UNIVERSITY OF THE PUNJAB, LAHORE

Mathematics Part-II A/2007

Examination:- M.A/M.Sc.

Subject:- Advanced Analysis Paper - I TIME ALLOWED: 3 hrs. MAX. MARKS: 100

Roll No.

Attempt any FIVE questions in all selecting at least ONE Question from each Section.

SECTION ONE

- $\sqrt{Q.t}$ (a) Let α, β be two cardinal numbers such that $\alpha \leq \beta$. Show that for any cardinal γ (i) $\alpha^{\gamma} \leq \beta^{\gamma}$ and (ii) $\gamma^{\alpha} \leq \gamma^{\beta}$.
- (b) The union of a countable family of countable sets is countable. (10+10)
 (c) Q.2 (a) Prove that cancellation laws under multiplication and addition do not hold for ordinal numbers.
 - (b) If $\alpha = \#(A)$ and $\beta = \#(B)$ then what is the relation between A and B so that $\alpha < \beta$.

SECTION-II

- Q.3 (a) Define a finite and a σ finite measure on a σ algebra. Show that counting measure on N, the set of natural numbers is not finite but a σ finite measure.
 - (b) Show that if A and B are two sets in a $\sigma a \lg ebra$ with $A \subseteq B^{\bullet}$ then $m(A) \leq m(B)$. If $m(A) < \infty$ then m(B - A) = m(B) - m(A). (10+10)
- Q.4 (a) Define a Lebesgue measurable set. Show that the interval (a, ∞) is measurable for every $a \in R$.
 - \checkmark (b)Find the Lebesgue measure of the following subsets of R, that is,

 $B = [3,5] \cup [-4,-2], Q, Q'$ and R.

(10+10)

- Q.5 (a)Let f, g be two measurable functions defined on the same measurable set D. Show that the following sets are measurable.
 - (i) $\{x \in D : f(x) > g(x)\}$
 - (ii) $\{x \in D : f(x) < g(x)\}$
 - (iii) $\{x \in D : f(x) \le g(x)\}$
 - (iv) $\{x \in D : f(x) = g(x)\}.$

(b)Let f be an extended real-valued measurable non-negative function defined over a measurable set D. Show that there is a sequence of simple measurable functions S_n such that $S_n(x) \to f(x)$ for all $x \in D$. (10+10)

Available at www.mathcity.org

Q.6 (a) Let {f_n} be a sequence of non-negative integable functions defined on a measurable set E such that lim f_n = f on E and lim inf ∫ f_n < ∞. Show that ∫ f ≤ lim inf ∫ f_n. Show by an example that a strict inequality may hold.
(b) Let f and g be two bounded measurable functions defined on a set of finite measure D. If a ∈ R then prove that

(i) ∫ af = a ∫ f
(i

measurable sets. Show that $m^{\bullet}[A \cap (\bigcup_{n=1}^{\infty} E_n)] = \sum_{n=1}^{\infty} m^{\bullet}(A \cap E_n).$ (10+10)

SECTION-III

Q.3 (a) Define
$$J_n(x)$$
 the Bessel function of first kind and then show that

$$J_{\frac{-3}{2}}(x) = -\sqrt{\frac{2}{\pi x}} \{ \frac{\cos x}{x} + \sin x \}.$$
(10+10)
Show that $P_n(x) = \sum_{k=0}^n ({}^nC_k)^2 (\frac{x-1}{2})^{n-k} (\frac{x+1}{2})^k.$
(10+10)
Q.9 (a) Show that $e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} J_n(x)t^n.$
(10+10)
(10+10)

Available at www.mathcity.org