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Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

Write short answer of the following.

i. If H is subgroup of a group G then show that H SNgH). ii. Define torsion
element. iii. Show that [a, bc] = [a, b][a, cl’. iv. Define simple groups. V. Define
Characteristic subgroup. vi. Find the dual basis ¢4, P, corresponding to the basis
vi=(2,1),v2=(3,1) vii. Show that the annihilator of a subset W of a vector space
V is a subspace of viii. If ¥ be a vector space and S is a subset of V then show

that L(L(S)) = L(S)  ix. Find characteristic pplynomial A(t) of the matrix [i i]
x. Show that the mapping F(x,y,2) = (Ix|, y + z) is not linear.

Subiective Part

If H and K be two subgroups of a group G then show that HK is also a subgroup of
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Gifandonly it HK = KH.
State and prove Langrang’s theorem.

Show that the number of elements in a conjugacy class C, of an element a in a
group G is equal to the index of its normalizer in G.

If ¢:G— G'is an epimorphism, then show that G/K is isomorphic to G’
where K = Ker¢.

If ¥ and W be two vector spaces over the same field F and T is an isomorphism
from ¥ to W then show that 7' mapps basis of ¥ onto basis of W.

Suppose {Vi, V2,....., Va} i5 @ basis of vector space ¥ over K. Let ¢4, [ Py Pnbe

1ifi = j
the linear functionals defined by ¢i(Vj) =d;j = { i J then show that

Oifi#j
{1, Py vr o P} is 2 basis of V.
If ¥ has finite dimension and dimV = dimU. Suppose T : V-U is any linear
mapping then show that T'is nonsingular iff it is isomorphism.

Suppose Vi, Vzye.eooene , Vp are non Zzero eigenvectors corresponding to distinct
eigenvalues A4, 43, .. ... An. Then show that vi, Vayeeeeevnn , v, are linearly
independent.

Consider the vector space P(f) with inner product < f,.g>= fol F@®)g(t). Apply
Gram-Schmidt algorithm to the set {1, 1, #} to obtain an orthogonal set {fo, f1, 2}

.with integral coefficients.

Let A be a real positive definite matrix. Then show that the function <y, v> = ul Av

is an inner product on R™.

If F© V—W be a nonsingular linear mapping then the image of any linearly
independent set is linearly independent.

State and prove Cayley Hamilton theorem.
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