University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st-A/2014

Mathematics: II

Algebra

Maximum Marks: 100

Time Allowed: 3 Hours

		Objective Part Compulsory	
	Q. 1 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)	Answer the following Short Questions. Define Hamiltonian group. Show that centralizer of a subset X in a group G is normal. Define simple groups. If H is a subgroup of a group G then show that $H \subseteq N_G(H)$. If every element of a group G is its own inverse the show that G is commutative. Define Characteristic of a ring. Prove that Boolean ring is commutative. Show that the set $\{U = (x, -x) : x \in \Re\}$ is a subspace of \Re^2 . If $\{v_1 = (2, 1), v_2 = (3, 1)\}$ be basis of \Re^2 then find the dual basis $\{\phi_1, \phi_2\}$. If S, T be two subsets of a vector space V , then show that $S \subseteq T$	20
	V .	implies $L(S) \subseteq L(T)$. (Subjective Part)	}
		Note: Attempt any four questions. All questions carry equal marks.	
	Q. 2	(a) Show that the number of elements in a conjugacy class C_a of an element a in a group G is equal to the index of its normalizer in G .	10
		(b) Show that any two sylow p-subgroup of a group are conjugate.	10
	Q.3	(a) If H and K be two subgroups of a group G then show that HK is also a subgroup of G if and only if $HK = KH$.	10
		(b) State and prove Sylow's 1st theorem.	10
	Q.4	(a) Let G be a group with $\xi(G)$ as its centre and $I(G)$ the group of its inner automorphisms. Then prove that $G/\xi(G)$ is isomorphic to $I(G)$.	10
	1	(b) If J_1 and J_2 be two ideals of a ring R . Then show that $J_1, J_2 = \{r_1, r_2 : r_1 \in J_1, r_2 \in J_2\}$ is an ideal of R .	10
	Q. 5	(a) Consider the vector space $P(t)$ with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)$. Apply Gram-Schmidt algorithm to the set $\{1, t, t^2\}$ to obtained an orthogonal set $\{f_0, f_1, f_2\}$ with integeral coefficients.	10
		(b) Let A be a real positive definite matrix. Then show that the function $\langle u, v \rangle = u^T A v$ is an inner product on \Re^n .	10
	Q. 6	(a) (a) If $F: V \to W$ be a nonsingular linear mapping then the image of any linearly independent set is linearly independent.	10
	1-	(b) State and prove Cayley Hamilton theorem .	10
	Q. 7	(a) If V has finite dimension and $dimV = dimU$. Suppose T:	10
	V	$V \rightarrow U$ is any linear mapping then show that T is nonsingular iff	1
		it is isomorphism.	10
	1-	(b) Suppose v_1, v_2, \dots, v_n are non zero eigenvectors corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Then	10
		show that v_1, v_2, \dots, v_n are linearly independent.	
	L	1-4 000 00000000000000000000000000000000	<u></u>