define index of a subgroup.	1	٠.
ľ	(v)&	σ		
١		Define torsion element.	·	
1		Show that $[a,bc] = [a,b][a,c]^b$	i	
Ì	(viii)	Find the dual basis ϕ_1, ϕ_2 corresponding to the basis $v_1 =$	1	
1	(****)	$(2,1), v_2 = (3,1).$	1	•
ł	(ix)	Show that the annihilator of a subset W of a vector space V is a	ļ	
-	(14)	subspace of V*.	. 1	l
ł	/w\	Show that annihilator of $W \subset V$ is a subspace of V^* .	•	ı
٠ [(x)	(Subjective Part)		l
Ì		(Sabjective 1 art)		
ļ		Note: Attempt any four questions. All questions carry equal		
Ì		marks.		ŀ
	Q. 2	(a) State and prove Langrang's theorem.	10	
į	Q. 2	(b) If $\phi: G \to G'$ is an epimorphism, then show that G/K is	10	ļ
	٠.	isomorphic to G' where $K = Ker\phi$.		
		, ' = ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	10	l
	Q.3	(a) Prove that any two conjugate subgroups of a group are isomor-	10	ļ
	1	phic.	10	
		(b) State and prove Sylow's 2nd theorem.	10	
	Q.4	(a) If R is commutative ring with unity having (0), R as its only	10	ı
	ļ	ideals then show that R is a field.	10	١.
] " ••	(b) If R is a ring in which $a^2 = a \forall a \in R$. Then show that R is a	10	
		commutative Ring.		}
	S.A	(a) If V and W be two vector spaces over the same field F and T	10	
	1 -	is an isomorphism from V to W then show that T mapps basis of		ľ
	1	V onto basis of W.		
		(b) Suppose $\{v_1, v_2, \dots, v_n\}$ is a basis of vector space V	10	
	1	over K.Let $\phi_1, \phi_2, \dots, \phi_n$ be the linear functionals defined		1
		by $\phi_i(u_j) = \delta_{ij} =$		
	1	$\int f_i f_i = i $	ì	
	, ,	$\left\{\begin{array}{l} 1ifi=j \\ 0ifi\neq i \end{array}\right.$		1
		(30.77)	ŀ	l
		then show that $\{\phi_1, \phi_2, \dots, \phi_n\}$ is a basis of V .	[ļ
	Q. 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	
	1	of any linearly independent set is linearly independent.	}	-
	1	(b) State and prove Cayley Hamilton theorem . *	10	
	Q. 7	(a) If V has finite dimension and $dimV = dimU$. Suppose T:	10	1
	-	V o U is any linear mapping then show that T is nonsingular iff		
		it is isomorphism.		-
	1	(b) Suppose v_1, v_2, \dots, v_n are non zero eigenvectors	10	- {
		corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Then		
	}	show that v_1, v_2, \dots, v_n are linearly independent.	1	-