University of Sargodha

M.A/M.Sc Part-I, 1st Annual Exam 2008

		17	MANAGER HIVE	I Auxu	al examp par	2
		M	lathematics- II		Algebra	1
Maximum Marks: 40 Time Allowed: 45 Min.				Fictitious #: Signature of CSO:		
Note:	Cutting, Eraprohibited.	sing, c	overwriting, ink	remove	r and use o	of Lead Pencil is strictly
	Q1.(a) Tick (/) the	correct choice in	the follo	wing MCQ'	s. (5+10+5)
	(i) The relatio	n of cor	njugacy between	elements	of a group is	an relation.
1. anti-symmetric					2. order	
	3. equivaler	nce		4. None of these		
	(ii) A group o	of all wh	ose elements ar	ite	order is calle	ed a group.
. •	1. quaternic	n		<u>ر</u> ۾ اين آهي	2. dihedral	
	3. symmetri	ic		*	4. periodic	
	(iii) The cente	er of the	group of quatern	nions is		_·
	1. {I, -I}			2. A	-i}	
	3. {j, -j}			4.1	, -k}	
	(iv) IF S, T as	e subse	ts of V, then L(S	UT) = L((S) L(T)
	1. U	2. +	3	4. ∩		
	(v) Any two e	igen ve	ctors correspondi	ng to two	distinct eige	en values of an orthogonal
	1. Orthogona	1	2. Bijective	3.	Parallel	4. None of these
	(b) Write tru	e or fa	lse.			•
				•		
			c image of a cycli up is the direct p			'I' s A = < a : a ² = 1> and B =
	$\langle b : b^2 =$		ab in mo anon h	Juliot OX	an anogroup	'[/F

P.T.O

4

(iii) If a subgroup H contains the normalizer of a sylow p-subgroup of a group G, then H is its own normalizer. T/F (iv) If p is a prime number, then the ring of integers mod p, is a field. T/F (v) If H and K are subgroups of a group G then HK is also a subgroup of G if and only if HK= KH. T/F (vi) There is one-one correspondence between any two right cosets of H in G. T/F (vii) If G be a group and H a singleton subset of G then $N_G(H)=C_G(H)$ where $H=\{a\}$ T/F (viii) If V is a vector space over F then α .0=0 T/F (ix) If V is a finite dimensional and W is a subspace of V then $d(V/W) = \dim V_1$ - dim (x) Any field F is an integral domain. T/F <u>الأناء</u> ند (c) Fill in the blanks. (i) The identity element in a group G is-----A function $\varphi: A \rightarrow B$ is said to be ----- if $B \varphi(A) = B$ (ii) The centre of a group G is always ----- subgroup. (iii) Let R be a commutative ring with unit element whose only ideals are (0) & R (iv) Itself then R is -----If U and W be the subspace of a vector space V then their intersection is (v) ----- of V.

P.T.O

Q.2. i.	Write the short answers. Answers should be one or two lines. (20) Define torsion free group.
ii.	Give an example of a non-abelian group all of whose sub-groups are normal.
iii.	Show that the ring of integers mod 6 under addition and multiplication mod 6 is not a field.
iv.	Give two proper normal subgroups of the group of quaternion.
v.	Show that in the ring of integers Z, $6Z = \{12, -6, 0, +6, +12,\}$ is not a prime ideal.
vi.	Prove that the annihililater A(W) of a sub space W of a vector space V is a subspace of
	V*.
vii.	Define zero devisors.
viii.	Define Manimal ideal
ix.	Every field is an integral domain.
x.	If V is a vector space over F then $\alpha.0 = 0$

University of Sargodha

M.A/M.Sc Part-I, 1st Annual Exam 2008

Mathematics- II

Algebra

Maximum Marks: 60

Time Allowed: 2:15 Hours

New Pattern

Subjective Part

Note: Attempt any three questions. All questions carry equal marks.

Q3.a) If G is a finite group of composite-order, then show that G has non-trivial subgroups. Prove that any non-commutative group has at least six elements. (10)b) Let H, K be sub-groups of a group G. Show that HK is a sub-group of G if and only if HK= KH. (10)Q4.a) Let H be a sub-group G and define a set N(H) by $N(H) = \{ a \in G \mid aHa^{-1} = H \}.$ Show that N(H) forms a sub-group of G and H is normal in G if and only if N(H) =G. b) Show that the relation of conjugacy between sub-groups of a group is an equivalence relation. Write down the conjugacy classes of the dihedral group. $D_4 = \langle a, b; a^4 = b^2 = (ab)^2 = 1 \rangle$. (5+5)Q5. a). Prove that every fully invariant subgroup is characteristic and every characteristic subgroup is normal in G. (5+5)b). State and prove Sylow's third theorem. (10)Q6.(a) If R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if R/M is a field. (10)(b) If U, V are ideals of a ring R and UV the set of all elements that can be written as finite sums of elements of the form up where $u \in U$ and $v \in V$. Then prove that UV is an ideal of a ring R and $UV \subset U \cap V$. (10)(a) Let W_1 and W_2 be sub-spaces of a vector space V(F). Show that

Notes, e-books and papers for MSc Mathematics http://www.MathCity.org/MSc

 $\dim (W_1 + W_2) = \dim W_1 + W_2 - \dim (W_1 \cap W_2)$

(b) If V and W are of dimensions m and n, respectively, over F, then Hom (V, W) is

of dimension mn over F.

(10)

(10)