University of Sargodha

M.A/M. Sc. Part-1/Composite, 2nd-A/2015

Mathematics: III Complex Analysis & Differential Geometry

Maximum Marks: 100 Time Allowed: 3 Hours

	Objective Part	
Q. 1	Give short answers.	20
(i)	Write Cauchy Riemann equations in polar form.	İ
(ii)	Verify that $\cos z$ has primitive period 2π .	
(iii)	Evaluate $Log(-1+i)$.	
(iv)	Define inverse of the curve.	
(v)	Write Maclaurin's series.	
(vi)	Discuss the nature of singularity for $f(Z) = \frac{e^z}{(z-1)^3}$.	
(vii)	Define one parameter family of surfaces.	
(viii)	Define curvilinear coordinates.	
(ix)	If $\kappa = 0$ then prove that curve is a straight line.	
(x)	Define minimal surface.	
i 	(Subjective Part)	
	Note: Attempt any four questions.	
Q. 2	(a) Derive Cauchy Riemann equations in polar form.	12
	(b) Calculate Z for which $\sin Z = 2i$.	08'
Q.3	(a) Evaluate $ \int_c \overline{Z} dZ $ where C is a semi unit circle.	10
	(b) Let $f(Z)$ be analytic on and within boundary of C of a simply	10
	connected region D and let "a" be any point within C then prove	
	that $f^{(n)}(a) = \frac{n!}{2\pi i} \int_c \frac{f(Z)}{(Z-a)^{n+1}} dZ.$	
] .		

Ŧ

Q. No.	Questions	Marks
Q.4	(a) Show that the function $f(Z) = Exp(c(Z + \frac{1}{z}))$ can be expanded as Lauret's series $\sum_{-\infty}^{\infty} a_n Z^n$ for $ Z > 0$ where	10
	$a_n=rac{1}{2\pi}\int_0^{2\pi}e^{2c\cos\theta}\cos n heta d heta$ (b) Evaluate the following integral by Residue theorem Z^2-Z+1	10
Q. 5	$\int_{c} \frac{Z^{2} - Z + 1}{(Z - 1)(Z - 4)(Z + 3)} dZ$ where C is the circle $ Z = 5$. (a) Prove that $\int_{0}^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^{2} - b^{2}}}$	10
	where $a > b > 0$. (b) find κ and τ for the curve $x = e^t, y = e^{-t}, z = -\sqrt{2} t.$	10
Q. 6	(a) Prove that Under the transformation $W=\frac{1}{2}$, the line $y=x-1$ is mapped into a circle $U^2+V^2-U-V=0.$	10
Q. 7	(b) If $\rho r + \frac{d}{ds}(\frac{\rho'}{r}) = 0$ then prove that curve is spherical. (a) Show that the tangent plane at the point common to the surface $a(xy + yz + zx) = xyz$ and sphere $x^2 + y^2 + z^2 = b^2$ makes intercepts on the axis whose sum is constant.	10
	(b) For the surface $\overrightarrow{r} = (x, y, c \tan^{-1} \frac{y}{x})$	10
	Find first order and second order magnitudes.	<u>. </u>

ź