University of Sargodha

M.A/M.Sc Part-1/Composite, 2nd-A/2014

Mathematics: III Complex Analysis & Differential Geometry

Maximum Marks: 100

Time Allowed: 3 Hours

Objective Part

Compulsory

Q. 1	Give short answers.	20
(i)	Define level curves.	
(ii)	Define period of a function.	
(iii)	Evaluate $Log(-1+i)$.	
(iv)	Evaluate the integral $\int_{c} \frac{\cosh z}{(z+5)(z+3)}$ where $C: z = 1$.	
(v)	State Liouville's theorem.	
(vi)	Discuss the nature of singularity for $f(Z) = e^{\frac{1}{2s}}$.	
(vii)	Define a devlopable surface.	
(viii)	Along the helix $x = (a \cos t, a \sin t, bt)$, find the unit tangent vector	
	independent of x^{i} .	ľ
(ix)	iv. Define line of curvature and write down its equation.	
(x)	Prove that $H[\overrightarrow{n} \overrightarrow{n_2} \overrightarrow{r_1}] = EN - FM$.	
! 	(Subjective Part)	
	Note: Attempt any four questions.	
Q. 2	(a) Prove that a harmonic function satisfies the differential equation $\frac{\partial^2 U}{\partial R \partial R} = 0$.	10
ł	(b) Prove that $U(r,\theta) = r^n \cos n\theta$ is harmonic. Find $V(r,\theta)$ and	10
	the original function $f(Z)$	
Q.3	(a) State and prove Moreras Theorem.	10
	(b) Expand $log(1+z)$ in a Taylor's series about $z=0$ and deter-	10
	mine the region of convergence for the resulting series. Find the	
	Laurents expansion of]
1 "	1	
	$f(z) = \frac{1}{(z^2+1)(z^2+2)}$	
	in the domain $1 < z < \sqrt{2}$.	

Questions	Marks
(a) Find the nature and location of singularities of the function $f(Z) = \frac{1}{Z(e^2)-1}$ and prove that $f(Z)$ can be expanded as $\frac{1}{Z^2} + \frac{1}{2Z} + \frac{1}{12} + \frac{Z^2}{360} + \dots$	10
(b) Find the residues of the function $f(Z) = \frac{e^z}{(Z - \pi i)^4}.$	10
(a) Prove that $\cot z = \frac{1}{2} + 2z \sum_{n=1}^{\infty} \frac{1}{z^2 - n^2 \pi^2}.$	10
(b) Prove that for any curve $[\overrightarrow{b}', \overrightarrow{b}'', \overrightarrow{b}'''] = \tau^3(\kappa'\tau - \kappa\tau') = \tau^5 \frac{d}{ds}(\frac{\kappa}{\tau}).$	10
(a) Prove that Under the transformation $W = \frac{1}{Z-1}$, the circle $ Z = 2$ in Z-plane is mapped into the circle	10
$3(U^2+V^2)=2U+1$ in w-plane. (b) Derive an equation of involute and also find the curvature of	10-
involute. (a) Prove that the edge of regression of osculating developable is	10
(b) For the surface	10
	 (a) Find the nature and location of singularities of the function f(Z) = 1/(z²)-1 and prove that f(Z) can be expanded as

(m)