Subject: Math- III
 M.A/M.Sc: Part- I / Composite, 2nd - A/10

 Sig of Dy. Superintendent.
 Onto Hore

Roll No.

	J. S. Por more and	
Cut Here	و بها رم راه گذارین دو این برد برد راد هم رو این می او این ایند.	کا خربی پر بزری ها ده سعه ره بهری ردا ۱۸ کا هان

University of Sargodha

	 M A	M.Sc Part-1 / Compos	site $2^{nd} - \Lambda/2010$	
	Math- III	Complex Analysis &		ometry
Maxim	um Marks: 40	Objective Part	Fictitio	
Time Allowed: 45 Min.			Signatu	re of CSO:
Note:	Cutting, Erasing, o attempt will be con		Lead Pencil are	strictly prohibited. Only first
Q.1.A: i. ii. iii. iv. v.		s singularity at c. Removable on $z = f(t)$ such that the in : mple Curve c. Closs sually depends upon the Indefinite Integral $y = a \sin \theta$, $z = 0$ is called angent c. Normal uation of:	d. Isolate atial point and the sed Curve d 	e terminal point are the same I. Piecewise Curve d. Definite Integral
B:	continuous at $Z = Z_0$, if range of f is contained in	$\lim_{Z \to Z_0} f(Z) = \underline{\qquad}$ the $\underline{\qquad}$	11 axis. iv. I	(5) ii. A complex function f is ii. If $f(Z) = Z - \overline{Z}$ then the if there is a hole in the region, oherical indicatrix lies on the
C: i.	Write True or False. The domain of the function	n $f(Z) = \frac{1}{\alpha^2 + 1}$ is all of	complex numbers	(10)
ii. iii.	$Log Z = Log Z + i\theta \text{ is a s}$ The function $f(Z) = Z^2 + i\theta$	single valued function.		
iv. v. vi. vii. viii.	$\ell ni = \frac{1}{2}\pi i$ There are complex Z such There are three types of sin A curve $ax^2 + 2hxy + by^2$ $(\vec{R} - \vec{r}) \cdot \vec{t} = 0$ is called the	ngularities. + $2gx + 2fy + c = 0$ is an		<i>ıb</i> > 0

۲.	A curve traced on the surface of a cylinder and cutting the generator at the constant angle is called
	spherical indicatrix.

The equation $\underline{c} = \underline{r} + \underline{p}\underline{n}$ is called the equation of principal normal.

1.2.	Give s	short ai	aswers.		•		•	(20)
		· · ·		· · · · · ·	 			

Define Piecewise smooth curve. ii. Define Isolated singularity.

ii. Investigate zeros, Poles and singularities of $f(Z) = e^{2Z}$ at $Z = \infty$. iv. Evaluate the integral $\cdot \cosh Z + Z^2$

 $\frac{\cosh Z + Z^2}{(Z+5)(Z+3)}dz$ where C:|Z|=2 v. State Cauchy's Integral formula. vi. Find the

adius of convergence of the following Power Series $\sum (\log n)^n Z^n$ vii. Define Multi valued function. iii. Define one parametric family of surface. ix. Prove that $\vec{r}''.\vec{r}'''=K(K''-Kr^2-K^3)$

. Define equation of Normal Plane.

·····	
· .	
· · · · · · · · · · · · · · · · · · ·	
······	
<u></u>	
· · · · · · · · · · · · · · · · · · ·	

University of Sargodha

M.A/M.Sc Part-1 / Composite, 2nd -A/2010

Math-III Complex Analysis & Differential Geometry

Maximum Marks: 60

Time Allowed: 2:15 Hours

Subjective Part

Note:	Attempt any three questions in all. Selecting at least one question from each section					
		<u>Section-I</u>	e Stational Stational Stationa Stational Stational Stationas Stationas Stationas Stationas Stationas Stationas Stati			
Q.3.	a.	Represent graphically all points Z s.t. $\left \frac{Z+1}{Z-1} \right = 4$ Find the center and radius of	(10)			
	b.	the locus of Z. Prove that $\operatorname{Re}[(1+i)^{\log(1+i)}] = 2^{\frac{1}{4}\log 2} e^{-\pi^{2}/16} Cos\left(\frac{\pi}{4}\log 2\right)$	(10)			
Q.4.	a.	Prove that the value of $\int_C \frac{1}{Z} dZ$ where C is a semi circular arc $ Z = 1$ from -1 to -1,	(10)			
Q.5.	b. a.	is $-\pi i$ or πi according to the arc lies above or below the real axis. State and prove the Argument Principal Theorem. Prove that a bilinear transformation maps circles or straight lines into circles or straight lines.	(10) (10)			
	b.	Prove that $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)^3} = \frac{\pi}{8a^3}$ Provided that $R(a)$ is positive. What is the value of this integral when $R(a)$ is negative.	(10)			
		<u>Section- II</u>				
Q.6.	a. b.	State and prove Meunier's Theorem. Find the envelope of the plane $\frac{x}{a+u} + \frac{y}{b+u} + \frac{Z}{c+u} = 1$	(10) (10)			
Q.7.	a.	where u is a parameter. Also determine the edge of regression. Prove that the normal at a point P of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{Z^2}{c^2} = 1$ meets the coordinate planes in G ₁ , G ₂ , G ₃ . Prove that the ratios	(10)			
	b.	$PG_1: PG_2: PG_3$ are constant. Prove that the shortest distance between the principal normal at consecutive points, distant S apart, is $\frac{S\rho}{\sqrt{\rho^2 + \sigma^2}}$ and that it divides the curvature in the ratio $\rho^2: \sigma^2$.	(10)			