Differential Geometry: Handwritten notes

by
Prof.(Rtd) Muhammad Saleem
Department of Mathematics, University of Sargodha, Sargodha

Keywords

Curves with torsion:

Curve, space curve, equation of tangent, normal plane, principal normal curvature, derivation of curvature, plane of the curvature or osculating plane, principal normal or binormal, rectifying plane, equation of binormal, torsion, Serret Frenet formulae, radius of torsion, the circular helix, skew curvature, centre of circle of curvature, spherical curvature, locus of centre of spherical curvature, helices, spherical indicatrix, evolute, involute.

Differential geometry of surfaces:

Surface, tangent plane and normal, equation of tangent plane, equaiton of normal, one parameter family of surfaces, characteristic of surface, envelopes, edge of regression, equation of edge of regression, developable surfaces, osculating developable, polar developable, rectifying developable.

Available at http://www.MathCity.org/msc

It is highly recommended that DON'T use these notes as a reference.

Reference: C. E. Weatherburn, Differential geometry of three dimensions, Cambridge at the university press, 1955. (http://archive.org/details/differentialgeom003681mbp)

MathCity.org is a non-profit organization, working to promote mathematics in Pakistan. If you have anything (notes, model paper, old paper etc.) to share with other peoples, you can send us to publish on MathCity.org. For more information visit: http://www.MathCity.org/participate

Cimplest
$D \cdot D_{0}$ \&.
Available at http://www.MathCity.org/msc

QIFFERENTIAL GEOMETRY
CHAPTER I
"CURVES WITA TORSIOM."
CHRVE : Nhe locus of a painl P (x,y,z) whosi pasilion vectow $三$ s relaline ti a fired ozigsi mang lu expressed as a furnctross of a single vanialel pasiander sicilcid a eu-nte, The carlestain coordurelin can o fie expressed as $x=f,(t), y=f_{2}(t), z=f_{3}(t)$ in t^{2} calecd Paraoniles $f i$, t_{2} amd f_{3} ane fos ift in SPACE CURVE When lu curre is not a plave. eurve, f ", seid tr lee spou or Touisket or Torlotens cunre..
Qxamples(1) The sel cf eqnemain $\because\left\{\begin{array}{l}2=x_{2}+4 j+2 i c \\ 2=a \cos t i+a \sin j+0 / c\end{array}\right.$ as $x \quad x=a \cos t \quad y=a \operatorname{sit} t z-0 \quad y a<t \leq 2 \pi$
bepresent, a cesele y+urih coctre cut.ox Ox, Täduin a..

$$
\left.\begin{array}{l}
t / a=\cos t \\
y / a=\sin t
\end{array}\right\}
$$

Squarang 4 aradiny

$$
x^{2}+y^{2}=a^{2}
$$

(ii)

$$
\begin{aligned}
& s(t)=a \cos t \dot{a}+b \operatorname{sen} t j^{\circ}+O K \\
& \underline{2}(k)=x^{2}+y j+2 k . \quad \text { comparajp. } \\
& x=a \cos t \\
& y=\operatorname{sen} t, \quad z=0 \\
& (\pi / 2)^{2}+(y / 3)^{2}=\cos ^{2} t+5^{2} t=1
\end{aligned}
$$

$\frac{x^{2}}{a^{2}}+y^{2} / b^{2}=1$. है of seapise
EQUATION OF A TANSENT aK a Pi on aricurve.

Suppaise Think pasi-tias vectar $1 \leq$ of apreairl pon a curve s functions of s, (Lung of are) ferima fexted panin A onil
det Pi Q le the meegighauring
 pit on liu euive vill p.voctals $\leqslant+r+s n$ resp, corsespandung t la valuen 5 andí $S+$ ss of

The parameter，Then S os in vertav $\overrightarrow{P Q}$ ．Thu quotiant $\frac{\delta z}{\delta S}$ is a velier along ss and in tac linit as $\delta s \rightarrow 0$ ，Mas devoction becomen tial． of im Tangent at－P．

Aes 0 ，in 広 limid $\frac{\delta\{ }{\delta s}$ whan $Q \rightarrow \infty$ and $\delta s \rightarrow 0$
 in tiu pasiliui direction，it of olerolid by t fralled as unid Tongart at P

$$
\text { Thus } \underline{t}=\operatorname{sit}_{s \in 0} \frac{\delta_{1}}{\delta s}=\frac{d z}{d s}=\varepsilon^{\prime}
$$

For the point on the $\frac{\delta s \rightarrow 0}{}$ tangunt，in P si dip $p . v$. जen $\underline{R}=\underline{r}+U \underline{Z}$ artione 4 ciany ureate no． the ar－ve．This is the equation of Tangenti．
Normal PLANE：－
Whe prormal plance at p it lin plane Thest P perpomatecefon to 有 Tengent to acunte．
Equation of vormal plavie： sat $P(x, y, z)$ an a pit on in curve orr．t a sactangntar canoluonad．syssian：
than $\underline{\underline{1}}=x \dot{2}+y i+z \underline{k}$
sexpparee $?$ lece in prr
1．of a $p t Q$ in in plane．屏 piv of lim line $P \vec{Q}$ ．

whene $\frac{d y}{s k}$ ，$\frac{d y}{d \xi}+\frac{d z}{d t}$ ane direction cisemes
of t The equatiss of sermal plane is

$$
(\underline{R}-\underline{ }) \cdot \underline{Z}=0
$$

Thin evary line Hugg P in $(\because R-I f t$ tici plane is a roronal to the envre？

1．ox rind vode cins

Pricions Nopmin, Curvatuze.
 \% ire-rite of soralion of The Tougent.
if δt is the rugf letuveen lie Tarpant at Pand ori S $\alpha / 5 s$ is the ervenage cursieun
 veline as $\delta s \rightarrow 0$ \& the ennvative arkithe UThi ci palkd Wee fiyst eantrature of the encientar

- Zौues

$$
\left.K=d(L)=\frac{\delta Q}{\delta Q}\right)=\frac{d Q}{d S}=\theta^{\prime}
$$

Destricor al lezraluze.
whin $P Q=\delta s$
dt C her eurve ando x as a frixed divetton Scppare, P and Q Lu

 क्रि $\frac{\delta \theta}{\delta 5}$ sia erenage exnivicuic: वf are गa ${ }^{\text {S }}$ Ste liming Vreme of $\frac{50}{55}$ winen Ss $\rightarrow 0$ c; e九eed eurrakuze at $\overline{\delta s p}$

De Dke kecippocal q/K s def<iol os $P=1 / 1$, as sadien af einvatuz whick is TRLen t lec $+\dot{1}$.

$$
1.1 \cos 0=1.1=1
$$

Ferrio Plane of curvature or Osculatuiop praue
fure t u usic Tansal \& t t-
Diff wrt B ${ }^{2} t \cdot \frac{d t}{d S}=0$
$\Rightarrow t-\frac{d t}{d s}=0$. as sunce decolioo af t
ALinuges tom prospt on thoc
$\therefore \frac{d t}{d s} \neq 0$ since $t \neq 0, \frac{d t}{d s} \neq 0$ 7 m gurhait St / s is a veetir liti δt and tivepre，in tis linit as $\sigma s \rightarrow 0$ ． it durection is 1 to 有 Tandoril－．
 at P since $121=1 \quad|t+s t|=1 \quad$ Tu Riming vialin
 $\frac{d E}{S}=\int_{s \rightarrow 0} \frac{\delta t}{d s}=K \underline{n}$ whan \hat{n} is unit Vectiv 1 to t ．cinde in the plive of 作 Taingent of p an－d a corisperative pt α ：
Dof The PCoue containic Two conisecutwe ．
Tangentis and thesefore comtaing 3 ccans．pts at P ，calced itu plare of curvature an thi ocuftiting place．
if R is any pt ui lun planes，tiu vecters $R-\underline{\underline{L}} \underline{t}$ and n ase cop aner Hence．
 equation of oscurlationg peranc．It ar cilso expressed as

$$
\left.\left(\underline{R}-\varepsilon, K^{\prime}\right)^{\prime}\right)=0
$$

The centit vectors！\underline{Z} and n are 1 t each ollew and a aiv plane is plaine of cirvaitine
Princial Noxmal B Broverac
Wic siraigut bine Thrangh P paralled to n （ $\left.1, t \underline{t}^{t}\right)$ and byip on in asarilaturg plene i called pinciptel normal at－P and clenotid as n ．
les equation s．clearily，

$$
\underline{R}=\underline{2}+1 \underline{2}
$$

What R heing a current $p t$ on 位livie．
Of The normal at P whidh is to liu osculatiy plame is calid β ；поrmal,$a i-P$ amá it ai denciad ass b n ast t one aivotaiv．Not Tast \underline{t} is along $t+n$ $($ form RA sisgzin $)$

Not huc $t a t=\square \underline{b}=\underline{b}-1$

$$
\begin{aligned}
& t n-n-b=b-t=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { e } t x z=n x n-6 r-0
\end{aligned}
$$

als.

- Aetifusing PPanc

Dru prancethingh fä point Pand 1 to Withe nimair called seczety in plane.

Equation of Binormal :
Let P(n) hu pont or C. Sune a unit reitu b 1 to osfulatuig plaul
is eacad bismonal whis or \& t is cacal binironal whare th t axeqranal f unil Ta fait at P Toe equation of prucipal nomal is $P=\underline{r}+$ un a
 of Binornual can aliold uxillon res

$$
\begin{align*}
& R=\underline{R}+u \underline{b} \tag{1}\\
& \underline{p}-1+u(t \underline{n}) \\
& =2+v\left(z+\varepsilon^{\prime \prime} k\right) \\
& \text { or }
\end{align*}
$$

Let $V=u / K$ 広m.

Thue, The Friton a Kegonelol as Positive wherv Tuc rotation of tut birormal as sinerases is an the fone -sen.sd thot of a sught handed serew traveleang an tuerirect

O2 SERRET FREWET FORMULAE.

1. For fangent $\frac{d t}{d S}=k \vec{n}$
$2 \cdot$ For B inumal $\frac{d b}{d S}=-\mathbb{L} \vec{n}$
31 For $厶$ Prinomimal
preafs.
Toprove $\frac{d \underline{b}}{d S}=K \underline{n}$

- Pince the unit leangent s not a constaut reetor as ith dinechion epraiges from point t point of the eurve

$$
\frac{d j}{d s}=T B-K \underline{Z}
$$

orl t and $t+\delta t$ the values of unit $\frac{B \text { Bat at } E}{} E$ ount F kesp: Tuc veetors $\overrightarrow{B E}$ and $\overrightarrow{B A}$ an kesp:. pegiul thene then $\overrightarrow{E F}=$ ft f let ange $E \hat{B} F=S$ 早 Tire quotunt $\frac{\delta E}{\delta s}$ a a feetar parallel ós δt.
As $\delta s \rightarrow 0$ ith dinection $s, 1$ tromsal t Moreoren $\overrightarrow{S E}$ and \vec{F} are of unithlangths The madulin of limina vakue if $\delta t / \delta s$ s qgarel to Lrimiting value of So/ss which s K (Kespi) Hence The selation
When n is urici $\frac{d t}{d S}{ }_{f S} d_{S}\left(\frac{\delta t}{S T}\right)=K n$ vectw 1 t t end un cen prame of Tangont at tro sonsecatue ph.

A: To prove $\frac{d b}{d s}=-\pi m$
Besf onsidex $b-b=b^{2}=1$, $b 44$ ust-

$$
2 b-\frac{d \underline{b}}{d \cdot}=0
$$

$a b b b^{\prime}=0 \rightarrow \theta \rightarrow \frac{d}{d s}=b^{\prime}$ $\Rightarrow \quad 21 \underline{b}$
Consecki refaction:

$$
\text { heftet } \cdot \frac{b}{c}=0
$$

$$
t-\frac{d b}{d s}+\frac{d l}{d s} \cdot \frac{1}{d}=0
$$

$$
\underline{t} \underline{b}^{\prime}+\quad k{ }^{\prime}+\quad \underline{b}=0 \quad, \frac{d t}{d s}=k n
$$

But, trann ct et on proned ikalt b'L 1 sol: b^{\prime} p paraclel to n, me man wrile $\therefore \quad b^{\prime}--T$ n \quad whene T measures Tu cire rate of tuinning af unit vector $\frac{1}{}$, and - le sign has licen chasen to keo p τ pasiltue

Z, To prove, $\frac{d m}{d S}=T \underline{L}-K \underline{L}$
Considu $\quad \underline{O}=\underline{0} \times \underline{t}$
Dif © ust

$$
\begin{align*}
& \frac{d m}{d s}=,-\frac{d}{} x \frac{d t}{d b}+\frac{d}{d} \frac{b}{s} x t \\
& =\Delta x K n+(-T n) \times t \\
& =k(\underline{b}+n)-T(n \times t) \\
& -K-K t+\square \\
& \frac{d n}{d S}=n=T b \quad-K t
\end{align*}
$$

Exainpa: To prove that $\tau_{1}=\frac{1}{k^{2}}\left(\xi_{0}^{\prime} \varepsilon^{\prime \prime} \varepsilon^{\prime \prime}\right)$
sol
Sunce $\quad \frac{d t}{d s}-\underline{t} \Leftrightarrow \varepsilon^{\prime}=\underline{t}$

$$
\frac{d t}{d s}=r^{\prime \prime} z=K n
$$

$$
=K=K(T b-K t)
$$

In itu notation of Scalar Friple proctud

$$
\begin{aligned}
& \tau^{\prime} \cdot \varepsilon^{\prime \prime} \times \varepsilon^{\prime \prime \prime}=\left[\varepsilon^{\prime \prime} \varepsilon^{\prime \prime \prime}\right]=\left[t<k n=k^{\prime n}+k(\pi b-k t)\right. \\
& =\left\{\underline{t}-(k n) x\left(n k+k r \underline{k}-k^{2} t\right)\right\} \\
& =(t \cdot k n x \underline{n})+(t) k n \times k T) \\
& -(t-k+\lll t)=0+k^{2} T\left(\frac{t}{n} \times \underline{b}\right) \\
& =k^{2} \pi(1) \\
& \text { itence lia" value of tortan is ginen } h y \text { 红 } n=t
\end{aligned}
$$

$$
T=\frac{1}{k^{2}}\left[i\left[\kappa^{\prime \prime} r^{\prime \prime \prime}\right]\right.
$$

Q. ED

Def Radrus of rortrom
Fhe reciprocen of 2) Ma radicis of Tortion

Thus $\quad \sigma=1 / \pi$ of Tortiom a cantre of pition associalin with
 caire of eunvertane.

200 E"irmpa the cincular Helix
This in crevinc dizawn on ile singace of encular eybunder cultup lu geninaters alt Th constant angle β The posilion vider 1 of opsoult on ine cunce nay kee exprossed as $B=a \cos \theta z+a \sin \alpha+a \theta \cot \beta K$ Dif wrt S we have

$$
s^{\prime}=\frac{d s}{d s}=\underline{t}=a(-\sin \theta, \cos \theta, \cot \beta) \theta^{\prime}
$$

Cut Mus is a unit-vectir so that ali Square of unity and trouefere, $(t)^{2}=1 \rightarrow a^{2} \theta^{2}-\sin ^{2} \beta$

Hus θ^{\prime} sconstaut. TO find tin euvatume we have, on diff t arts

$$
\left.K 刃=r^{\prime \prime}=-\alpha(\cos \theta, \sin \theta)\right)^{2}
$$

then ra prucipal normal is the unit vectiv $n=-(\cos \theta, \sin \theta, 0)$

$$
\because K=a^{2}=1 / a \sin ^{2} \beta
$$

To find It Tozbrons, we hance

$$
r^{\prime \prime \prime}=a(\sin \theta,-\cos \theta, 0) \theta^{3}
$$

\& Therefore; $\tau^{\prime \prime} \times z^{\prime \prime}=a^{2}(0,0,1) \theta^{5}$
Hone $K^{2} A=\left(\Sigma^{\prime \prime} \Sigma^{\prime \prime \prime}\right)=a^{3} \cot \beta \theta^{6}$

$$
T=\frac{1}{a} \sin ^{\beta} \cos \beta
$$

Thus tiu curratiux and Torsion ane lott

ITo Ex. on Page (18)
Q(1) Prove taal $K^{\prime \prime \prime}=K^{\prime} \underline{2}-K+k T \underline{b}$ \& hence Find $K^{\prime \prime \prime}=\left(k^{\prime \prime}-k^{3}-k T^{2}\right) n-3 k k^{\prime} \underline{\prime}+\left(2 k^{\prime} T+T k^{\prime}\right) \underline{6}$
Solution:

$$
\begin{aligned}
\text { Let } r & =\text { rs } \\
k^{\prime} & =\frac{d r}{d s}-t \\
r^{\prime \prime} & =\frac{d t}{d s}-\frac{d^{2}}{d s^{2}}
\end{aligned}
$$

also: $R^{\prime \prime \prime}=\lll$

$$
\begin{aligned}
k^{\prime \prime \prime} & =\frac{d^{2}}{d s^{2}}=\frac{d}{d s}(k n)=k n^{\prime}+\underline{n} \\
& =k[r \underline{b}-k \underline{t})+n k^{\prime} \\
& =k r \underline{k}-k^{2} \underline{t}+n=k^{\prime} \underline{m}-k^{t}+k r
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } \varepsilon^{\prime \prime \prime}=\frac{d^{4} k}{d s^{4}}=\frac{d}{d s}\left(\frac{d^{3} d}{d s^{3}}\right) \\
& =\frac{d}{d s}\left(K n-c^{2} t+k T \underline{b}\right) \\
& n=T b-15 t \\
& t^{\prime}=k n \\
& b=-n t \\
& =K^{\prime \prime} \because \underline{\square}+\underline{\square}-K^{2} \underline{\underline{\prime}}-2 K K t+K^{\prime} T b \\
& +k T \underline{b}+K T b^{\prime} \\
& =k n+\kappa(r b-k t)-\kappa^{2}(k n)-2 \kappa \kappa t+k T b \\
& +k T^{\prime} b+k T b^{\prime} \\
& =k^{*} \underline{n}+k(T \underline{k}-k t)-k^{3}(\underline{n})-2 k k^{\prime} t+k^{\prime} T b \\
& +K T \underline{n}-k T(-n-T) \\
& =k^{\prime \prime} \underline{n}-k \underline{n}-k T^{2} \underline{n}-3 k k^{\prime} t+2 K^{\prime} T \underline{L}+K T^{\prime} \underline{b} \\
& =\left(K^{\prime}-k^{3}-K T^{2}\right) n-3 k K Z+\left(2 K^{\prime} T+T^{\prime} K\right) E
\end{aligned}
$$

$Q(2)$ as Q (1) Prove that $R^{\prime} \circ k^{\prime \prime}=0$

$$
\begin{aligned}
& r^{\prime \prime} \cdot r^{\prime \prime \prime}=K\left(k^{\prime \prime}-k^{3}-k^{\prime 2}\right) \quad r^{\prime} \cdot{ }^{\prime \prime \prime}=-3 k k^{\prime} \\
& r^{\prime \prime \prime} \cdot{ }^{\prime \prime \prime \prime}=k^{\prime \prime}+2 k^{\prime} k^{\prime}+k^{2} T^{\prime}+k k^{2}
\end{aligned}
$$

$Q(3)$ If k 就 Deniratue of ε our.t.
S_{5} given by $n=20 n+2 b+C_{n} \underline{b}$
Prove the Reduetion firmilal.

$$
\begin{aligned}
& a_{n+1}=a_{n}^{\prime}-K b_{n} \\
& b_{n+1}=b_{n}^{\prime}+K a_{n}-T C_{n} \\
& C_{n+1}=c_{n}^{\prime}+T b_{n}
\end{aligned}
$$

Solcition
From livin famula, ve can write

$$
\begin{equation*}
\underline{r}^{n+1}=a_{n+1} t+\infty+n+c_{n+1} b \tag{6}
\end{equation*}
$$

Diz8 (1)wrt, s

$$
\begin{aligned}
& \underline{\imath}=a_{n} \frac{d s}{d s}+t a_{n}+b \frac{d n}{d s}+\underline{p}\left(b_{n}\right)+c \\
&=a_{n}(k n)+t \underline{d}+\underline{d}+a_{n}^{\prime} \\
&
\end{aligned}
$$

$$
=n\left(a_{n} k+b+\tau c_{n}\right)+t\left(a^{\prime}+k b\right)+\underline{b}\left(c_{n}+r_{n}\right)
$$

Conpaip a eqs á Aff(B

$$
\begin{aligned}
& a_{n+1}=a_{n}-k b_{n} \\
& b_{n+1}=b_{n}+k a_{n}+T c_{n} \\
& c_{n+1}=c_{n}+r b_{n}
\end{aligned}
$$

as reqmin?

Q(4) "\& к zenotatallph, lin eunve n a stame
 The necessany cund sapficeunc rondelten that the corve is plane í $\left[\kappa^{\prime} r^{\prime \prime}+R^{\prime \prime \prime}\right]=$ o
Solution- Llsup serredtf Ferend fomilas

$$
t^{\prime}-k n
$$

$$
\text { o k-6 к, ken } t^{\prime}=0
$$

Tan $\Rightarrow t=\frac{t}{t} \Rightarrow$ Constait gart is fexed, fl-itpassilla oncy when
cande istlife
(i)
which is passilel suley \Rightarrow when conseicil
(II) Necessory canditionity witen contm at plane

Suppass cunve he pane ken $T=0$
thew we shou Nat $\left(x^{\prime \prime} x^{\prime \prime} e^{\prime \prime \prime}\right)=0$

$$
\begin{aligned}
\text { as } \tau & =\frac{\left(\Lambda^{\prime} \lambda^{\prime \prime} \lambda^{\prime \prime}\right)}{K^{2}}=0 \\
& \Rightarrow a
\end{aligned}
$$

लकाषe मis paiou
(ond 5 sufficien $y,\left(r^{\prime} r^{\prime \prime} r^{\prime \prime \prime}\right)=0$ then - 1 liné ($r^{\prime \prime} \Omega^{\prime \prime \prime}$) awe x^{\prime} plane,

$$
T=0 \text { Cun } \Rightarrow \text { obl }=
$$

$Q(5) \quad$ Prove $\pi_{\mathrm{La}} \quad t^{\prime}, b^{\prime}=-1 T^{*}$
$Q(6)$ If The Tangent and the Binormal at a paint of a enve male langl o and ϕ resp with a fixed clocettosi, ficu $\operatorname{sof} \operatorname{Le} \quad \frac{\operatorname{suc} d \theta}{\sin \varphi d \varphi}=-\frac{K}{T}$

Sel. Clu a given curve det t and b he unil: Tansent and unit bmonual at P. Suppiase â heca unitrectur along
 then

$$
\underline{\hat{a}} \cdot \underline{\underline{a}}=\cos \theta
$$

$$
\begin{aligned}
|t|=|\hat{a}| & =|s|
\end{aligned}
$$

$$
=i
$$

Dyr O \& 2 wrt.s

$$
\begin{align*}
& \underline{t}^{\prime} \cdot \hat{a}=-\sin \theta \frac{d \theta}{d s} \Rightarrow K \underline{n} \cdot \hat{a}=-\sin \theta \frac{d \theta}{d s} \\
& \underline{b}^{\prime}-\hat{a}=-\sin \varphi \frac{d \phi}{d s} \Rightarrow-T \underline{n} \cdot \hat{a}=-\sin \phi \frac{d \phi}{d s}
\end{align*}
$$

Divedup (3) by (4)

$$
\frac{k(n-a)}{-T(\sin)}=\frac{-\sin \theta \frac{d \rho}{d s}}{-\operatorname{si\varphi } \frac{d \phi}{d s}} \Rightarrow \frac{\sin \theta d \theta}{\delta \varphi \cdot d \phi}=-\frac{k}{T}
$$

$Q(7)$ Show That the Prinapal momal at conseative. pt do not Intessect unless $T-0$
Sol Suppose P P Q de rwo Conneaulive ptr with p.rs $1+1+\$ \leq$ and unif principal normals be $n{ }^{n}-d n$. For $\operatorname{lntasectrons~o/~Tu}$ Principal jormals, the neessany con diteni s itual: the Tree vectors, $d r, n$ and $n+d \underline{n}$ he coplaner

$$
\begin{aligned}
& \text { Snce } \frac{d \underline{t}}{d s}=<\underline{2} \quad \& \frac{d \underline{L}}{d t}=-T n \\
& \because \quad \underline{t}^{\prime} \cdot \underline{b}=K n-T \geqslant \\
& =-K T n^{n} \\
& \pm=-k T(1)
\end{aligned}
$$

re, that r^{\prime}, n, óne coptanen, Tus sequives

$$
\begin{gathered}
\Rightarrow[\underline{t}, \underline{n} T \underline{b}-k t]=0 \\
T(\underline{t}, n, \underline{b}]=0
\end{gathered}
$$

$$
\begin{aligned}
& n^{\prime}=t \\
& n^{\prime}=T b-k t
\end{aligned}
$$

$[t, n, b] \neq 0$
$\Rightarrow \quad T=0 \quad$ (which hofdr only when $T=0)$
Q(8) Prove that the shartest distance fietween the principal normal at-Consecutue pts, destant, s alayt is $-\frac{p d s}{\sqrt{f^{2}+\sigma^{2}}}-a n a d \pi a l$ ath dirides tas sodius of curvature $f^{2}+0^{2}$, racho $P=O^{2}$

Sol det P and Q bie two neeghtiourip pt wilh povecions $\underline{\varepsilon}$ and $\underline{t} d \underline{d}$ and n and $n+d n$ he unil Privicipal normal's at $P+Q$ kesp.

The vectar 1 to totn $n+n+d n$ is $n x(n+d n)$ thon

$$
\begin{aligned}
n \times(n+d n) & =n \times n+n \times d n \\
& =\underline{n} \times(T-k-k t) d s \\
& =[T(n \times \underline{b})-k(n \times t)] d s \\
& =[T(t)-k(-\underline{b})] d s \\
& =(T t+k b d s
\end{aligned}
$$

Win-s Tui vecter 1 to n and $n+d \underline{n}$ To find its unit vecter Let \hat{e} he uenil vedor elong it, lien

$$
\begin{aligned}
\hat{e} & =\frac{(T t+k \underline{b}) d s}{(T t+k b) d s} \\
& =\frac{(T t+k \underline{b}) d s}{\sqrt{\left.T^{2}+k^{2}\right) d s}}{ }^{\prime} \Rightarrow \hat{e}=\frac{T \underline{t}+k \underline{b}}{\sqrt{T}+k^{2}}
\end{aligned}
$$

s.k unut vectu L t liolatn+ntdn..

TO Tuil Shartest dislauee Lledricen Two

- Prucipal vorman $a-C \& Q$.

$$
\begin{aligned}
\text { Shostest distance } & =\text { propection of dr upon } \hat{e}
\end{aligned}
$$

$$
\begin{aligned}
& S \cdot D=\left(\hat{e} \cdot \frac{d r}{d s}\right) d s=(\hat{e}, t) d s \\
& =\left[\frac{(T t+k b)}{\sqrt{T^{2}+k^{2}}} \cdot t\right] d s \\
& =\left[\frac{T(\underline{t})+k(\underline{r})}{\sqrt{T^{2}+k^{2}}}\right) d s \\
& \text { Put } r=1 / \sigma \\
& K=1 / p \\
& =\left(\frac{T+k(0)}{\sqrt{T^{2}+k^{2}}}\right) d s \\
& S \cdot D=\frac{1 / d s}{\frac{1 / p^{2}+1 / \sigma^{2}}{d}}=\frac{1}{p^{2}+\sigma^{2}} d s
\end{aligned}
$$

fur(ii) Suppose tai line af shortest dustance meot tu unü Pracipal normal n at P_{0} and $n+d n$ at Q_{0}, Hen, Nu veclous $\overrightarrow{Q P}, \vec{Q} \vec{Q}_{0}$
 coplaner

Then $\left[\vec{Q} \vec{P} \overrightarrow{Q Q_{0}} \overrightarrow{0} \vec{Q}_{0}\right]=0$ (Scalar reiple podunat)
If C intin centre of cunviaturu of tä ciner atipart P of in edre, Than
 vecen $\overrightarrow{P Q R}$ in $/ f$ to the vocton $\frac{1}{2}$ to tari n and n't dr 1ee unil vecture.
then, if $\rightarrow r_{0} p . \quad \circ f P_{0}$, then $\xrightarrow[Q P_{0}]{ }=r_{0}-(x+d r)$ and $\overrightarrow{Q_{0}} B$ along $n+d n$ and $P_{0} Q_{0}$ is alportg

$$
\left.\int T t+k s\right) d s
$$

By pultep valies of 11 vectes'sneq, 0 , we hane

$$
\left[1_{0}-(r+d r)-n+d n \quad(r \underline{t}+\ll \underline{b}) d s\right]=0
$$

Now eq of pranapal normal plep;

$$
R=\frac{R+U n}{}{ }^{2} f \sin c e P_{0}\left(\varepsilon_{0}\right) \text { son }
$$

thio lime, kenctros,

$$
\underline{z}_{0}=\underline{s}+\mu_{0} n \quad v_{0} \quad\left|\operatorname{lun}-\left|\rho_{0} \rho_{0}\right|\right.
$$

Hence from eq (2)

So Then $U_{0}=P P=\frac{K}{K^{2}+T^{2}}$
Now from figure $\overrightarrow{C P}=\overrightarrow{C P}-\overrightarrow{P_{0} P}$

Hence

$$
\begin{aligned}
& =R-u_{0} \\
& =-\frac{k}{k^{2}+T^{2}}
\end{aligned}
$$

$$
=\frac{k^{2}+\sigma^{2}-k}{k\left(k^{2}+T^{2}\right)}=\frac{T^{2}}{k\left(k^{2}+T^{2}\right)}
$$

Hence in result

$$
\begin{aligned}
& \frac{\overrightarrow{C P_{0}}}{\overrightarrow{P_{0} P}}=\frac{T^{2}}{K\left(K^{2}+\frac{2}{T}\right) / U_{0}} \\
& =\frac{T^{2}}{k\left(k^{2}+r^{2}\right)} / \frac{k}{k^{2}+r^{2}}=\frac{T^{2}}{k^{2}}=\frac{p^{2}}{\sigma^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(k+U_{0} n-\underline{n}-d \underline{n} \quad \underline{n} d \underline{n}(T \underline{t}+k \underline{q}) d s\right]=0 \\
& {\left[U_{0} \underline{n}-d r(\underline{n}+d n(\tau t+k \underline{n}) d s)=0\right.} \\
& a \quad\left[\bar{U}_{0} \underline{n}-\frac{d r}{d s} d s \quad n t \frac{d n}{d s} d s \quad(T t+c \underline{s}) d s\right]=0 \\
& \text { or }\left(U_{0} n-t d s \quad n+(T-k t) d s \quad(T t+k b) d s\right)=0 \\
& \left|\begin{array}{ccc}
-(t) & U_{0} & 0 \\
-k d s & T d s \\
T d s & 0 & k d s
\end{array}\right|=0 \\
& (d s)^{2}\left|\begin{array}{cc}
-1 & 0 \\
-k \mid 1 \\
T & 0, k
\end{array}\right|=0 \quad \Rightarrow \text { if }(d s) \neq 0 \\
& \text { Hen } \\
& \left|\begin{array}{ccc}
1 & 0_{0} & 0 \\
-1 & 1 & k \\
T & 0 & k
\end{array}\right|=0 \quad 1 \quad(k)-v_{0}\left(-k^{2}-T^{2}\right)=0,1 \\
& V_{0}=\frac{K}{K^{2}+T^{2}}
\end{aligned}
$$

$Q\left(\right.$ (9) Drone Thal $\quad b^{\prime \prime}-T(k \&-T b)-T^{\prime} n$

$$
n^{\prime \prime}=\sigma^{h} h-\left(k^{2}+\tau^{2}\right) n-k t
$$

aund find Sunilar expresecom for

$$
b^{\prime \prime \prime} \text { and } b^{\prime \prime \prime} \text {. }
$$

Solution
Sunce $b^{\prime}=T \underline{n}$
deff wrts

$$
\begin{aligned}
& b^{\prime \prime}=-\tau n-T n \\
& =-T^{\prime} n-T(T b-k t) \\
& =T(K t-T h)-T^{\prime} n
\end{aligned}
$$

agair Siff crots

$$
\begin{aligned}
& b^{\prime \prime \prime}=T^{\prime}(\kappa \underline{t}-T b)+T\left(k^{\prime} \underline{t}+\kappa t^{\prime}-T b-T b^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =T^{\prime}(k t-T \underline{b})+T\left(\left[k t-T^{2} \underline{t}\right)+\kappa\left(\pi^{1}-k t\right)-T\left(-i_{n}\right)\right] \\
& \text { - T" } \quad \text { - } \\
& =T^{\prime} K E-T T^{\prime} \leq+T K^{\prime} E-T T^{2} b+k r^{2} 3-k^{2} T t \\
& +P^{2} \hat{6}+T^{2} n-T^{\prime \prime} n-T T^{\prime} b+k T^{\prime} \not b
\end{aligned}
$$

$$
\begin{aligned}
& +r^{2} n-T^{\prime \prime} m \\
& =\left(2 K T+T K^{\prime}-k^{2} T\right) t+\left(k \tau^{2}-3 T T^{\prime}\right) b+\left(T^{2}-T^{\prime \prime}\right) n
\end{aligned}
$$

Agecurra $n^{\prime}=-T b-k t$
Deff, wrt S, ne thane

$$
\begin{aligned}
& m^{\prime \prime}=T k^{\prime} t r^{\prime} b-k^{\prime} t-k t \\
& =T^{\prime} b-k^{\prime} t+T(-r n)-k(k n) \\
& =T 6-k^{2}-T^{2} n-k^{2} n \\
& =-k^{\prime} Z+r^{\prime} \underline{b}-\left(T^{2}+K^{2}\right) n
\end{aligned}
$$

\therefore Sunilasly for nu"

T-Def Sken Curviature \qquad
7 The arc rate of turning oflau Primapal g normal n is ealled, the sken enivotune. derroted as $\frac{d n}{d S}=r$ andect magnituds is Ha modulus of r^{\prime}.

Since $\frac{d n}{d s}=T \underline{B}-K E$, the mag. of Rkew Cuvation is $\sqrt{T^{2}+k^{2}}=1 n 1$

Centre of cincle of eunvatins The cuitre of en rature at P
s the point of th of Pxinapal normal at P wilk lue normal. at The consecetive pt p' which lin ui Iu. Osculating plane at p

Let c lu $p \cdot v$ of entre of
einnctase and 1 he $p r$ of P
 wirt 0. Mlien
 radus of curvatere. Fue tangunt to ibl locus bening pavallel $\hbar_{0} \frac{d c}{d S}$, Tunefore paraltal L_{0}

$$
\begin{aligned}
\frac{d c}{d s}=c^{\prime} & =\frac{d z}{d s}+\rho \frac{d p}{d s^{\prime}}+\rho \cdot \\
& =t+\rho(\tau \underline{b}-k t)+\rho^{\prime} n \\
& =\underline{t}+\rho \tau \underline{b}-\underline{t}+\rho^{\prime} n \\
& =\rho \underline{\rho}+\rho \eta^{\prime} \underline{b}
\end{aligned}
$$

$$
\frac{k}{6}=1 / 5
$$

$$
p<=1
$$

It is thenere lies in Thi normal plane of the orignal curve rainguts inclined to n at an angl β s.t. $\frac{\operatorname{Tan} \beta-\frac{\rho T}{\rho} 1}{\rho}$

$$
\operatorname{Tan} \beta=\frac{\pi}{\rho^{\prime} \sigma}
$$

Qa) If lu position vector R of tau curreul point is a function of amy parameter 4 and dashes denotes Diff virtu. then Show that
(i) $r^{\prime}=s^{\prime} t \quad$ (i) $r^{\prime \prime}=s^{\prime \prime} t+k s^{\prime} n$ and
(ii) $i^{\prime \prime \prime}-\left(s^{\prime \prime \prime}-K^{2} s^{3}\right) \underline{t}+\left(3 k s^{\prime \prime}+k^{\prime} s^{\prime}\right) \underline{n}+\left(k r s^{\prime 3}\right) \underline{b}$

Solution is $^{\prime} r^{\prime}=\frac{d r}{d u}=\frac{d r}{d s} \frac{d s}{d u}=t s^{\prime}$

$$
\begin{aligned}
r^{\prime \prime} & =\frac{d}{d u}\left(t s^{\prime}\right) \\
& \left.=\frac{d}{d \xi}(t) \psi^{\prime}\right) \\
& =t^{\prime}\left(s^{\prime}\right)^{2}+t s^{\prime} \\
& =k n\left(s^{\prime}\right)^{2}+t s^{\prime \prime}
\end{aligned}
$$

$$
=\frac{d}{d s}\left(t t^{\prime}, \beta\right) x \frac{d s}{d u} \notin, \quad \frac{d}{d u}\left(t s^{\prime}\right)=\frac{d}{d s}\left(t \frac{d s}{d t}\left(s^{\prime}\right)\right)
$$

$$
=t^{\prime}\left(s^{\prime}\right)^{2}+t s^{\prime \prime \prime} b^{\prime} \quad d u \quad\left(+s^{d t}\right.
$$

and (iiI)

To gina

$$
\begin{aligned}
s^{\prime} \times L^{\prime \prime} & =s^{\prime} t \times\left(s^{\prime} t+k s^{2} n\right) \\
& =0+s^{\prime} k s^{2}(t+n)=k\left(s^{\prime}\right)^{3} \underline{4} \\
b & =\frac{r^{\prime} \times r^{\prime \prime}}{k\left(s^{\prime}\right)^{3}} \quad(\text { Proved })
\end{aligned}
$$

To prove $s^{\prime \prime} r^{\prime \prime}-s^{\prime \prime} r^{\prime}=s^{\prime}\left(s^{\prime \prime} k+k s^{2} \eta\right)-s^{\prime \prime} s^{\prime} t$
$=k\left(s^{3} m\right.$
\& others
$R^{\prime} T=\frac{\left(r^{\prime} r^{\prime \prime} r^{\prime \prime \prime}\right)}{k^{2} s^{\prime} 6}$

$$
\begin{aligned}
& \kappa^{\prime \prime \prime}=\frac{d}{d u}\left(t s^{\prime \prime}+k n\left(s^{\prime}\right)^{2}\right) \\
& =s^{\prime \prime \prime} t+s^{\prime \prime} \frac{d t}{d s}+K^{\prime}\left(s^{\prime}\right)^{2} m+K 2\left(s^{\prime} s^{\prime \prime} m\right. \\
& +k\left(s^{2} \frac{d m}{d u}\right. \\
& =s^{\prime \prime \prime} t+s^{\prime \prime} t^{\prime} \frac{d s}{d u}+k^{\prime} s^{\prime} s^{2} n+2 k s^{\prime \prime} s^{\prime \prime} m \\
& +k s^{\prime \prime} \frac{d n}{d s} \cdot \frac{d s}{d n} \\
& =s^{\prime \prime \prime} t+s^{\prime} s^{\prime \prime} t^{\prime}+k^{\prime}\left(s^{\prime}\right)^{2} n+2 k s^{\prime} s^{\prime \prime} \ddot{n}+k\left(s^{\prime}\right)^{3} \\
& =s^{\prime \prime \prime} t+s^{\prime \prime}(k n)+k\left(s^{\prime}\right)^{2} n+2 k s s^{\prime \prime} \underline{n}+k\left(s^{\prime}\right)^{2}(\pi b-k t) \\
& =\left(s^{\prime \prime}-k^{2} s^{\prime 3}\right) t+s^{\prime}\left(3 k s^{\prime \prime}+k^{\prime} s^{\prime}\right) n+k \pi s^{3} \underline{b}
\end{aligned}
$$

Enervisi IV: For In cunne

$$
x=4 a \cos ^{3} \theta, \quad y=4 a \sin ^{3} 0, Z=3 c \cos 2 \psi
$$

Prove thal

$$
\frac{n}{k}=\left(\frac{\sin u \cos u}{a} \frac{a}{6\left(a^{2}+c^{2}\right) \sin u}\right)
$$

Sol.

$$
\begin{align*}
& \underline{t}-\underline{z}=36 \delta^{2} 2 u\left(a^{2} \cos ^{2} u+a^{2} 5^{2} u-c^{2}\right)\left(\frac{d u}{d s}\right)^{2} \tag{1}\\
& 1=36 \operatorname{sun}^{2} 2 u\left(a^{2}+c^{2}\right)\left(\frac{d u}{d s}\right)^{2} \\
& \left(\frac{d u}{d s}\right)^{2}=\frac{1}{36 \delta^{2} 2 u\left(a^{2}+c^{2}\right)} \Rightarrow \frac{d u}{d s}=\frac{1}{6 \sqrt{a^{2}+c^{2}} \operatorname{sn} 2 u}
\end{align*}
$$

Pultep in (1)

$$
\begin{aligned}
& \underline{t}=\frac{-6 \sin u(-a \cos u, a \sin ,-c)}{6 \sqrt{a^{2}+c^{2}} \sin u} \\
& \underline{t}=\frac{1}{\sqrt{a^{2}+c^{2}}}(-a \cos u, a \sin u,-c)
\end{aligned}
$$

agai dify lurts

$$
\begin{align*}
& \frac{d t}{d s}=\frac{1}{\sqrt{a^{2}+c^{2}}}(a \operatorname{sun} a \operatorname{cosec} 0) \frac{d u}{d s} \\
& k \underline{n}=\frac{1}{\sqrt{a^{2}+c^{2}}} \frac{11}{6 a^{2}+c^{2}} \sin u \quad(a \sin , a \cos 4,0) \\
& K_{\underline{n}}=\frac{(a \sin , a \cos 4,0)}{6\left(a^{2}+c^{2}\right) \sin 2 u} \\
& \Rightarrow k n \ldots k n=\frac{a^{2} s^{2} u+a^{2} c^{2} u}{36\left(a^{2}+c^{2}\right)^{2} \alpha^{2} 24} \\
& K^{2}=\frac{1 a^{2}}{36\left(a^{2}+c^{2}\right)^{2}-2 u} K=\frac{a}{682 u\left(a^{2} e^{2}\right)}
\end{align*}
$$

Now from eq (3) We aave

$$
\begin{align*}
n & =\frac{1}{K} \frac{1}{6 \delta u\left(a^{2}+c^{2}\right)}(a \sin , a \cos 4, a) \\
& =\frac{6 \sin \left(a^{2}+c^{2}\right)(a \operatorname{sun} a \cos u, 0)}{a} 6 \sin \left(a^{2} c^{2}\right) \\
n & =(\sin u, \cos u, 0)
\end{align*}
$$

03 (12) Fuid K and 1

$$
\begin{aligned}
& x=a(u-\operatorname{s} u) \\
& y=a(1-\cos u) \\
& z=b u
\end{aligned}
$$

Sol.
Let $\underline{r}=(a(\mu-\sin u), a(1-\cos u), b u)$
Dyb.w rt: 4

$$
\begin{align*}
r^{\prime} & =(a(1-\cos u), a \sin , b) \tag{1}\\
|r| & =\sqrt{a^{2}(1-\cos u)^{2}+a^{2} \operatorname{s}^{2} u+b^{2}} \\
& =\sqrt{b^{2}+2 a-(1-\cos u)}
\end{align*}
$$

Agaiv Drgo O wre

$$
\ddot{r}=(a \sin , a \cos 4,0)
$$

ther

$$
\begin{aligned}
& \left|\hat{r}^{2} \times \ddot{r}\right|=\sqrt{a^{2} b^{2} a^{2} \alpha a+\alpha^{2} b^{2} \delta^{2} u+a^{4}(\cos u-1)^{2}} \\
& =a \sqrt{b^{2}+a^{2}(\operatorname{cosin}-1)^{2}}
\end{aligned}
$$

Defy eq(i, wrtu

$$
\begin{aligned}
& K=\frac{|\varepsilon \times \pi|}{\sqrt{\left.\varepsilon^{\prime}\right|^{3}}} \\
& =\frac{a \sqrt{b^{2}+a^{2}(544-1)^{2}}}{\left(b^{2}+2 a^{2}(1-(4))^{\frac{3}{2}}\right.}
\end{aligned}
$$

$$
\ddot{t}^{\prime}=(a \cos u,-\operatorname{as} u, 0)
$$

$$
t=\frac{-\alpha^{2} b}{\alpha^{2}\left(b^{2} \cos ^{2}(\cos -1)^{2}\right]}
$$

anen $T-\frac{(x+x)}{(r x+)^{2}}$

Q(13) If Ta plane of cunvatuns at every pand of a cunve passis tuigh a fixed pt, show that cure is plane.
Solution The equatoniof plane of einvolune (osalpatuyg peave) nat alpoint p with p.r. s. क guien ass $(\underline{R}-\underline{2})-\underline{1}=0$
det $R_{0} l_{1}$ afored pt, tha Ro salisfien
Deff ary s

$$
\begin{align*}
& \left(0-\frac{d r}{d s}\right) \underline{b}+\left(R_{0}-r\right) \cdot d b=0 \\
& -\underline{d s} \cdot h^{\prime}+\left(R_{0}-r\right) \cdot b^{\prime}=0 \tag{2}\\
& -\underline{t} \cdot \underline{r}+\left(R_{0}-r\right) \cdot(T n)=0
\end{align*}
$$

$$
-T_{1}\left(R_{0}-\underline{r} \cdot n=0\right.
$$

If $T \neq 0$ ven $\left(R_{0}-r\right) n=0$
\Rightarrow Ro-s s 1 to t_{0} also from
equation (1) $\left(R_{0}-r\right)$ i 1 to 2)
From There resietip we conclude thal. $\left(R_{0}-\varepsilon\right) \quad-\quad 11 t_{0} \underline{t}$
cacregon, $\quad\left(R_{0}-\Sigma\right)=\lambda \underline{1} \lambda$ is sealno:
Hien $R_{0}=\Sigma+\lambda t$ गur? s eq of ranfal-
Hence R_{0} sabiofies eq of Ti jul at every plo.
$\Rightarrow \underline{R}_{0} ; R_{1}$ point of ton of aर Ta-sunts thinemre \Rightarrow curve sia s/raigent live This is Contradietion' to oun aesmomption ltak The cure in not plume

Hence Tu, curre is aplaue:
Downloaded from
WWW. MATHCITY, ORC

Q(14) \&f m, mi,m; arertu momant alaultie aign of unitrecters t, \underline{n}, b loodiged an ra Trgal normal \& imermal and deslics deretita diff wrts we have $\quad m_{1}^{\prime}=k m_{2} t, m_{2}^{\prime}=b-k m_{1}+\tau m_{3}, m_{s}=-n-T m_{2}$ Salation of 1 is a curranl, poinl, thir by definition of momeit of frees aluaut a $p t$ $m_{1}=\underline{L} t, \quad m_{2}=\underline{x}, f+m_{3}-\underline{x} \underline{\underline{L}}$ Biff $m_{1}=\underline{x} \quad$ urts

$$
\begin{aligned}
m_{1}^{\prime} & =r \times t+R \times t \\
& =t \times t+k \times(k n) \\
m_{1}=0 & =k(\underline{\imath} \times \underline{n})=k m_{2}
\end{aligned}
$$

Diff $\quad m_{3}=\underline{x} \underline{b}-\omega r t \leq s$

$$
m_{3}^{\prime}=c^{\prime} \times \underline{b}+\underline{x} x \underline{b}
$$

$$
=t \times \underline{t}+\underline{x}(-\pi n)
$$

$$
=-n-\Sigma \times T n
$$

$$
m_{3}=-\left[n+T n_{2}\right]
$$

Q(15) Prove that the pasition recter of tha curral pont on a curve sats fun $\sin _{n}$ Dif Es

$$
\frac{d}{d s}\left\{\sigma \frac{d}{d s}\left(\rho \frac{d^{2}}{d s^{2}}\right)\right\}+\frac{d f}{d s}\left(\frac{d}{f} \frac{d r}{d s}\right)+\frac{\rho}{\sigma} \frac{d^{2} r}{d^{2}}=0
$$

Hint (Use Seret Frenel Frmular)
ScP SInce $\sigma=1 / \pi+\rho=1 / \pi$

$$
\left.\alpha H \quad \frac{d}{d s}\left[1 / \pi \frac{d}{d s}\left(1 / k \frac{d t}{d s}\right)\right)+\frac{d}{d s} \int \frac{k}{T} t\right]+\frac{T}{k} t^{\prime}=0
$$

$$
\begin{aligned}
& \text { Dof } m_{2}=\underline{2 n} \text { ir } s \\
& m_{2}=r^{\prime} x n+-k x x_{2} \\
& =t x+2+(r b-k \leq) \\
& =\underline{b}+T(\underline{r}+\underline{b})-u(\underline{x}+t) \\
& =b+r m_{3} \leq k m_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d s}\left\{1 / r \frac{d}{d s}\left(\frac{1}{K} k n\right)\right\}+\frac{d}{d s}\left(\frac{k}{r} t\right)+\frac{r}{k}(K \underline{n}) \\
& \Rightarrow \frac{d}{d s}\left\{1 / \tau\left(\frac{d m}{d s}\right)\right\}+\frac{d}{d s}\left(\frac{k}{T} t\right)+\tau \underline{n} \\
& =\frac{d}{d s}\left(\frac{1}{T}(T \underline{b}-k t)\right)+\frac{d}{d s}\left(\frac{k}{T} \underline{L}+T n\right. \\
& \Rightarrow \frac{d b}{d s}-\frac{k}{T} \frac{d t}{d s}+\frac{k d t}{T d-s}+T \underline{n} \\
& \Rightarrow F T-\frac{k^{2}}{k}+\frac{k}{T}<\pi n+T n \\
& =-T \underline{n}+T \underline{n}=0 \quad \text { RHS }
\end{aligned}
$$

Q (16) If s_{1} nim arc ling th of in loces of Caitre of eurvalune, show thal $\frac{d \text { si }}{d s}=\frac{1}{k^{2}} \sqrt{k^{2} T^{2}+k^{2}}$ Salution

$$
\text { Sance } t=\frac{d r}{d s}, b, n \text { an }=\sqrt{\left.\left(\frac{\rho}{\sigma}\right)^{2}+\rho^{*}\right)^{2}}
$$

Taigult benernual forormel fir iń canve C, Sundely $t_{1}=\frac{d q}{d s_{1}}, b_{1}, n_{1}$ are Tirgut, bonomal and sormal for lli censine... fermed by tuo lous of centre of euvature.

The is of locus of centre of convatiex is

$$
\begin{equation*}
\subseteq=\underline{r}+\rho \underline{n} \tag{1}
\end{equation*}
$$

Dyo wrts

$$
\frac{d \subseteq}{d s}=\frac{d x}{d s}+\rho \frac{d n}{d s}+\frac{d \rho}{d s} n
$$

$$
\begin{align*}
& \frac{d \leq}{d s_{1}} \frac{d s}{d s}=\underline{t}+\rho(T \underline{b}-x \underline{t})+\rho^{\prime} n \quad \rho=1 / k \\
& t_{1} \frac{d s_{1}}{d s}=\underline{t}+\rho T \underline{b}-\frac{4}{k} t+\rho^{\prime} n \\
& t_{1} \frac{d s_{1}}{d s}=\rho T \underline{b} \rho^{\prime} n \longrightarrow \text { (2) } \tag{2}
\end{align*}
$$

Taluy dot product of (2) will itiset

$$
\begin{aligned}
& \left(\frac{d\left(s_{1}\right)^{2}}{d s}\right)^{\prime}\left(t_{1} \cdot t_{1}\right)=\rho^{2} r^{2}\left(b_{0} h\right)+\left(\rho^{2}\right) n \cdot n \\
& \left(\frac{d s_{1}}{d s}\right)^{2}=\rho^{2} \sigma^{2}+\rho^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d s_{1}}{d s}=\sqrt{\frac{P^{2}}{\sigma^{2}}+\rho^{2}}, \\
& \text { lef } P=1 / k \\
& \frac{d P}{d s}=-/ / k^{2} k \\
& \left(\rho^{\prime}\right)^{2}=\frac{1}{k^{4}\left(k^{2}\right)^{2}} \text { Hence } \frac{d s}{d s} \sqrt{\frac{\rho^{2}}{\sigma^{2}}+\frac{k^{2}}{k^{4}}} \\
& \frac{d s 1}{d s}=\frac{1}{k} \sqrt{r^{2} k^{2}+k^{2}}
\end{aligned}
$$

Q(17) In lat casc of a cunve of constant cunvative. Fuid ia Clenvatare and fortion of lai locus of its chitre of evivalare C.
Sal. Dic pir of \subseteq onin cunce of enite of Cenvatese is

$$
C=1+\rho n \quad \text { Hence } P_{\text {i }} \text { conslowit }
$$

Dyf wres

$$
\begin{aligned}
& d \leq=(\underline{t}+\rho(T \underline{b}-k t)] d s \\
& =(t+\rho T \underline{b}-k \underline{k}) d s \\
& d \leq=(\rho T b) d s=T / k \underline{b} d s
\end{aligned}
$$

for $\frac{d s}{d s}=T / R b$

$$
\begin{equation*}
\frac{d \leq}{d s_{1}} \frac{d s_{1}}{d s^{\prime}} \Rightarrow t_{1} \frac{d s_{1}}{d s}=\pi / \ll b \tag{0}
\end{equation*}
$$

Taking dot produd of 10 arii itseff

$$
\begin{gather*}
\left.t_{1} t_{1}\left(\frac{d s}{d s}\right)^{2} \frac{T^{2}}{k^{2}}(\underline{b})^{2}\right) \\
\left(\frac{d s}{d s}\right)^{2}-\frac{T^{2}}{k^{2}}-p^{2} T^{2} \\
\frac{d s}{d s}=P T \tag{2}
\end{gather*}
$$

From(1) $\quad t_{1}=b$
Dif lacr-relationgovelts

$$
\frac{d b}{d s}-\frac{d b}{d s}=-T n
$$ $f \quad n_{1}=-2 \quad$ (iv)

$$
\text { Eor Torision } \begin{align*}
B_{1} b & =t_{1} \times n_{1} \tag{iv}\\
& =\underline{b} \times n_{1} \\
& =\underline{b} \times(-n)=n \times b \\
b_{1} & =\underline{t}
\end{align*}
$$

$$
\because t_{1}=b
$$

Difo wrts

Q(18) Prove That for any enne

$$
\begin{aligned}
& \left(t^{\prime} t^{\prime \prime} q^{\prime \prime \prime}\right)=\left(k^{\prime \prime} k^{\prime \prime \prime} \Sigma^{\prime \prime \prime \prime}\right)^{\prime} \\
& \left.b^{\prime \prime} b^{\prime \prime \prime}\right)=k^{3}\left(i k k^{\prime}-k^{\prime} \tau\right)=k^{5} d \alpha_{s}(T / \pi)
\end{aligned}
$$

Solution' Smee $\frac{d r}{d s}-t \Leftrightarrow r^{\prime}=\underline{t}$
Diff wrts

$$
z^{\prime \prime}-t^{\prime}
$$

4 again 中t $\varepsilon^{\prime \prime \prime}-t^{\prime \prime} \& A^{\prime}$ gawtaifg $\varepsilon^{\prime}=t^{\prime \prime}$
So we. have $\left.\left[t_{1}^{\prime n} t^{\prime \prime} t^{\prime \prime \prime}\right]+r^{\prime \prime} r^{\prime \prime \prime} r\right]$

$$
\begin{aligned}
& \frac{d b_{i}}{d s}=\frac{d t}{d s} \\
& \Rightarrow \frac{d b_{1}}{d s_{1}} \cdot \frac{d s_{1}}{d s}+k n \\
& -\pi_{1} n_{1} \frac{d s}{d s}=1<n^{2}-\frac{d s_{1}}{d s}=T / k \\
& -T_{1} n_{1} T k_{1}+k n-\quad-n_{2}=n \\
& T_{1} n T / k=\pi n \quad T_{1}=\frac{k^{2}}{T}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d t_{1}}{d s}=\frac{d t_{1}}{d s_{1}} \cdot \frac{d s_{1}}{d s}=-T n \\
& b^{\prime}=-T \underline{2} \\
& \left(k, n_{1}\right)(e r)=-T n \\
& k_{1} n_{1}=-\frac{n}{\rho} \\
& k_{1} n_{2}=-n \Rightarrow k_{1}=k \\
& \operatorname{gin}(i i) \\
& t_{1}^{\prime}-k_{1} n_{1} \\
& \text { - }- \\
& \Rightarrow k_{1}=k \tag{111}
\end{align*}
$$

Also, sanest $t^{\prime}=k \underline{1}$

$$
\begin{aligned}
t^{\prime \prime} & =k^{n}+k n^{\prime} \\
& =k^{\prime} \underline{n}+k(T \underline{b}-k) \\
& =k^{\prime} n+k T b-k^{2} t
\end{aligned}
$$

Diff wits again

$$
\begin{aligned}
& t^{\prime \prime \prime}=k^{\prime \prime} n+k c^{\prime}+k T b+k T b+k T \underline{r} \\
& -2 k k^{\prime} t-k^{2} t^{\prime} \\
& =k^{\prime \prime}-+\kappa^{\prime}(T b-k \underline{k})+k^{\prime} \pi \underline{b}+k r^{\prime} b+k \pi(-\pi n) \\
& -2 k k^{\prime} \leqslant-k^{2}(-k n) \\
& =k \underline{n}+\kappa^{\prime} T \underline{6}-k k^{\prime} \underline{t}+k \underline{b}+k \sigma^{\prime} \underline{b}-k r^{2} \underline{n} \\
& =-2 k^{2} t+k^{3} n \\
& =\left(k-k r^{2}+k^{3}\right) \underline{v}-3 k k^{\prime} \underline{f}+\left(2 k^{\prime} \pi+k r^{\prime}\right) \underline{b}
\end{aligned}
$$

hen., vie have

$$
\begin{aligned}
& \left(t^{\prime}, t^{\prime \prime}, t^{\prime \prime \prime}\right)=\left(\begin{array}{ccc}
\infty & k, k^{2} & 0 \\
-3 k^{\prime} & k k^{\prime} & k^{\prime \prime}-k \sigma^{2}+k^{3} \\
2 k^{\prime} \sigma+k \sigma^{\prime}
\end{array}\right) \\
& =-k\left(-k^{2}\left(2 k^{\prime} \sigma+k \sigma^{\prime}\right)-k \sigma\left(-3 k k^{\prime}\right)\right) \\
& \left.=-k \int k^{2} k^{\prime} \sigma-k^{3} \sigma^{\prime}\right) \\
& =k^{4} r^{\prime}-k^{3} k^{\prime} \tau=k^{3}\left[x^{\prime}-k^{\prime} \pi\right] \quad Q E 刀
\end{aligned}
$$

Also

$$
\left.\left[t^{\prime} t^{\prime \prime \prime} t^{\prime \prime \prime}\right]=k^{3} k^{2} \int^{2} \frac{k \sigma^{\prime}-k^{\prime} \otimes}{k^{2}}\right]=k^{5} \frac{d}{d s}\left(\frac{\pi}{k}\right)
$$

(ii) Since $\quad b^{\prime}=-T \underline{n}$

Doff wets

$$
\begin{array}{r}
b^{\prime \prime}=-\pi m-T n^{\prime} \\
=-T^{\prime} n-T(T \underline{n}-K t) \\
=T^{\prime} n-T^{2} b+K t
\end{array}
$$

agamic by f cos.

$$
\begin{aligned}
& b^{\prime \prime \prime}-T^{\prime \prime} n-T^{\prime}-2-n^{\prime}-T^{2} b^{\prime}+k T t+k T^{\prime} t \\
& +k T t^{\prime} \\
& =-T^{\prime \prime} n-T(T-i \underline{t})-2 T T-T^{2}(-T \underline{T}) \\
& +k \prime r t+k \pi t+k \pi k n \\
& =(2 k T+k T) t+\left(k^{2} T-T^{\prime \prime}+\frac{8}{2}\right) \eta-3 \tau T^{\prime} \underline{3}
\end{aligned}
$$

Thesefox, we Rave

$$
\begin{align*}
& =\pi\left(-3 k T^{2} T^{\prime}+T^{2}\left(2 k T^{\prime}+k \prime T\right)\right] \\
& =T\left(-3 k T^{2} T+2 k T^{2} T^{2}+T^{3} k^{\prime}\right) \\
& =T^{3}\left(k^{\prime} T-k T^{r}\right)
\end{align*}
$$

Tui can acso be wotlia as

$$
\begin{aligned}
& {\left[b^{\prime} b^{\prime \prime} b^{\prime \prime \prime}\right)=T^{3} T\left(\frac{c^{2} T-T k}{T^{2}}\right)} \\
& \frac{5}{T} \frac{d}{d 5}\left(1 / / T_{1}\right) \quad \text { (Prowed) } \\
& \text { Downloaded from } \\
& \text { WWW, MATHCITY, ORG, }
\end{aligned}
$$ Avaiable at htt $\% /$ wuw MathCity.orb msc

§. Spherical Curvature.
The spluse of elosest contad wielh lue aunc at P is that which passen thing fan far pointio on the eurve netrondleey corncidul weith P, This is Called lice osculating spture or the spzen of cunvoture at P.

It ceutre S and Raduio R ase callex the centre and raduies of spriesieal elurvatire.
Theorem

$13 / 3$
14.3

486
7,8,6
910%
1213%
18.15
B. A 2
$212 \mu \mathrm{~s}$
2425
26 2h
2829
363
363

To desive an expression for im. reduis of spherical carvaline.

Let 1 en the $p . v \not P$ on the airve avd os st Th p. V of centre of the spencial envilum Thus tou eatre of siture Thingz P ard an adfascent poind Q on the curve lies on tue peane which is tue riget brsector of $P Q$ and limituy position of tuis plane is the normal plave at P.

Hus Tou centre of sphericall curvaliese is the limnityp position of Uu entersection of three nermal planes at adjascant ph, Nòcd equof normal p laue at poind $P(\Sigma)$ is

$$
\left(S-_\right) \cdot t=0 \longrightarrow \text { (0) }
$$

Whan s s eusreul pt on ki plane
Diff Wr.t (arclangli)

$$
\begin{aligned}
& (S-r) \cdot \frac{d t}{d s}+\frac{d s}{d s} \cdot t-\frac{d r}{d s} \cdot t-0 \\
& (S-r) k n+\frac{d s}{d s} \cdot t-t \cdot t-0
\end{aligned}
$$

$$
\begin{align*}
& (S-r) \cdot k \vec{n}+\left(\frac{d s}{d s} \cdot \underline{t}\right)-1=0 \\
& (s-r) \cdot \vec{n}^{+0}=1 / K \\
& (\underline{s}-r)-n-P \tag{2}\\
& \text { Doff wrzs } \\
& (S-s) \cdot \frac{d n}{d s}+\left(\frac{d s}{d s}-\frac{d r}{d s}\right)_{\alpha} \cdot \vec{n}=p^{?} \\
& (S-\underline{s}) \cdot(T \underline{b}-k \underline{t})+\frac{d s}{d s} \cdot \vec{n}-\frac{d s}{d s} \cdot \vec{n}=\rho \\
& (\underline{S}-\underline{r}) \cdot(T \underline{b}+k \underline{t})+\frac{d \underline{S}}{d s} \vec{n}-\underline{t} \cdot \vec{n}=f \\
& (\underline{S}-\underline{r}) \cdot T \underline{b}-(\underline{S}-\underline{r}) \cdot \mathcal{t}+0-0=\rho^{\prime} \\
& \Rightarrow T(s-\underline{z}) \cdot \underline{b}-k(s \underline{\underline{L}}) \underline{t}=\rho^{t} \\
& T(S-\underline{r}) \cdot \underline{b}-k(0)=\rho^{\prime} \quad b y \text { eq (1) } \\
& \begin{array}{l}
(S-r) b-P^{\prime} / T=-f^{\prime}-\frac{1 s}{1 s} \\
\text { satofies } 0(2)+(3) \text { The }
\end{array} \\
& \text { The vector } s \text {-冬 satofies } 0 \text { (2) }+ \text { (3), hen }
\end{align*}
$$ It selear tat

$$
\begin{align*}
& \underline{S}-\underline{r}=\rho \underline{n}+\sigma \rho^{\prime} \underline{b} \tag{4}\\
& \underline{S}=\underline{r}+\rho \underline{n}+\sigma \rho^{\prime} \underline{b}
\end{align*}
$$

Q Thes eq determines tur p－v s of tm centre of spherical envature－Now p n is ＇Co veetiv $\overrightarrow{P C}$ ，and tarefore，$\sigma \rho^{\prime} \underline{b}$ stur vector $\overrightarrow{C S}$ ．Therfore，the eantre of sphosical Cenvatire is on the axis．of The eincle op earvitivi． at a distanel σP^{\prime} from im centre of eunvaline． Do find The Raduis of spliencial sunvature，Tate square of leoth sider of（4）

$$
(S-r)^{2}=\rho^{2}+\left(\sigma \rho^{\prime}\right)^{2}
$$

$$
\begin{align*}
& R^{2}=\rho^{2}+\sigma^{2} \rho^{2} \\
& R / R /=\sqrt{\rho^{2}+\sigma^{2} \rho^{2}} \quad \text { as } s-k=R \tag{5}
\end{align*}
$$

Remark, for tue eurve of constant cuvvative, $\rho^{\prime}=0$, Therifune, (s) bicomes
Cuitr of sphexcal cunvatusi coincides wilk in ecuite of eincular curvatine
§ Loeus of Coutre of Sphenical Cenvaline:-
The posilion vectar s of the ceutre of sp. curvaliur has been shown to he

$$
\underline{S}=\underline{\underline{r}}+\rho_{\underline{n}}+\sigma \rho^{\prime} \underline{b}
$$

Henci for a small desplacement ds of in current point P. a long The |PK original curve s the desplacennent of,\dot{S} is $\sigma^{\prime \prime}=1$

$$
\begin{aligned}
\frac{d s^{\prime}}{d s} & =\underline{t}+\rho^{\prime} \underline{n}+\rho(\tau \underline{b}-k \underline{t})+\sigma^{\prime} \rho^{\prime} \underline{b}+\sigma \rho^{\prime \prime} \underline{b}+\sigma f^{\prime}-\bar{g} \\
d \underline{s} & \left.=\underline{k}+\rho^{\prime} \underline{n}+\rho \tau \underline{b}-\underline{t}+\rho^{\prime} \sigma^{\prime} \underline{b}+\sigma \rho^{\prime \prime} \underline{b}-\rho^{\prime} \underline{m}\right) d s \\
d \underline{s} & =\left(\rho \tau \underline{b}+\rho^{\prime} \sigma^{\prime} \underline{b}+\sigma \rho^{\prime \prime} \underline{b}\right) d \beta \\
& =d s\left(\underline{\rho} \underline{\sigma}+\rho^{\prime} \sigma^{\prime} \underline{b}+\sigma \rho^{\prime \prime} \underline{b}\right) \\
& =d s\left(\frac{\rho}{\sigma}+\rho^{\prime} \sigma^{\prime}+\sigma \rho^{\prime \prime}\right) \underline{b}
\end{aligned}
$$

Thus imi Tangent to locus of is sill $t_{0} b$. $f(j(1))$, we may measune $1 \bar{n}$ arclengit: st of ik locus S in Thati direction which makes its unil- Tangent t, thane The pame dinection as b

$$
\begin{aligned}
& \text { devedion as } b \\
& \text { This } t_{1}=\frac{b}{\sin }, \quad \frac{d s}{s}=t_{1} d s_{1} \\
& \text { ows that }
\end{aligned}
$$

it fuclows that

$$
\frac{d s}{d s}=\frac{p}{\sigma}+\frac{d}{d s}(\sigma \sigma)
$$

To frive tae convraliene K_{1} of ík locus S,'

$$
\begin{aligned}
& \frac{d}{d s_{1}}\left(t_{1}\right)=\frac{d}{d s_{1}}(\underline{b}) \\
& t_{1}^{\prime}=k_{1} n_{1}=\frac{d k}{d s} \cdot \frac{d s}{d s_{1}}=-T r_{1} \frac{d s}{d s_{1}}
\end{aligned}
$$

\Rightarrow lhe Praicipal normal to tiu locus of S 4 is porvaled to $\overline{\text { u }}$ principal nommal of $\overline{k_{1}}$ rigival curne. (orre we may eliose th derection of n, as opposite to thal of n. Muin.

$$
n_{1}=-n
$$

We. unit briormal b/ of (iii locus S in then

$$
b_{1}=t_{1} \times n_{1}=b_{1} \times(-n)=t_{1}
$$

and is then equal $\frac{\text { a }}{\text { ch cosid Taigout of }}$ sii original eurve and lis ennatue

$$
k_{1}=\tau \frac{d s}{d s_{1}}
$$

Agair $\quad t_{i}=\underline{b} \quad f \quad \underline{m}_{1}=-\underline{n}$.

$$
t_{1} \times n_{1}=-b \times n
$$

$$
b_{1}=t
$$

$\Rightarrow B$ Bimal of c_{1} i $11 t_{0}$ 広 Taigut $\notin C$. The curviatun K, as farmad aluask in thens equal t_{b}

$$
k_{1}=\tau \frac{d s}{d s_{1}}
$$

Tue Torseon $T 1 \therefore$ is obtanied by dyf b, $=2$

$$
\begin{aligned}
& \frac{d}{d s_{1}}\left(b_{1}\right)=\frac{d t}{d s_{1}} \\
& \begin{array}{l}
\frac{d}{d s_{1}}(b,)=\frac{d t}{d s} \cdot \frac{d s}{d s}, d_{1} \\
-\pi_{1} n_{1}
\end{array} \\
& -n_{t}=n^{\prime} \\
& \begin{array}{l}
-\pi_{1} n_{1}=k n \frac{d s}{d s} \\
-\pi_{1} n=k n \frac{d s}{d s} \rightarrow \Rightarrow
\end{array}
\end{aligned}
$$

＊Exampatil Prove that far curven drawn on liu． Sevituce of a splence（or fir siphericial cunve），we have 首 $\sigma+\frac{d}{d s}\left(\sigma \rho^{\prime}\right)=0$ or $f / \sigma+\sigma^{\prime} \rho^{\prime}+\sigma^{\prime} \rho^{\prime \prime}=0$ Solution：－
For cuives draivn on liu suspace of a spuxe， the osculating spinexic at evieny pt of tia curve i the saime spluine on tia surface of which it i； diawn：－already done－as loeus os canire of shbrical Govvaluine．
 5 constaut．Proie ithal．Mur．evine either lies on tim senface of a ssiuue or else has a Constaut．Currative．
Sclution tet R he iur Reckion of sphenceal ceisration then

$$
R^{2}=\rho^{2}+\left(\sigma \rho^{\prime}\right)^{2} \quad\left(R^{2} \sin t+\right)
$$

Dyf wirt s

$$
\begin{aligned}
& 0=2 \rho p^{\prime}+2\left(\sigma p^{\prime}\right)\left(\frac{d}{d s}\left(\sigma p^{\prime}\right)\right) \\
& 0=2 \rho^{\prime}\left(\cdot p+\sigma \frac{d}{d s}\left(\sigma p^{\prime}\right)\right)=0
\end{aligned}
$$

Thën eilün．$\rho^{\prime}=0$ ．Or $\Rightarrow p$ s constiant
 or if $p+\sigma \frac{d}{d s}(\sigma \dot{p})=0$
 S is gine by $S=\underline{s}+\rho \underline{n}+\sigma \rho^{\prime} \underline{\square}$ ．$\because \varepsilon_{2}(4)$

$$
\begin{aligned}
& \text { Dig ivris }=\frac{d s}{d s}=z^{2}+\rho \underline{n}+\rho^{\prime} \underline{n}+\sigma^{\prime} \rho^{\prime} / \\
& d S=t+\rho^{+}=\rho^{\prime \prime} \underline{b}+\mathrm{c}^{\prime} e^{\prime} b^{\prime} \\
& \begin{array}{l}
+E \rho^{\prime \prime} b+\sigma e^{\prime} b^{\prime} \\
(\sigma b-k t)+e^{\prime} n+
\end{array} \\
& +\sigma R^{\prime \prime} \%-\sigma \rho^{\prime}(\sigma \text { 的) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \leq}{d s}=\int \frac{f^{\prime}}{\sigma}+\frac{d}{d s}\left(\sigma\left(\rho^{\prime}\right)\right] b .
\end{aligned}
$$

Hence, if $\rho+\sigma \frac{d}{d s}\left(\sigma \rho^{\prime}\right)=0$

$$
o f \quad p / \sigma+\frac{d}{d s}\left(\sigma p^{\prime}\right)=0 \Rightarrow \frac{S}{S}=0
$$

\Rightarrow S i constaut
Thenfore eurve thes ontia sinface of a sples.
S $H E L I C E S:$
Def A eunve, Traced on the sungace of tiee cep linder and eutting tiec geneitators at a constaxt auple, icalled: a $H E C 1 x$.
of th "vict Tougent t tax holix and 1 ' is a constack vecter It to the genencition of ap einder, we have $\underline{t} \cdot \underline{a}=$ Constacut.
 Thus since the eunvaiture of the thelixe däes Not varnish, thi prizicifell porronal is eveny whenc perpendicular to the gernenaters Hevice fexe-d denection of the gemeinalav is pavalled bt Bu plave of t and b, and sinee it matees a construil angle witt t, it also maiken a constaxet angle with $\underline{6}$.

Theorem:
ik neeessany aud sipfecieut tonditinip for a cunve to fee a helix is That- the reatio of itt ewrature aud Torteon in conslaut 2 's. $\mathrm{K} / \mathrm{M}=$ constan Preof": $g^{\prime \prime} t$ is a urid-Tningent it la "heliex and a' is constad vector 11 to geunater of cy hurden Then $\underline{z} \cdot \underline{a}=$ constaul.

$$
\text { Dify wrts } \frac{d t}{d t s} \underline{a}=0
$$

$$
\begin{align*}
& \left|\begin{array}{l}
t a-a \\
t^{\prime}=k \theta \\
=a t y
\end{array}\right|
\end{align*}
$$

If $k=0$ kin cuine a ablume o therer a proved

Thou a will be iir the plaine detenonined by t and b, To prove tiis,

Diff $n \cdot a=0$, wres, we bive.

$$
n \cdot \underline{a}=0
$$

$(T \underline{b}-K \underline{t}): a=0 \quad \Rightarrow a \operatorname{a} L t$
vection $\tau \underline{b}-k \underline{b}$. But \underline{a}
is pavallel to the peruce of $\underline{t}+\underline{b}$.

$$
\begin{aligned}
& \text { Diff arts } 0=\cos \alpha t^{\prime}+\sin \alpha \cdot b^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \cos \alpha(k \underline{n})^{\prime}+\sin \alpha(-T \underline{n})=0
\end{aligned}
$$

Sines $\vec{n} \neq 0$,

$$
\vec{n}(\kappa \cos \alpha-T \sin \alpha)=0
$$

$$
\begin{aligned}
& \Rightarrow K \cos \alpha-\tau \sin \alpha=0 \quad \operatorname{Tan} \alpha=\frac{K}{T} \\
& \alpha=\operatorname{Tañ}^{\prime}(K / T) \quad \Rightarrow K / T \text { i } \operatorname{cosiscan}
\end{aligned}
$$

cos α is conssias
Condilient ci Sifficioul
is Helli:.
or t - $\underline{\text { a }}$ is constaud
LAt, $T=c K>0$, c is constacel.
then since $t^{\prime}=K \underline{n}$ and $b^{\prime}=-T \because n=-C K \underline{n}$ \& follows lant.

$$
\begin{aligned}
& \underline{b}^{\prime}+c \underline{t}^{\prime}=-T n+c k \underline{n}=0 \\
& \frac{d}{d s}(\underline{b}+c \underline{t})=0 \\
& \Rightarrow \underline{b}+c \underline{t}=\underline{a} \quad(\text { consiaut })
\end{aligned}
$$

Tilinip scalar product weild t
$\underline{\underline{E}} \cdot \underline{\underline{t}}+c \underline{\underline{t}} \cdot \underline{\underline{t}}=\underline{\hat{a}} \cdot \underline{t}$
$0+c(1)=\underline{a} \underline{t} \quad \Rightarrow a \cdot \underline{t}-c$
$\Rightarrow \underline{t} \cdot \underline{a}$ is constaul
Remarks (1) luis t in unelived at a consocut augle \bar{t} thifined dencetion of 9 and eunise is Tunefore; Hetion
(11) If ratuo. $K / T=0^{-1}$. tten eunre s' stlave
iii) It $K / T=\alpha$, ucin cunve in a planepcuns (α leniy angle leelüpens t aind a)
ξ SPHERICAC NNOICATRIX.
Of The locus of a pocirt, colcose pasition vecior is equal th the unil. Tangent \underline{t}. $7^{\prime \prime}$ a given curn, is caled tur sprusiceal nodicarris of the Tangent to the cunve. Sech a locus lien on tha sroigane of a crnit- bptwere. (Hence Nu name)

Theoren
Tc bizew Thal. Niu accotaliuse of ike splenicial londicatrex of Tanigents. is the rateo of skeev eurvalume θ_{0} iue cencular cunrature of lai Cuspre

2e $K_{i}=\frac{\sqrt{K^{2}+T^{2}}}{K}, A C_{3}$ prove $T_{i}=\frac{K \tau^{\prime}-T K}{K\left(K^{2}+T^{2}\right)}$ Proerp:

Let ri lu tius p.v. of a poüt of Mu splerveal indicarna of $1 a i$ Taingent th a

$$
\begin{aligned}
& \frac{d \mid \underline{\xi}}{d s}=\frac{d \underline{t}}{d s} \\
\Rightarrow & \frac{d\left(\varepsilon_{1}\right.}{d S_{i}} \cdot \frac{d s 1}{d s}=t^{\prime}
\end{aligned}
$$

S 1 sotual: $\frac{t_{1}}{d s} \frac{d s}{d s}=K n$, wr neareme

$$
\frac{d s_{1}}{d s}=K \quad \text { Mex. } \quad t_{1}=\underline{n}
$$

Dify agomi is rts

$$
\because \frac{d t}{d s_{1}}=K_{1} \#
$$

$$
\begin{equation*}
\therefore \frac{d s_{j}}{d s}=k \tag{III}
\end{equation*}
$$

$\frac{\text { Stencurvatum }}{\text { CunvaZine }}$

$$
\begin{aligned}
& \frac{d t_{1}}{d s}=\frac{d p}{d s} \\
& \Rightarrow \quad \frac{d t_{1}}{d s_{1}} \cdot \frac{d s_{1}}{d s}=n
\end{aligned}
$$

$$
\begin{aligned}
& K_{1}=\frac{\sqrt{T^{2}+K_{0}^{2}}}{K}
\end{aligned}
$$

Now the rigecustissi of Oscellatiug Spherse is

$$
R^{2}=\rho^{2}+\left(\sigma \rho^{\prime}\right)^{2}
$$

\qquad
As in: indizatrix Gies on the spinene of inith hadius $\therefore R=1$ and $\because \mathscr{O}$ (Tanes the
from

$$
\begin{aligned}
& 1=p_{1}^{2}+\left(\sigma_{1} p_{1}^{\prime}\right)^{2} \\
& 1=\frac{1}{K_{1}^{2}}+\frac{1}{T_{1}^{2}} p_{1}^{2} A_{1} \text { as } p_{1}=\frac{1}{K_{1}} \sigma_{1}=\frac{1}{T_{1}} \\
& p_{1}=/ k_{1}
\end{aligned}
$$

As

$$
\begin{aligned}
& p_{1}=/ K_{1} \\
& p_{1}^{\prime}=\left(\bar{K}_{1}^{-1}\right)^{\prime}=-\bar{K}_{1}^{2} \ddot{K}_{1}^{\prime}=\frac{K_{1}^{\prime}}{K_{1}^{2}} \\
& \left(f_{1}^{\prime}\right)^{2}=\frac{K_{1}^{2}}{K_{1}^{4}}
\end{aligned}
$$

Pultigig in (A) $\quad 1=\frac{1}{K_{1}^{2}}+\frac{1}{T_{2}^{2}}\left(\frac{\frac{K}{1}_{1}^{\prime}}{K_{1}^{4}}\right)$

$$
\begin{align*}
1-\frac{1}{k_{1}^{2}} & =\frac{1}{T_{1}^{2}}\left(\frac{k_{1}^{2}}{k_{1}^{4}}\right) \\
k_{1}^{2}-1 & =\frac{k_{1}^{2}}{k_{1}^{2} r_{1}^{2}} \Rightarrow T_{1}^{2}=\frac{k_{1}^{2}}{k_{1}^{2}\left(k_{1}^{2}-1\right)} \\
T_{1}= & \frac{k_{1}^{\prime}}{k_{1} \sqrt{k_{1}^{2}-1}} \xrightarrow{ } \tag{ii}
\end{align*}
$$

A Sc $_{0} f_{r o m} \quad K_{1}=\frac{\sqrt{K^{2}+\tau^{2}}}{K}$
Dond u'rt S,

$$
K_{1}^{\prime}=\frac{d}{d s}\left(\frac{\sqrt{K^{2}+T^{2}}}{K}\right) \frac{d s}{d s_{1}}
$$

$$
\begin{aligned}
& =\left(\frac{\left.\left.k\left(k k^{\prime}+\pi r^{\prime}\right)-\left(k^{2}+\tau^{2}\right) k^{\prime}\right) \frac{1}{k^{2}} \sqrt{k^{2}+\tau^{2}}\right)}{}\right. \\
& K_{1}^{\prime}=\frac{K^{2} K+k T T^{\prime}-k^{2} \sqrt{k^{2}+T^{2}}-T^{2} K^{\prime}}{k^{3} \sqrt{K^{2}+T^{2}}}=\frac{K T T^{\prime}-T^{2} K^{\prime}}{k^{3} \sqrt{K^{2}+T^{2}}}
\end{aligned}
$$

Pulley valuen of k_{1} and k_{1}^{\prime} Rave.

$$
\begin{aligned}
& T_{1}=\frac{T\left(k T^{\prime}-T K\right)}{k^{3} \cdot \sqrt{k^{2}+T^{2}}} \cdot \frac{k}{\sqrt{k^{2}+T^{2}}} \cdot \frac{1}{\sqrt{T / K^{2}}} \\
& =\frac{\not D\left(K T^{\prime}-T K^{\prime}\right)}{K^{3}, \sqrt{K^{2}+T^{2}}} \cdot \frac{k^{2}}{\mathscr{T} \sqrt{k^{2}+T^{2}}} . \\
& T_{1}=\frac{K T^{\prime}-T K^{\prime}}{K\left(\sqrt{K^{2}+T^{2}}\right)^{2}}=\frac{K T^{\prime}-T K^{\prime}}{K\left(K^{2}+T^{2}\right)}
\end{aligned}
$$

Theorem: Prove Thac Tue Penverture aund Tortion of iut spinerical indicatrix of tiue Binarmal is grueu by

$$
K_{1}=\frac{\sqrt{K^{2}+T^{2}}}{T} \text { and } T_{1}=\frac{K T-T K^{0}}{T\left(K^{2}+T^{2}\right)}
$$

Prool ske eq of tio spinivicol indicatox of ice leinarmal is

$$
\text { Siff wrt } s_{1} \quad \begin{aligned}
\frac{r_{1}}{d \underline{r}_{1}} & =\frac{b^{\prime}}{d s_{1}} \\
& =\frac{d s}{d s} \cdot \frac{d s}{d s_{1}} \\
\underline{t}_{1} & =\underline{b^{\prime}} \frac{d s_{1}}{d s_{1}} \\
t_{1} & =-T \underline{n} \frac{d s}{d s_{1}}
\end{aligned}
$$

suriee $t_{1}=-\underline{n}=-T \underline{n} \frac{d s}{d s_{1}} \Rightarrow \frac{T_{d} d s_{1}}{d s_{1}}=1$

$$
\begin{aligned}
& \Rightarrow \frac{d s}{d s}=T \text {. } \\
& \text { (l) } \Rightarrow \frac{d^{s} s}{d s}=\frac{1}{1}
\end{aligned}
$$

$$
\begin{align*}
& K_{1} n_{1}=-(T \underline{b}-k \underline{t}] \frac{1}{T} \tag{696}\\
& \therefore K_{1} \underline{n}=\frac{K \underline{t}-T \underline{t}}{T}
\end{align*}
$$

Squarip lioli sides $\quad K_{1}^{2}=\frac{K^{2}+T^{2}}{T^{2}}$

$$
k_{1}=\frac{\sqrt{K^{2}+\tau^{2}}}{\tau} \xrightarrow{2}
$$

As the indicatrix fien ontier unit sphen.

$$
\begin{align*}
R^{2} & =\rho^{2}+\left(\sigma \rho^{\prime}\right)^{2} \\
i & =\rho_{1}^{2}+\left(\sigma_{1} \rho_{1}^{\prime}\right)^{2} \\
1 & =\frac{1}{K_{i}^{2}}+\frac{1}{T_{1}^{2}}\left(\rho_{1}^{\prime}\right)^{2} \tag{B}
\end{align*}
$$

As $\quad \dot{P}_{1}=1 k_{1} \Rightarrow \rho_{1}^{\prime}=\frac{-k_{1}^{\prime}}{k_{1}^{2}} \quad \vdots$

$$
\therefore\left(p_{i}^{2}\right)^{2}=\frac{k_{1}^{2}}{k_{1}^{4}}
$$

Puiump ar β

$$
\begin{align*}
& 1=\frac{1}{K_{1}^{2}}+\frac{1}{T_{1}^{2}} \frac{K_{1}^{2}}{K_{1}^{4}} \\
& 1-\frac{1}{K_{1}^{2}}=\frac{1}{T_{1}^{2}}\left(\frac{K_{1}^{2}}{K_{1}^{2}}\right) \\
& \frac{K_{1}^{2}-1}{K_{1}^{2}}=\frac{1}{T_{1}^{2}} \frac{K_{1}^{2}}{K_{1}^{4}} \\
& T_{1}^{2}=\frac{K_{1}^{2}}{\left(K_{1}^{2}-1\right) K_{1}^{2}} \Rightarrow T_{1}=\frac{K_{1}}{K_{1} \sqrt{K_{1}^{2}-1}} \tag{3}
\end{align*}
$$

From (2) $\quad K_{1}=\frac{\sqrt{k^{2}+T^{2}}}{k^{2} T}$
Digf wrt S,

$$
k_{1}^{\prime}=\frac{d}{d s_{1}}\left(\frac{\left(k^{2}+r^{2}\right)^{1 / 2}}{r}\right)
$$

$$
\left.\begin{array}{rl}
K_{1}^{\prime} & =\frac{d}{d s} \frac{\left(k^{2}+r^{2}\right)^{\prime \prime}}{T} \frac{d s}{d s_{1}} \\
& =T\left(\frac{2 k k^{\prime}+2 T T^{\prime}}{2 \sqrt{k^{2}+T^{2}}}-\sqrt{k^{2}+T^{2}} \cdot T\right.
\end{array}\right) \frac{1}{T} T^{2}, \quad \frac{k\left(T K^{\prime}-k T^{\prime}\right)}{T^{3} \sqrt{k^{2}+T^{2}}} \quad,
$$

Pulicp Miese valines of K, and K, in (3)

$$
T_{1}=\frac{k\left(T K^{\prime}-k T^{\prime}\right)}{T^{3} \sqrt{k^{2}+T^{2}}} \cdot \frac{1}{\frac{\sqrt{k^{2}+T^{2}}}{T} \sqrt{\frac{k_{T}^{2} T^{2}}{T_{1}^{2}}-1}}
$$

$$
T_{1}=\frac{k^{\prime}\left(T k^{\prime}-k T^{\prime}\right)}{T^{3}\left(\sqrt{\left.k^{2}+T^{2}\right)^{2}}\right.} \cdot \frac{T_{0}^{2}}{k}=\frac{k^{\prime} \tau \cdot k T^{\prime}}{\tau\left(k^{2}+\tau^{2}\right)}
$$

Qxample Fiuct cuci- spli, indicartixe (fmagei). of ini cinaular Hélix.
Het $\quad \underline{Z}=(a \cos 0, a \sin 0,<\theta) . \operatorname{cov} 0$, Dife curts.

$$
\begin{equation*}
\because \underline{\Omega}^{\prime}=\underline{t}=(-a \sin \theta, a \cos \theta, c) \frac{d \theta}{d s} \tag{1}
\end{equation*}
$$

Squan kicia sidés

$$
\begin{aligned}
1 & =\left(a^{2} s^{2} \theta+a^{2} \cos ^{2} \theta+c^{2}\right)\left(\frac{d a^{2}}{d}\right)^{2} \\
1 & =\left(a^{2}+c^{2}\right)\left(\frac{d \theta}{d s}\right)^{2} \\
\left(\frac{d \theta}{d s}\right)^{2} & =\frac{1}{a^{2}+\theta^{2}} \Rightarrow \frac{d \theta}{d S}=\frac{1}{\sqrt{a^{2}+c^{2}}}
\end{aligned}
$$

Say, $\frac{d s}{d \theta}=\sqrt{a^{2}+c^{2}}=1$ (Cincostant
parity un (1)

$$
\underline{t}=\left(-a \operatorname{sen} \theta, \frac{1}{a} \cos \dot{0}, c\right) \frac{1}{d}
$$

Difig wrts

$$
\begin{aligned}
& \frac{d t}{c t s}=\frac{d}{d o}(-a \sin , a \cos \theta, c) \frac{1}{N} \frac{d \theta}{d s} \\
& k n=(-a \cos a,-a \sin \theta, 0) 1 / d^{2}
\end{aligned}
$$

Squariy kioth seclen

$$
\begin{align*}
& k^{2}=\left(a^{2} \cos ^{2} c+a^{2} \operatorname{s}^{2} c\right) \frac{1}{d^{3}} \\
& k^{2}=a^{2} / d^{4} \quad K=\frac{a}{1^{2}} \tag{n}
\end{align*}
$$

Q, (4 can be curillen: as

$$
\begin{gathered}
k \underline{n}=(-\cos \theta,-\delta 0,0) a / \lambda^{2} \\
\vdots \underline{n}=(-\cos 0,-\delta 0,0) K
\end{gathered}
$$

$$
\begin{align*}
& \Rightarrow \vec{r}=(-\cos 0,-\sin 0,0) \tag{5}\\
& \text { Now } b=t \times n
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{\lambda}\left\{2\left(0+\frac{\sin \theta}{\theta}\right)-j\left((\cos \theta)+1 c\left(a \sin ^{2} \theta+a \cos \theta\right)\right\}\right. \text {. } \\
& =\frac{1}{1}(c \sin \theta,-c \cos \theta, a)
\end{align*}
$$

 cos $x=-\frac{a s 0}{d}, y=\frac{a \cos 0}{d} z=8 / 6$
for Principal oromial,

$$
x=-\cos 0, y=-\sin z=0
$$

tifo Prmcipal Brnorainal ape

$$
x=\frac{c s_{1} \theta^{0}}{d}, y=-\frac{c \operatorname{cose} \theta}{d}, z=a / d
$$

§. INOCUTES F EVOLUTES
Def: When the Taugeuts to a curve C are noronal to anotuer curve C_{1} picen C_{1} is ealled lnvalute of c cinc C is callid an evoluti of C_{1}. O, dete in lu uï p.v of a pllie, on iut limgme at ium pt ㄴ Pf Curre C is quiven by
is to lue deter muined is to bue deternuivied.
dot $d s$, ithe The arc lengia of tau cirvalutt presponcling to in eloment ds of the cume C. Iren Imile Toungeint $t C_{1}$ is $1=(1+u)^{4+z}+0$
\(\left|\begin{array}{c}=(1+u)+\sigma

+11^{\prime}=0

\vdots\end{array}\right|\)| t |
| ---: |
| |
| t |

$$
t_{1}=\frac{d r_{1}}{d s} \cdot \frac{d s}{d s_{1}}
$$

$+i^{\prime}=0 \quad t_{1}$

$$
\begin{align*}
& t_{1}=\frac{d E_{0}}{d s} \frac{d s_{1}}{d s_{1}}+\left(v^{\prime} t+u s_{1} d \frac{d t}{d s_{1}}\right) \frac{d s}{d s_{1}} \frac{d s}{d s} \\
&=\left[\left(1+v^{\prime}\right) \underline{t}+u k n\right] \frac{d s}{d s_{1}} \tag{2}
\end{align*}
$$

To saiteigy, iter condations for an cuvalicte, "iun vector must lee 1 to t, Hence Putting uic value of U in 0 , sue have

$$
\underline{r}_{1}=\underline{r}+(c-s) \underline{t}
$$

$$
\begin{gathered}
1+u^{\prime}=0 \\
u^{\prime}=-r \\
u=-s+c \\
c i=1
\end{gathered}
$$

cis constaut

Where C i conscaul- dite to C ace coinulurle tival tives ane ∞ nos of involutes fir encer evolut and Uiu undi Taingrit (piom eq(2)) is

$$
\begin{aligned}
& \underline{t}_{1}=\left(\underline{t}+\nu^{\prime} t+u k \eta\right) \frac{d_{s}}{d s_{1}} \\
& t_{1}=\left(\underline{t}+(-1 \underline{t}+(c-s) k n) \frac{d s}{d s_{1}}\right. \\
& t_{1}=(c-s) k n \frac{d s}{d s_{1}}
\end{aligned}
$$

Smee

$$
\begin{equation*}
\underline{t}_{1}=\vec{n} \tag{5}
\end{equation*}
$$

Then $\dot{t}_{1}: \| \vec{n} \quad \ddot{d s_{1}}=K(c-s)$ From $t_{1} \| \vec{n}$, we not kual Tausint at tue paiit $p t_{i} c_{1}$ is parallel te the normual of the point p to C ?
To fiud cunrature of linoluli, we considen
from(5) $\quad \underline{t}_{1}=n$.
Rut wrts, $\frac{d t_{1}}{d s_{1}}=\frac{d n}{d s} \cdot \frac{d s}{d s_{1}}$

$$
K_{1} n_{1}=n^{\prime} \frac{d s}{d s_{1}}
$$

Somay lioth sicitio

$$
\begin{aligned}
& K_{1} n_{1}=(T \underline{b}-K t) \frac{1}{k(2-c)} \\
& \operatorname{sic}_{10}(i n
\end{aligned}
$$

$$
\begin{aligned}
& K_{1}^{2}(1)=\frac{\left(T^{2}+k^{2}\right)}{k^{2}(c-s)^{2}} \\
& k_{1}=\frac{\sqrt{T^{2}+k^{2}}}{k(c-s)} \quad \text { wcich } \quad
\end{aligned}
$$

IIt Kequid ixxpression for cunvatuse of invalute C_{1} :

Weorem Ner Evolutes
frakionerts To bhow then ane an unginite family of evotules for lich space esure C :

Suiee Th Tongent at-P, of C_{1} is normal at a correspinding pt P. of C it, The Fangeint at p_{1} of C_{1}, leies ai ic normal plave, tanfou,
 Pir r_{1} of P_{1} can lee expressed as.
$\underline{r}_{1}=\underline{r}+\underline{y}+\underline{v} \underline{b}$-(1) Whute v and v ane to la deterinined

$$
\begin{align*}
& \frac{d r}{c r}=\underline{r}^{\prime}+1^{\prime} \underline{r}+u \underline{n}+\underline{\underline{r}} \underline{\underline{r}}+\dot{v}^{0} \underline{b}^{\prime} \\
& =\underline{t}+u^{\prime} \underline{n}+u(T \underline{b}-k \underline{t})+v b+\underline{v}\left(-T_{\underline{w}}\right) \\
& =\underline{t}(1-U K)+\left(u^{\prime}-T v\right) \underline{n}+(u T+v) \underline{b} \tag{2}
\end{align*}
$$

As $\frac{d y}{d!}:$ lio an sorontal plame
we lian $\frac{d r_{1}}{d s}=\dot{u} \underline{n}+v \underline{b}$
Compraip (2) \& (3)

$$
\begin{align*}
& \Rightarrow \quad 1-u k=0 \tag{3}\\
& \& \quad \therefore \frac{U^{\prime}-v T}{11}=\frac{10 \Gamma+V}{v} \tag{5}
\end{align*}
$$

F゙rom(4)

- formen (5)

$$
\begin{gathered}
u^{\prime} v-v^{2} T=u^{2} T+u \dot{v} \\
\left(u^{2}+v^{2}\right) T=u v-u u^{\prime} \\
T=\frac{u^{\prime} v-u v}{v^{2}+v^{2}}
\end{gathered}
$$

roves
wirts

$$
\begin{aligned}
T & =\frac{1}{r^{2} u^{2}}\left(\frac{u^{\prime} r-u v^{\prime}}{r^{2}}\right) \\
\int_{0}^{s} T d s & =T\left(V i^{-1}(v)\right) \\
=\int_{0}^{s} T d s \quad & =T a u^{-1}(u b r)(-v / \rho)
\end{aligned}
$$

$$
\operatorname{Tan}(\psi+c)=-v / \rho+c=\operatorname{Tan}^{-1}(-v \rho)
$$

$V=-\rho \tan (\psi+c)$

$$
\therefore k_{1}=\underline{n}+\rho(\underline{n}-\operatorname{Ton}(\psi+c) \underline{b})
$$

wirich in equatioss of liä errapuit r_{r} aund for obtberaul waccion up asbe. comstand, we can coletauin olypromil erabutes and bevec ∞ onding difinsual. oviolute, C for lim govew exnve C

Qarmina: Prove Thal- Vice locius of aeutre of Curvatury is an evoluth oncy when the curve is a plame curne.
Solutions The equetion of Eiralute pau hucurrllian as:

$$
\begin{equation*}
\underline{\Lambda}_{1}=\underline{\underline{s}}+\rho \underline{n}-\rho \cdot \tan (\psi+a) \cdot \underline{b} \tag{1}
\end{equation*}
$$

For dybeneut veleuen of a we have duffonoul. evelutes, also, thi tocies of exutre pi curvitiou cau le curifter as: $C=\underline{Z}+\rho n$
Equation (i) and (2) and icleuhtal, if
l b is a unit vectas $\quad \therefore \tan (\psi+a) \cdot \underline{b}=0$
so it conn't be

Hence tix eanve is a pecame convie.
Theorem Prove That The ratio if Thi Tirsicin and enrvature of an evirolute of a. space enve (gnvoluli) í

$$
\therefore \frac{T_{i}}{K_{1}}=-\operatorname{Tan}(i \psi+a) \quad s / a x+f=\int T d s
$$

$$
\begin{align*}
& \Rightarrow \operatorname{Tan}\left(\psi^{1}+a\right)=\operatorname{Tan} n \pi \cdot \operatorname{Tan}(\psi+a)=0 \\
& n \text { is uny irlegen, } \\
& \Rightarrow \quad \psi^{\prime}+r=n \pi \\
& \psi(s)=n \pi-a \\
& \psi^{\prime}(s)=0 \\
& \text { but : } \psi=\int T d s \\
& \Rightarrow T=\psi^{\prime}(S) \\
& \Rightarrow T=\text {. }
\end{align*}
$$

Proof The equation of tive evrolute is

$$
\underline{K}_{1}=\underline{k}+\rho \underline{n}-P \operatorname{Tar}(\psi+a) \underline{b}
$$

Diff wre s_{1}

$$
\begin{aligned}
& \frac{d r_{1}}{d s_{1}}=\left\{\underline{\underline{r}}^{\prime}+\underline{p}^{\prime} \underline{n}+\rho \underline{n}^{\prime}-\rho^{\prime} \operatorname{Tan}(\psi+a) \underline{b}\right. \\
& \left.-\rho \underline{b}^{\prime} \tan (\psi+a)-\rho \underline{b} \sec ^{2}(\psi+a) \frac{d x}{a^{s}}\right\} \cdot \frac{d s}{d s} \\
& =\left\{\underline{t}+\rho^{\prime} \underline{n}+\rho(\Gamma \underline{b}-k \underline{t})-\rho^{\prime} \operatorname{Tan}(\psi+a) \underline{b}\right. \\
& \left.-\rho(-T n) \operatorname{Tan}(\psi+a)-\rho \underline{\varphi} \operatorname{Sec}^{2}(\psi+a) \pi\right\} \frac{d s}{d s_{1}} \\
& =\left\{\underline{t}+\rho^{\prime} \underline{n}+\rho \gamma \underline{b}-\rho k \underline{t}-\rho^{\prime} \tan (\psi+a) \underline{\underline{1}}+\rho \operatorname{Tn} \operatorname{Tan}(\psi+a)\right. \text {. } \\
& \left.-\rho \underline{b}\left(1+\tan ^{2}(\psi+a)\right) \pi\right\} \frac{d s}{d s} \\
& =\left\{\underline{t}+e^{\prime} \underline{n}+\rho \Gamma \underline{\underline{t}}-\underline{\psi}-\rho^{\prime} \tan (\psi+a) \underline{b}+\rho T \underline{n} \operatorname{Tan}(\psi+a)\right.
\end{aligned}
$$

$$
\begin{align*}
& 1 \rho^{\prime} \underline{n}+\rho \tau \underline{n} \operatorname{Tan}(\psi+a)-\rho^{\prime} \operatorname{Tan}(\psi+a) \underline{b} \\
& -p r \operatorname{Tan}^{2}(\psi+a) \frac{d s}{d s_{1}} \\
& =\left\{\left[\rho^{\prime}+\rho \tau \tan (\psi+a)\right] \underline{n}-\operatorname{Tan}(\psi+a)\left\{p^{\prime}+\rho \tau^{\tan \psi+a) b}\right\} \frac{d g}{d s_{1}}\right. \\
& t_{1}=\frac{d r_{1}}{d s_{1}}=\left\{\left(\rho^{\prime}+\rho \tau \operatorname{Tan}(\psi+a)\right)(\ddot{\vec{n}}-\operatorname{Tan}(\psi+a))\right\} \frac{d s}{d s_{1}} \text {. } \tag{2}
\end{align*}
$$

Squarip le ólie scoles

$$
\begin{aligned}
& 1=\left[\rho^{\prime}+\rho r \operatorname{Tan}(\psi+a)\right)^{2}\left[1+\operatorname{req}^{2}(\psi+a)\right]\left(\frac{d s}{d s}\right)^{2} \\
& A=\left(\rho^{\prime}+\rho T \operatorname{Tan}(\psi+a)\right)^{2} \sec ^{2}(\psi+a)\left(\frac{d s}{d s_{1}}\right)^{2} \\
& \left(\frac{d s_{1}}{d s}\right)^{2}=\left(\rho^{\prime}+\rho T \operatorname{Tan}(\psi+a)\right)^{2} \sec ^{2}(\psi+a) \\
& \left.\frac{d s_{1}}{d s}=\left(\rho^{\prime}+\rho T \operatorname{Tan} \psi+a\right)\right] \sec (\psi+a) \\
& \Rightarrow \frac{d s}{d s_{1}}=\frac{1}{\rho^{\prime}+\rho T \operatorname{Tan}(\psi+a)} \cdot \cos (\psi+a)
\end{aligned}
$$

usile result. in eq 0 , we get-

$$
\begin{aligned}
t_{1}= & \left\{e^{\prime}+\frac{\cos (\psi+a)\}}{\cos (\psi+a)}\{n-(\tan (\psi+a)) b\}\right. \\
& x \frac{\cos (\eta-\tan (\psi+a) b}{\operatorname{Sec}(\psi+a)}
\end{aligned}
$$

Wifferom

$$
\begin{equation*}
\sigma_{2} \Rightarrow \underline{n}_{1}=-\underline{t}^{5 \rightarrow(a)} k_{1}=k \cos (\dot{\psi}+\dot{a}) \frac{d s}{d s_{1}} \tag{8}
\end{equation*}
$$

Now Considev $\underline{b}_{i}=t_{1} \times n_{i}$ usinget +3

$$
=[n \cos (y+a)-\underline{b} \sin (4+a)] *(-\underline{t})
$$

$$
\begin{aligned}
b_{1} & =-n x t \cos (4+a)+\underline{x} x \sin (4+a) \\
& =\underline{b} \cos (\psi+a)+\underline{n} \sin (\psi+a)
\end{aligned}
$$

Naw $\frac{d b_{1}}{d s_{1}}=\frac{d}{c l_{s}}[\underline{b} \cos (\psi+a)+2 \sin (\psi+a)] \frac{d s}{d s_{1}}$

$$
\begin{aligned}
& \left.\left.T_{1} n_{1}=k t \quad \text { siv }(Q)+a\right) \frac{d s}{d s_{1}}\right] \Rightarrow n_{1}-t_{1} d T_{1}=-k \\
& D_{\text {undep }}(s) b y(4)
\end{aligned}
$$

\Rightarrow Duirdep (s) by (a)

$$
\frac{T_{1}}{c_{1}}=\frac{-k \operatorname{sen}(\alpha)+a) d s /(s)}{k \cos (\psi+a) \cdot d /(s)}=\frac{-\sin (\psi+a)}{\cos (\psi+4)}=-\sin (\psi+a)
$$

whone $\psi=\int \dot{T} d s \quad$ os $\psi=T$.

$$
\begin{aligned}
& \left.-T_{1} n_{1}=\int \underline{b}^{\prime} \cos (\psi+a)-b \sin (\psi+a) \psi^{\prime}+x^{\prime} \sin (\psi+a)+n \cos (\psi+z) \psi^{\prime}\right) \frac{d c}{a_{1}} \\
& -\pi n_{1}=\left(-T_{n} \cos (\phi)+a\right)-\Delta \sin (\phi \\
& -\pi n=-K t \quad \sin (\psi+a) \cdot \frac{d s}{d s} \\
& +n \pi \cdot \cos (\psi+a)) \cdot \frac{d s}{d s}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d t_{1}}{d s_{1}}=\frac{d}{d s}(\underline{n} \cos (\psi+a)-\underline{b} \sin (\psi+a)) \frac{d s_{3}}{d s_{1}} \\
& =\left\{\underline{n} \cos (\psi+a)-n \sin (\dot{\psi}+a) n^{\prime}\right. \\
& \left.-\underline{b} \sin (\psi+a)-\underline{b} \cos (\psi+a) \psi^{\prime}\right\} \frac{d s}{d s} ; \\
& K_{1} n i=\{(T \underline{b}-k \underline{t}) \cos (\psi+a)-n \sin (\psi+a) T \\
& y^{\prime}=T \\
& b^{\prime}=-\sqrt{n} \\
& +T \underline{n} \sin (\psi+a)-\underline{n} \cos (\psi-\hat{n} a) T\} \frac{d s}{d s_{1}} \\
& k_{1} \underline{n}_{1}=\{\tau \underline{\underline{n}} \cos (\psi+a)-k \underline{t} \cos (\psi+a) \\
& -n \sin (\phi+a) \tau+n T X \sim(\psi+a)-\underline{-} T \cos (\phi+a) \frac{d s}{d s_{1}} \\
& =[-k t \cos (\psi+a)] \frac{d s}{d s_{1}}
\end{aligned}
$$

$$
\begin{align*}
& t_{1}=\left(n-\frac{\delta_{1}\left(y^{\prime}+a\right)}{\cos \left(y^{\prime}+a\right)} b\right] \cos (y+a) \\
& \underline{t}_{1}=[\operatorname{nos}(\psi+a)-\underline{b} \delta(\psi+a)] \tag{2}
\end{align*}
$$

CHAPTER-2
§ Diff Cometry of Sunfaces.
 whose cometivaten ane furrictions of wa o oudept. paraonelts U aind $2 e$, tuus

$$
x=f_{1}(u, v), y=f_{2}(u, x) \quad z-f_{3}(u, v)
$$

anc parameric eqs of a sungace.
Hive eliminafe ufre jeom linese eys. ave have $F(x, y, z)=0$ as eq of sungace.
Exampters
(1) The Paramatric eq of a sphase viritin ceutre at O and Radecis a is

$$
\begin{aligned}
& x=a \cos \theta \cos \varphi \\
& y=a \cos \theta \sin \\
& z=a \sin \theta .
\end{aligned}
$$

Elionmaluig p and or jean There eqpeatimes

$$
x^{2}+y^{2}+z^{2}=d^{2} \cos ^{2} \alpha \cos ^{2} y^{2}+\alpha^{2} \cos ^{2} \alpha \operatorname{cin}^{2} \varphi+d^{2} \sin ^{2} \theta
$$

$$
=a^{2} \cos ^{2} \theta\left(\cos ^{2} \phi+\sin \psi\right)+a^{2} s^{2} c
$$

$$
=a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=a^{2}
$$

$i^{2} \%$ a spluene ocutre ar O and srad $=a$
Examph(2) The Pavametree 多s op selipsoix

$$
x / a^{2}+\frac{y^{2}}{2^{2}}+\frac{2^{2}}{c^{2}}=1 \quad \text { 娄, } x \text { Eelepsicel }
$$

$x=\mu \sin \varphi \cos \psi$
$y=\mu \sin \phi \sin \psi$
$z=\mu \cos \phi$
kryoll or ol "
cones.

$$
\begin{aligned}
x^{2}+y^{2} & =\mu^{2}\left(\alpha^{2} p\right)\left(\cos ^{2} \psi+\operatorname{si} \varphi\right) \\
& =\mu^{2} \operatorname{sh}^{2} \varphi \\
& =\frac{\mu^{2} \operatorname{s}^{2} \phi}{\cos ^{2} \varphi} \cdot \cos ^{2} \phi
\end{aligned}
$$

$$
\therefore x^{2}+y^{2}=\frac{\mu^{2} \cos ^{2} \phi \operatorname{zan}^{2} \varphi}{z^{2}-2 \phi}
$$

$$
\begin{aligned}
& x=a \cos \theta \cos c p \\
& y-b \cos \alpha \text { sup } \\
& z=c \cdot \sin \theta \\
& \text { Elcumber o aind } \phi
\end{aligned}
$$

§. TAMGENT PLANE \& NORMAL
Of. The Tangent it any ewze dracuon of a finfice is cated a rrangant live r_{0}^{\prime}, 広, surprec ... $2 t r o x$

- Sf: Tangant plave to a sengace ata point P. is timplare containaing ael Foingeint bines* the sunface at tur point.
$\$$ To frivel \& of Trugent plave if qe of normel of a p P t tu sunface $F(x ; y, z)=0$.

Let $F(x, y, z)=0$ lee ten equatios of sinfuce: delt C Rue any eosrve diravi on it.: Scippose s be tan arce loug't nneasuned prom a fixed pt A up t a currout pt $P(x, y, z)$. Shice: $F(x, y, z)=0$ shas tiue. Sance vathee at all paintion liki sunjace, it keonain's constant along tan cuinve as s vanie's. 2 enus

$$
\begin{aligned}
\text { Difticurt } s & \Rightarrow \frac{d A}{d s}=\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial E}{\partial y} \frac{d y}{d s}+\frac{\partial f}{\partial z} \frac{d z}{\partial s}=0 \\
& \Rightarrow F_{x} \cdot x^{\prime}+F_{y}^{\prime}+F_{z} \cdot z^{\prime}=0 \\
& \left(F_{x}, F_{!}, F_{z}\right) \cdot\left(x^{\prime}, y^{\prime} z^{\prime}\right)=0
\end{aligned}
$$

Now llu vecter $\left(x^{\prime}, y^{\prime \prime} ; \dot{z}\right)$ is la unich Faugent. ii tha
 t to lit ennve at $P(x, 4,2)$. ito smous theat it is L ti the vector $\left(F_{x}, F_{y}, f_{2}\right)$. Nel rimigeat laien in The surpace at (x, y, z) are i to the vecav $\left(F_{x}, F_{y}, F_{i}\right.$;

 nerneref to tue praue at P, the pt of contact, is catid
 i calted gsad \vec{F}. dentiol as $\nabla \stackrel{\rightharpoonup}{F}$.

Sive the live forioning auy point- $P(x, y, z)$ on ith Trugeuct plave to . The poiuliof contaot "8 \perp to $\overline{t u}$.
 i p. nof prof coritact: $O Q \quad(x-x) \frac{\partial \vec{F}}{\partial x}+(y-y) \frac{\partial F}{\partial y}+(z-z) \frac{\partial F}{\partial z}=0$ AE $(x-x) F_{x}+(y-y) F_{y}+(z-x) F_{2}=0$
(3) \&uftip

Equation of Normal.
Suice vormal of sungace $F\left(x_{1} v, z\right)=0$ along the gradient $\vec{\nabla}$. Hence eq of normal: B for ony current $p l R(x, y, z$,$) .$

$$
\begin{aligned}
& R=\underline{\underline{r}}+U \vec{F} \\
& \underline{R}-\underline{R}=U \nabla \vec{F}
\end{aligned}
$$

$$
\partial \varepsilon(x-x, y-y, Z-z)=\nu\left(\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial Z}\right)
$$

os

$$
\left.\begin{array}{l}
x-x=u \frac{\partial f}{\partial x} \\
y-y=1 \frac{\partial f}{\partial y} \\
z-z=y \frac{\partial F}{\partial z}
\end{array}\right\}
$$

Elliminatijp U fom Thex eqs, we hicie

$$
\frac{x-x}{F_{x}}=\frac{y-y}{F_{y}}=\frac{z-z}{F_{z}}
$$

Which are egs of noraial of pacuil- $P(x, y, z)$.'

Ex on: Page 39
Q(1) Prove that the Tangent plane to the Sergine: $x y z=a^{3}$ and The cosed planes bound a Tetrahedron of Constact volume:
Sol E of sunfice is $x y z=a^{3}$

$$
\begin{aligned}
& F=x y z-a^{3} \\
& F_{x}=y z, \quad F_{y}=x z, \quad F_{z}=x y
\end{aligned}
$$

\& of Tagair plani

$$
\begin{align*}
& \quad(R-\underline{(}) \cdot \nabla \vec{F}=0 \\
& \\
& \quad(X-x) \frac{\partial F}{\partial x}+(Y-y) \frac{\partial F}{\lambda y}+(z-z) \frac{\partial F}{\partial z}=0 \\
& \\
& \quad X y z-x y z+y x z-y x z+z x y-x y z=0 \\
& \text { of } \quad X y+y x z+Z x y-3 x y z=0 \tag{1}\\
& \text { or } \quad X y z+y x z+Z x y-3 a^{3}=0
\end{align*}
$$

Pf of X_{n} with condinat plome (Aneni) $y=0=2$

$$
x y z=3 a^{3} \quad x=3 a^{3} / y z
$$

Suwhy for $y f=\alpha a x \quad y=\frac{3 a^{3}}{x z} \times z=\frac{3 a^{3}}{y x}$

The pt, of x_{n} are $\left(\frac{3 a^{3}}{y z}, 0,0\right),\left(0, \frac{3 a^{3}}{x z}, 0\right) \dot{f}\left(0 ; 0, \frac{3 a^{3}}{x y}\right)$ To fiud Ru valume po Tetrahedron luraugh unese $p t$ willi 4ti pt as anigin ($0,0,0$), we have

$$
\left.V=1 / 6\left|\begin{array}{ccc}
3 a^{3} / y z & 0 & 0 \\
0 & 3 a^{3} / x z & 0 \\
0 & 0 & 3 a^{2} / x \\
0 & 0 & 0
\end{array}\right| \begin{aligned}
& 1 \\
& 1
\end{aligned} \right\rvert\,=\frac{1}{6}\left(27 \frac{a}{x^{2}+y^{2} z^{2}}\right), \frac{9}{2} \frac{a^{9}}{a^{6}}=9 / 2 a^{3}-1 .
$$

Wrich is constail
$Q(2)$ Show tikat the Sum of squaren of the Intercept, or Thu coirelinali axer by icic Tangeint plane to the sunfaci $x^{2 / 3}+y^{2 / 3}+2^{2 / 3}=a^{2 / 3}$. is Conslaut..
Sol G, of singace $F=x^{2 / 3}+y^{2 / 3}+2^{2 / 3}=a^{2 / 3}=0$

$$
\frac{\partial F}{\partial x}=2 / 3 x^{-1 / 3}, \frac{\partial F}{\partial y}=2 / 3 z^{-1 / 3}
$$

\& of Th jut plaue:

$$
O E /=2 / 3 z^{1 / 3}
$$

$$
(R-i) \cdot \nabla \vec{e}=0
$$

or $(x-x) \frac{\partial F}{\partial x}+(y-y) \frac{\partial F}{\partial y}+(z-z) \frac{\partial F}{\partial z}=0$

$$
\begin{align*}
& (x-x) 2 / 3 x^{-1 / 3}+(y-y) 2^{-1 / 3} \\
& +(z-z) 2 / 3 z^{2 / 3} \\
\Rightarrow & \frac{x-x}{x^{1 / 3}}+\frac{y-y}{y^{1 / 3}}+\frac{z-z}{z^{1 / 3}}=0 \\
& x^{-1 / 3} x+y^{1 / 3} y+z^{1 / 3} Z=x^{1 / 3}+y^{3 / 3}+z^{2 / 3}=a^{2 / 3}
\end{align*}
$$

For x Intinceple: Put $y=0=2$

$$
\begin{aligned}
& \cdots \frac{x}{x^{1 / 3}}=a^{2 / 3} \Rightarrow X=a^{2 / 3} x^{1 / 3} \\
& \text { eandy } 2 \text { intercepto are }
\end{aligned}
$$

Let $A\left(a^{2 / 3} x^{1 / 3}, 010\right)$
Guncarly $x^{1 / 3} y$ and \sum lntercept are

$$
\begin{aligned}
& A\left(a^{2 / 3} x^{1 / 3} 0,0\right) \\
& B\left(0, a^{2 / 3}, 0\right)
\end{aligned} \quad \text { and } C=\left(0,0 ; a^{2 / 3} 2^{1 / 3}\right)
$$

3 Available at http://www.MathCity.org/msc
Serm of Syurror ap fortaceopli

$$
\begin{aligned}
(O A)^{2}+(O B)^{2}+(O C)^{2} & =a^{4 / 3} x^{2 / 1}+a^{4 / 3} y^{4 / 3}+a^{4 / 3} 2^{4 / 3} \\
& =a^{4 / 3}\left(x^{2 / 3}+y^{2 / 3}+2^{2 / 3}\right) \\
& =a^{1 / 3}\left(a^{2 / 3}\right)=a^{6 / 3}=a \text { (constand) }
\end{aligned}
$$

Q(3) TR pt. comonon to the surface $a(x y+y z+z x)=x y z$ and a splese evtrose eeutre is origin, The Tangent plave to the surface make iutercept on tio ares wrase. stren a; constaut.
Solution Lat Senfuce lie $F(x, y, z)=a(x y+y z+z x)-x y=0$ o 4.iq of spleux is $x^{2}+y^{2}+z^{2}=a^{2}$ —

For Suzfaci.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=a y-y z+a z . \\
& \frac{\partial F}{\partial y}=a x+a z-x z \\
& \frac{\partial E}{\partial z}=a x+a y-x y
\end{aligned}
$$

Eq Tongent plaive.

$$
\begin{align*}
&(x-x)(a y+a z-y z)+y y-y)(a x+a z-x z)+(z-z)(a x+a y-x y)=0 \\
& \Rightarrow x(a y+a z-y z)+y(a x+a z-x z)+Z(a x+a y-x y) \\
& \quad-2(a(x y+y z+z x)-x y z)+x y z=0 \\
& \Rightarrow x(a y+a z-y z)+y(a x+a z-x z)+Z(a x+a y-x y)+x y z=0 \tag{3}
\end{align*}
$$

for $x \operatorname{snc}$ incept. Put $y=0=2$

$$
X=\frac{-x y z}{a y+a z-y z}=\frac{-x^{2} y z}{a x y+a y z-x y z}=\frac{-x^{2} y z}{-a y z}=\frac{x^{2}}{a}
$$

- Suubuly y aud Z Intercept ax

$$
y=\frac{y^{2}}{u^{2}} \quad \text { andi } z=\frac{z^{2}}{a^{2}}
$$

Srmof loitucepts
Pt of 12 senface which an common to spian veil Satengey lan eq of fompen.

$$
x^{2}+y^{2}+z^{2}=b^{2}
$$

Hencr Srin of fne uncept for sucept $;$

$$
1 / a\left(x^{2}+y^{2}+z^{2}\right)=b / a \quad \text { which } i \text { coustain }
$$

$Q(4)$ (The noronal at a poisit pi F elepsord $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}=1$ mects thi condiriat plones on $\sigma_{1} l_{2}{ }^{+} \sigma_{13}$, prove that IU ratios: $P G_{1}=P G_{2}: P G s$ are constanto Sol Thi eqpeation of singace i:

$$
\begin{aligned}
& \frac{\partial F}{}=\frac{2 x}{a^{2}}, \because \frac{\partial F}{\partial y}=\frac{2 y}{b^{2}}-\frac{\partial E}{a^{2}}=\frac{x^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0
\end{aligned}
$$

fi/tation of rocmal anc $P(x, y, z)$ is

$$
\begin{align*}
& \frac{x-x}{2 x / a^{2}}=\frac{y-y}{2 y / b^{2}}=\frac{z-z}{2 z / 4} \\
\Rightarrow & a^{2}(x-x) \tag{c}\\
x & =\frac{b^{2}(y-y)}{y}=c^{i}\left(\frac{z-z}{z}\right)
\end{align*}
$$

41 iploof x_{n} of normal -(c) to un yzplave. Puit $x=0$

$$
\begin{aligned}
& -\frac{a^{2} x}{x}=\frac{b^{2}(y-y)}{y}=c^{2}\left(\frac{z-z)}{2}\right. \\
& y=\frac{-b^{2} y+b^{2} x}{b^{2}}=\left(\frac{b^{2}-x^{2}}{b^{2}}\right) y
\end{aligned}
$$

路

$$
\begin{array}{ll}
Z=\left(\frac{c^{2}-c^{2}}{c^{2}}\right) z \\
\therefore & G_{1}=\left(0, \frac{\left(b^{2}-c^{2}\right)^{y}}{L^{2}},\left(\frac{c^{2}-a^{2}}{c^{2}}\right) z\right)
\end{array}
$$

Vumbanis $\left.c_{12}=\left(\frac{\left(c^{2}-b^{2}\right.}{a^{2}}\right) x ; 0,\left(\frac{c^{2} b^{2}}{c^{2}}\right) z\right)$
xos. vill

$$
C_{3}=\left(\left(\frac{a^{2}-c^{2}}{a^{2}}\right) x,\left(\frac{b^{2}-c^{2}}{b^{2}}\right) y, 0\right)
$$

$$
\begin{aligned}
& \therefore\left|P G_{11}\right|=\sqrt{(x-0)^{2}+\left(y-\left(\frac{b^{2}-x^{2}}{b^{2}}\right) y\right)^{2}+\left(2-2-\left(\frac{\left.c^{2}-x^{2}\right)}{c^{2}}\right)^{2}\right.} \\
& =\sqrt{x^{2}+\frac{a^{4}}{b^{4}} \partial^{2}+\frac{a^{4}}{c^{4}} z^{2}}=a^{2} \sqrt{\frac{x^{2}}{a^{4}+\frac{y^{2}}{b^{2}}} \div \frac{z^{2}}{c^{2}}} \\
& \text { Saculoud? }
\end{aligned}
$$

$$
\begin{aligned}
& \left|P G_{2}\right|=b^{2} \sqrt{x^{3}+\frac{y^{2}}{4} /+\frac{2 x}{c 4}} \\
& \left|P G_{1}\right|=c^{2} \sqrt{x^{2} / 4^{4}+y^{2} / b^{4}+7 / c 4}
\end{aligned}
$$

Hence $\left|P G_{1}\right| \therefore\left|P G_{2}\right|:\left|P C_{3}\right|=a^{2} \because b^{2}: c^{2}$
§ GNE PARAMETER FAMILY OF SURFACES
An equation of the form $F(x, y, z, a)=0$, ishasie ' a ' u ' constaut, represents a Sanfacc. Sance ' a ' is arkitrany constant, Therefore, thene ase fenfinily. many suntaces. Jte . Set of all sunfaces correspon dung to differcut' Ealuen if' 'a' si called one parameten pamily of suigaces wila paramieta- a.
Example Family of sphenen of consiacie raciucio ' b ' and Rating Reai centres ation tiu fixed cisel $x^{2}+y^{2}=z \quad f: z=0$

Cacodinalis of a pariont on the given cincik are $x=a \cos \theta, y=a \sin \theta z=0$

Dhenfine, sq of sphere will bee

$$
(x-a \cos \theta)^{2}+(y-a \sin \theta)^{2}+z^{2}=b^{2}
$$

It i: family of spliven..
Available at MathCity:org
8. CHARACTERISTICA OF A SURFACE:-

Consien $F(x, y, z, a)=0 \quad$ az $F(a)=0$

$$
\begin{equation*}
f \quad F(x, y, 2, a+\delta a)=0 \quad \text { or } F(a+s a)=0 \tag{iי}
\end{equation*}
$$

Le $\bar{\omega} \omega$ surfacen of tē same family. Siue cenne of lnluxsection of Two. sungaces of the
faonily, 2 , can leu sorillin

$$
\begin{aligned}
& F(a)=0 \\
& F \frac{F(a+\delta a)-F(a)}{\delta a}=0 .
\end{aligned}
$$

If sa $\rightarrow 0$ Then thi two eqs repserento Two conrecitive sungaees and eqs. heciome as

$$
\left.\begin{array}{l}
F(a)=0 \\
\partial \partial_{a} F(a)=0
\end{array}\right\} \begin{aligned}
& \text { The cuinne of } x_{n} \text { if } \\
& \text { thes Two consecurtue }
\end{aligned}
$$ Sungacen is ealled lia

Cliaracteristica of ik sintace for «a
Paraonetric value a.

SENVELOPES
The locus of aid eliaractenstici" "i callid an envelape of IA family of sungacen. It is a senjuce whiase equation" is oblamied by - Eliminatug' 'a' from lee eqs $F(a)=0 \frac{f-\partial}{\partial a} f(a)=0$

Exareise on: Page 41
Q.(1) Fiud Iut Ennelope of in family of pairalisercids

$$
x^{2}+y^{2}=4 a(z-a)
$$

is itu enicular come: $x^{2}+y^{2}=z^{2}$
Sop

$$
\begin{equation*}
\text { Let } F(a)=x^{2}+y^{2}-4 a(2-a)=0 \tag{}
\end{equation*}
$$

Defo Paitiailiy wrt'a'

$$
\frac{\partial P(a)}{\partial a}=-4 a+8 a=0
$$

Eninuratiag a, put $\geqslant 2=a$ in oq(o)

$$
\begin{aligned}
& x^{2}+y^{2}-4 z / 2(z-z / 2)=0 \\
& x^{2}+y^{2}-z^{2}=0 \quad \text { or } x^{2}+y^{2}=z^{2}
\end{aligned}
$$

Sagninit Eminlope. I
Q(2) Sphiens of constand. Raduis have ikiir Cautres on tha fixied ceicle $x^{2}+y^{2}=a^{2}, 2=0$, prove Mal. their envelofer is rensingace

$$
\left(x^{2}+y^{2}+z^{2}+a^{2}-b^{2}\right)^{2}=\varepsilon a^{2}\left(x^{2}+y^{2}\right)
$$

Sol Tue eq of sphein of radiun of with centre on gruen cerice $x=a \cos 0, y=a \operatorname{sonco}$, will ll,

$$
\begin{align*}
& (x-a \cos \theta)^{2}+(y-a \sin a)^{2}+z^{2}=b^{2} \\
& \Rightarrow F=x^{2}+y^{2}+z^{2}-2 a(x \cos \alpha+y \sin \theta)+a^{2}-b^{2}=c \tag{1}\\
& \frac{\partial F}{\partial \theta}=2 a \times \sin \theta-j a y \cos \theta \\
& \text { ar } 2 a(x \sin \theta-y \cos \theta)=0 \tag{2}
\end{align*}
$$

:3 Aizif icose roluen ar eq (1), we jel${ }_{i / 2}^{6} \quad x^{2}+y^{2}+z^{2}-2 a\left(\frac{x^{2}}{\sqrt{x^{2}+y^{2}}}+\frac{y^{2}}{\sqrt{x^{2}+y^{2}}}\right)+a^{2} i^{2}=0$ $1 / 2 \quad x^{2}+y^{2}+z^{2}+a^{2}-b^{2}=2 a \sqrt{x^{2}+y^{2}}$ 14. Sopranep boai Sedes H
18

$$
\left(x^{2}+y^{2}+z^{2}+a^{2}-b^{2}\right)^{2}=\varepsilon a^{2}\left(x^{2}+y^{2}\right)
$$

AB Rat Requind Envelofx.
Q(3) Fund the Envelope of tim family of fuffaè $F(x, y, z, a, b)=0$ on äbiele Parameter a, b are comnectid by the eq

$$
f(a, b)=0
$$

Solution: Anew $F(x, y, z, a, b)=0$ (i)

$$
\begin{equation*}
f(a, b)=0 \tag{di}
\end{equation*}
$$

Dff (c) frii) wint a

$$
\begin{equation*}
\frac{\partial F}{\partial a}+\frac{\partial F}{\partial b} \cdot \frac{\partial L}{\partial a}=0 \tag{ilie}
\end{equation*}
$$

and $\frac{\partial f}{\partial a}+\frac{\partial f}{\partial b} \frac{\partial b}{\partial a}=0$
From oq (IV) ive heaik

$$
\frac{\partial b}{\partial a}=\frac{-\partial f_{/ a}}{\partial f_{b}}=-\frac{f_{a}}{f_{b}}
$$

Plullip «r" (3) , we have

$$
\begin{aligned}
& F_{a}+F_{b}\left(-\frac{f_{a}}{f_{b}}\right)=0 \\
\Rightarrow & \frac{F_{a}}{f_{a}}=\frac{F_{2}}{f_{b}} \rightarrow(w)
\end{aligned}
$$

Available at MathCity.org

Qirs (i, if(if) an kin
Riginnt sis uf lai smreloje.

Wheorem: To prove That Envelope touchas each member of the family of Sunfaces at all pt of the eharacterisilic.
Proop: The chavacleristic corresponding to the parconalar valui a lien, luote on the suiface with the Brame parmineter value and on the envelage. Thus all jit of tiu charactaristio ase commion ti the sunpace and the enveloipe.

The normal to tre surgace $F(x, y, z, a)=0$
is parallal t_{i} ta velin ($\frac{\partial x}{\partial x}, \frac{q R}{y}, \frac{\partial \mu}{\partial z}$).
The equatios: of lice envelopse as alound
big elinematuig o from. $F(a)=0, \frac{\partial}{\partial a} F(a)=0$ Tiu envelope is Munefore, kepresaried ing $F(x, y, z, a)=0$ provided ' a ' is regrated as r fin of $x, y, 2$ ginein $r, \frac{\partial f}{\partial \alpha}(x, y, z, 4)=0$ The mormal ti. The envilope s' then pavarllal to the veck $\left(\frac{\partial F}{\partial x}+\frac{\partial F}{\partial a} \frac{\partial a}{\partial x}, \frac{\partial F}{\partial y}+\frac{\partial F}{\partial a} \frac{\partial \pi}{\partial y}, \frac{\partial F}{\partial z}+\frac{\partial F}{\partial a} \frac{\partial a}{\partial z}\right)$ which si vistin of the preceding eq is the pame as veaten
 envelope thave the same nomural and Tlengforen, Ner same rangent peane. so that. They Tonch eack Elices at all pr, of tie eharactosisite.

Noí fer (ii) $\frac{\partial F}{\partial a}=0$ and it-redueen to - $\operatorname{ceq}_{1}\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \Leftrightarrow(3)$ whicei i dy dz as ©

Downloaded from
WWW. MATHCITY, ORG
$23 / 4 / 2002$
EDGE OF REGRESSION
Inv. fictus of qeilionate inlin section of consective chavacterics of a one-parconeter family of
surface, is ealled the Edge of Regresssion
Theoren ene thal each eluaracteristic Toucice edpe of
 Proel: their Common poinl.)
Sruppose thare A, B and C are Three Conseci-tive' Charoterrides A aure B iutessectung or P and B and C intissect at Q. Thes Two pit are consecuture pt on li. elutvicuteristie is and also on the edge of regerension. Hence ultionalily as A aind C tender to coincidener writ B. The ecerod $P Q$ hecosues! a common iaggut to lit chivaloristic and expe of hegression.
Cguation of the Edge of Pegressein
Let $F(x, y, z, q)=0$ lu a family of senfaces llaw eg of ehavacteristion. corresponding by parameia. 'a.' and $a+b$ ba are

$$
\begin{array}{lr}
F(x, y, z, a)=0 & \\
\& F_{a}^{\prime}(x, y, z, a)=0 & \text { and } F(x, y, z, a+\delta a)=0 \\
t \text { fallows lial. } & \& F_{a}(x, y, z, a+\delta a)=0
\end{array}
$$

Ct follows thal.

$$
\begin{aligned}
& F_{a}(x, y, z, a+\delta a)-F_{a}(x, y, z, a)=0 \\
& \therefore \quad F_{a a}(x, y, z, a)=0
\end{aligned}
$$

The oqs of edge of regression are olvtaived by eliouinating a from $F(a)=a \quad F(a)=0$ and $F_{\text {ad }}(a)=0$

* Ex on Prcie 43
Q.1: Find Tu envelope of the farmily of piamen $3 a^{2} x-3 a y+z=a^{3}$. and shoin
That its edge of regression in then ane of gntasectmi of 広 Sinpaces $x z=y^{2}, \quad x y=z$
Sollelemi Given Songaee in:

$$
\begin{align*}
& \text { Sngaee } \dot{F i}=3 a^{2} x-3 a y+z-a^{3}=0 \\
& \frac{\partial F}{\partial a}=6 a x-3 y-3 a^{2}=0 \rightarrow(2) \tag{2}\\
& \frac{\partial^{2} F}{\partial a^{2}}=6 x-6 a=0 \rightarrow(3) \tag{3}
\end{align*}
$$

Mivilifing eq a log 3 and eq (2) by -a

$$
\begin{align*}
& \quad 9 a^{2} x-9 a y+3 z-3 a^{3}=0 \\
& \Rightarrow \quad \begin{array}{l}
-6 a^{2} x+3 a y+3 a^{3}=0 \\
\Rightarrow
\end{array} \quad 3 a x-6 a y+3 z=0 \tag{4}\\
& \text { \& (2) } \quad a^{2} x-2 a y+z=0 \\
& \tag{5}\\
& \quad 3 a^{2}-6 a x+3 y=0
\end{align*}
$$

Scalvip(4) f(5) $a^{2}-\frac{-a}{-2 y^{2}+2 \times z}=\frac{1}{x y-z}=\frac{1}{-2 x^{2}+2 y}$

$$
\begin{aligned}
& \Rightarrow \quad a^{2}=\frac{-2 y^{2}+2 x z}{-2 x^{2}+2 y} \quad \& \quad \ddot{a}=\frac{z-x y}{-2 x^{2}+2 y} \\
& n^{2}=\frac{-2 y^{2}+2 x z}{-2 x^{2}+2 y}=\frac{y^{2}-x^{2}}{x^{2}-y}=\frac{(z-x y)^{2}}{4\left(x^{2}-y\right)^{2}} \\
& (z-x y)^{2}=4\left(x^{2}-y\right)\left(y^{2}-x z\right)
\end{aligned}
$$

requand eq 7 s sonvelope:
Fir ectge of ropresscon:
F?omeq(3)

$$
\begin{gathered}
x-a_{1}=0 \\
x-a
\end{gathered}
$$

innel in (11)

$$
\begin{equation*}
2 x^{3}-3 x y+2=0 \tag{6}
\end{equation*}
$$

$$
3 x^{2}-3 y=i \quad-x=y
$$

Putlic $y=x^{2}$ in $2 x^{3}-3 x y+z=0$

$$
\begin{gathered}
2 x^{3}-3 x^{3}+z=0 \\
-x^{3}+z=0 \\
\text { put } x^{2}=y \Rightarrow x y+z=0 \\
z=x y
\end{gathered}
$$

minclipey eq $x^{2}-y=0$ by y

$$
\begin{aligned}
& x^{2} y-y^{2}=0 \\
& x(x y)-y^{2}=0 \\
& x z-y^{2}=0 \quad y^{2}=x z
\end{aligned}
$$

The eis of edge of regression

$$
x z=y^{2} \text { and } x y=z
$$

" (2) Find lim edge of zegreesion of
(b) the evivelope of family of plames

Solution.

$$
x \sin _{2} \theta-y \cos \theta+2=a d \text {, }(0 \text { parameli() })
$$

Let. $F(\theta)=x \sin \theta-y \cos \theta+2-a \theta=0$

$$
\begin{align*}
& F_{0}(\theta)=x \cos \theta+y \sin \theta-a=0 \tag{0}\\
& F_{\bar{\theta}}(\theta)=-x \sin \theta+y \cos \theta=0
\end{align*}
$$

From (3) $+x \sin \theta=y \cos \theta$

$$
\tan \theta=1 / x
$$

$$
\left[y=x \tan \theta=\frac{y}{x^{2}+y^{2}}, \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \frac{\cos }{}_{\sqrt{x^{2}+y^{2}}}^{x}\right.
$$

purin in oq (1) $z=a 0 \Rightarrow \theta=2 / a$
Hence $y=x \operatorname{Tan}(2 / a)$
Froin oq (2) Scicuinngy

$$
\begin{aligned}
& x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta+2 x y \sin \theta \cos \theta=\frac{2}{a} . \\
& x^{2}\left(1-\sin ^{2} \theta\right)+y^{2} \sin ^{2} \theta+2 y(y \cos \theta) \cos \theta=a^{2} \\
& x^{2}-x^{2} 5^{2} \theta+y^{2} \sin ^{2} \theta+2 y^{2} \cos ^{2} \theta=a^{2} \\
& x^{2}-y^{2} \cos ^{2} \theta+y^{2} 5^{2} \theta+2 y^{2} \cos ^{2} \theta=a^{2}
\end{aligned}
$$

$$
\begin{gather*}
x^{2}+y^{2}\left(\cos ^{2} c+\delta^{2} x\right)=a^{2} \\
x^{2}+y^{2}-a^{2} \tag{6}
\end{gather*}
$$

$\varepsilon_{i s(6)} f(5)$ aneqs of edge of regreseions.
Q(3) Find ciu Envelope of the family of cones.
$(a x+x+y+z-1) \cdot(a y+z)=a x(x+y+2-1)$ a in parounclii
Soletion:

$$
\begin{align*}
& F(a)=(a x+x+y+z-1)(a y+z)-a x(x+y+z-1)=0 \\
& \begin{aligned}
& F_{a}(a)=x(a y+z)+(a x+x+y+z-1) y-x^{2}-x y-x z+x=0 \\
& \Rightarrow a x y+x z+a x y+x y+y^{2}+z y-y-x^{2}-x y-x z \\
& \Rightarrow a x y=x^{2}-y^{2}-x+y-z y \\
& \Rightarrow a=\frac{x^{2}-y^{2}-x+y-y z}{2 x y}
\end{aligned}
\end{align*}
$$

EC'romulup (a)
 eq of Invecope.

Q(4) Find liu envelope and the edge of regression of ilin family. of seepsoidn
Scl
The grien eq

$$
c^{2}\left(x^{2} / a^{2}+y^{2} / b^{2}\right)^{\prime}+\frac{2^{2}}{c^{2}}=1^{\prime} \quad(c \text { is pomivedio })
$$

$$
\begin{align*}
& F(c)=c^{2}\left(\frac{x^{2}}{a^{2}}+y^{2} / b^{2}\right)+2 c^{2}-1=0 \tag{1}\\
& \frac{\partial F}{\partial c}=2 c\left(x^{3} a^{2}+y^{2} / /^{2}\right)+\frac{-2 z^{2}}{c^{3}}=0 \\
& \Rightarrow c^{2}\left(x^{2} a^{2}+y^{2} / b^{2}\right)-\frac{z^{2}}{c^{2}}=0
\end{align*}
$$

Frome $\quad c^{4}=\frac{z^{2}}{x^{2}+y^{2} / s^{2}}$
Pliliyion (Squapeq eq
Pumioner

$$
\begin{aligned}
& \left.c^{4}\left(x / a^{2}+4 / 3\right)^{2}\right)^{2}+\frac{2^{4}}{c^{4}}+2 z^{2}\left(x / a^{2}+4 / b^{2}\right)=1 \\
& z^{2}\left(x^{2} \frac{a^{2}}{2}+y_{b}^{2}\right)+z^{2}\left(\frac{x^{2}}{a^{2}}+y_{3} z^{2}\right)+2 z^{2}\left(x^{2} z^{2}+y_{1}\right)=1
\end{aligned}
$$

Now, for 仏 edge of regresicion
otit eqci wrt C

$$
\begin{aligned}
& \frac{d^{2} F}{d c^{2}}=2\left(x / a^{2}+y / b^{2}\right)+\frac{6 z^{2}}{c^{4}}=0 \\
& \quad c^{2}\left(\frac{x^{2}}{a^{2}}+y^{2} / s^{2}\right)+\frac{3 z^{2}}{c^{2}}=0
\end{aligned}
$$

Afinisiating c from (1)+(2) and (3)

Sulitrachip $\frac{c^{2}\left(x / c^{2}+4 / b^{c}\right)-2 / c^{2}}{2 z / c^{2}-1}=0$
Riltixy in (1)

$$
\begin{aligned}
& z^{2}\left(x^{2} / a^{2}+y^{2} / b^{2}\right)=1 / 4 \\
& z^{2}\left(x^{2} / a^{2}+y^{2} / d^{2}\right)=-3 / 4
\end{aligned}
$$

whici olve the eqs of eacige if rogressions
f: Developable, Surfaces
We know, in One:-parnmeter family of plaves, icu chavacteristios, leing the intersection of plavess consecuiciue plaver, are st. lives. These st lives ane callet the ginenatay of the envelape; and the envelope is called a developalile Sinface or simply a develalle.

The heason for the name lien ui the fact thiot Thi senface may be unralled on develbped inter a plame wiknout strelchaing or Tearking.
 of plancis towehes the envelipere alonng. its generator. it fallocos that the Saugent plame to a developpaba singace at acl pts of a gevenater corresponding to a plave ui 依. facuiby is the plave itseff: Thus a derolapath sunjace, has a Constant, Tougat plave along the gevienatio. So Tixat the Taugent plaven dopends: on avily one pavamider.

The Qdge op Regression of tue developalile is Lue locus of mien sectios: of consecutme jeivenators and is touched by each of the generators The Orsculating peanes of the edge of regression at bny point is the Tangent plave to lie doveropalle at TMai point.
Treorem To faid ine condilion that a -suifiece is a der elopable. 1 hat $z=f(x, y)$ bu oq ind Proof: The eaj. of frangait-peive at a posint (x, y, z) is $z-x=(X-x) \partial \not \partial x-(y-y) \frac{\partial F}{\partial y} \because$ Sivice Tangent pèane te a developable deponds on ouly ore panameter; thenfore; There must he scomic relation hetiveron $\frac{\partial F}{\partial x}$ and $\partial \mathscr{\partial y}-1$ which, we macy write $\frac{\partial F}{\partial x}=\phi(\partial F / \partial 4)$.

$$
\begin{align*}
& \therefore \frac{\partial^{2} f}{\partial x^{2}}=\phi^{\prime}\left(\frac{\partial f}{\partial y}\right) \cdot \frac{\partial^{2} f}{\partial x \partial y} \\
& \text { and } \frac{\partial^{2} f}{\partial x \partial y}=\phi^{\prime}\left(\frac{\partial f}{\partial y}\right) \frac{\partial^{2} f}{\partial y_{i}} \tag{i+1}
\end{align*}
$$

From (i) F (ii)

$$
\left(\frac{\partial^{2} F}{\partial x^{2}}\right) \cdot\left(\frac{\partial^{2} F}{\partial y^{2}}\right)=\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}
$$

() Thei a rai requril con oletiori

$$
\begin{aligned}
& F(x, z) \equiv z^{2}-2 c z+c^{2}-x y=0 \text {. } \\
& \frac{\partial F}{\partial x}=-y \cdot F \cdot \frac{\partial^{2} F}{\partial x^{2}}=0 \\
& \frac{\partial F}{\partial y}=-x+\frac{\partial 2 \dot{\partial}}{\partial y^{2}}=0 \\
& \frac{\partial F_{E}^{\prime}}{\partial x \partial y} \equiv-=1 \quad \frac{\partial F}{\partial y}=\frac{1}{2} \sqrt{x y} \\
& z-c=\sqrt{x y} \\
& z=\sqrt{x_{1}}+c \\
& \frac{0 F}{8 x}=\sqrt{2}(x y)^{-1 / 2} y \\
& =\frac{y}{2 \sqrt{x y}} \\
& \frac{\partial F}{\partial x}=\frac{1}{2} \sqrt{y_{x}} \\
& \frac{\partial^{2} F}{\partial x^{2}}=1 / 4(y / x)^{-\frac{12}{2}}(-4 / x \\
& \begin{array}{r}
\partial x \partial y=\sqrt{2}(y / 4)^{-1 / 2} \cdot 1 / x \\
\frac{\partial F^{2}}{\partial y^{2}}=1 / 4 \therefore(x / y)^{-1 / 2} \cdot\left(-x / y^{2}\right)
\end{array} \\
& \Leftrightarrow \frac{1}{16}\left(\frac{x}{n}\right)\left(\frac{1}{4} / 4\right) \cdot \frac{1}{\sqrt{2 / 4}} \sqrt{1 / 2}=1 / 16(1 / x, 4) \\
& \left(\frac{\partial^{2} f}{0 \times x y}\right)^{2}=\left(1 / 1 /(x)(x / y)^{1 / 2}\right)^{2}-\frac{1}{4}(1 \\
& \alpha H S=R H S \text {. }
\end{aligned}
$$

§ Osculating Developable
Def. The envelope of the òsculating plane is catled the osculating developalle.. Savies? the Incusection of coinsecitture csen latung peaves asi: thi Taugent, to the elurre, it fallows that the riniggenti ars the genceretors of the asrelapaile. Atud consecutive iungoutis intarsect at a praint on the ourve; so tual. the eunte itfely is the edge of regression of ica ocilating devielopalile.
Theorem Piove that
(i) The gansrater of lai osculatuyg developalui of a Twistid eurve ase the rangats to ll: cunne.

Prool: At a point I on the eurre, the eq of inc osculatuing, plave is $(\underline{R}-\underline{\underline{s}}) \cdot \underline{b}=0$ \qquad Where 1 and $\underline{6}$ an fins of s, Dilf O , ourts.

$$
\begin{aligned}
& \left(0-\underline{r}^{\prime}\right) \cdot \underline{r}+(R-q) \cdot \underline{b^{\prime}}=0 \\
& -\underline{t} \cdot \underline{\underline{p}}+(\underline{R}-\underline{\imath}) \cdot(-\hat{T} \underline{n})=0 \\
& 0-T(\underline{R}-\underline{k}) \cdot \underline{n}=0 \\
& \Rightarrow(\underline{R}-\underline{r}) \underline{n} \doteq 0
\end{aligned}
$$

which is ru equation of rectifyip plane. (Wheus Thi charadeoritio which is grver by (i"t(ii) is is lontarsection of the osculating and recity ip phower. and is Toungore, the rangent ti ra curve at I To pond cu eolge of Regrepsion,

$$
\begin{aligned}
& (R-s) \cdot n^{n}+\left(0-r^{\prime}\right) \cdot n=0 \\
& \therefore(T \underline{b}-k \underline{t}) \cdot(R-\underline{s})-\underline{t} \cdot \underline{n}=0 \\
& T(R-\underline{i}) \underline{b}-K(R-\underline{\underline{n}})-\underline{t}-\underline{t} \cdot \underline{n}=0 \\
& \Leftrightarrow T(\underline{R} \underline{\underline{n}}) \underline{-}-K(\underline{R}-\underline{\xi}) \cdot \underline{\underline{k}}-0=0
\end{aligned}
$$

From oq $0 \quad\left(R_{-} \underline{1}\right) \cdot \underline{b}=0$. Hence from the laet eq, we have $K(\underline{R}-\underline{\underline{\eta}}) \cdot \underline{E}=0$-(3) From $01+0$ it i clear raal: $R-\underline{i}$ iltir Hence eq(3) implien. that

$$
(\underline{R}-\underline{\underline{r}})=0 \Rightarrow \underline{R}=\underline{R}
$$

The edege of regression is the eunve itseef.
\& POLAR DEVLOPABLE: Available at MathCity.org THe evivelope of the normal plane of a Turitited Cenine is ealted the palar derolopalule and its Fumakerisine culled polar liver.

Theorem. Shas ithat. A polar luve is the axis of The eirch of cunvaline and the edge of regreassion of the priar developalele is the locus of cuttre: of sprencial envatuse:
Prexp det $P($ si les a point on iun curve ahose normal plave is $(\underline{R}-\underline{\underline{z}}) \cdot \underline{t}=\dot{0}$
D wo wrs

$$
\begin{array}{ll}
(\underline{R}-\underline{r}) \cdot \underline{t}^{\prime}+\left(0-\underline{r^{\prime}}\right) \cdot \underline{t} & =0 \\
K(\underline{R}-\underline{n}) \cdot \underline{\underline{t}}-\underline{t}=0 \\
\Rightarrow(\underline{t}-\underline{t}-i \\
\Rightarrow(\underline{R}-\underline{n}) \underline{n}=1 / k \\
& \Rightarrow((\underline{R}-\underline{n})-\rho \underline{n}) \quad \because \underline{n}=0
\end{array}
$$

which kepresents a plant tings in eento if cuiroluse 1 to tha principal noronal.
It intusect the provonal plane in a stiline tuyth The caitec of convatione II to tho bieporonal. Then in palar. live is tur avis of ich cercle of conratione.

For II part.
From eq : $K(R-r)-n=1$
Defr wots

$$
(\underline{p}-\underline{r}) \cdot \underline{n}=/ / K=\rho
$$

$$
\begin{align*}
& (R-r) \cdot n^{\prime}+\left(0-r^{\prime}\right)-n=\rho^{\prime} \\
& (R-n) \cdot(T \underline{b}-(t)-\underline{t}) \underline{n}=\rho^{\prime} \\
& r(R-\varepsilon) \underline{b}-k(R-k) \cdot \underline{t}=\rho^{\prime} \tag{t}
\end{align*}
$$

suce fiom 0 位 $K-\underline{s}) \cdot \underline{t}=0$

$$
\begin{aligned}
& \therefore \quad r(\underline{R}-\underline{s}) \cdot \underline{b}=\rho^{\prime} \\
& \quad \quad(\underline{R}-\underline{r}) \cdot \underline{b}=\sigma^{\prime} \rho^{\prime} \rightarrow\left(\frac{1}{T}=\sigma\right.
\end{aligned}
$$

From (i) (2) and (3) tt-folloais Tidal

$$
\begin{gathered}
(\underline{R}-\underline{r})=\rho \underline{n}+\sigma \rho^{\prime} \underline{\underline{b}} \\
o \underline{R}=\underline{r}+\rho \underline{n}+\sigma \rho^{\prime} \underline{n}
\end{gathered}
$$

This is li equatios of spbosical perivatize Henee the edge of seyression of Polar dinverapalle is the: Socics of 后 Cecetre or spluevical cenniatere.

Recticyinc DEVELOPABLE:-
The enverope of thu retifyir plame a cunve is ealled the kactifyip deritopulule and its gemenatars are the koctify ip lumes Thus iai kecifyiy hines at a pt P af Ta cunve is im Rncensection of conseciective reclifyis plaver.

Gheorem, Prove tuai (is Hu koctifuil live is II ti ki vectar ($T \underline{t}+\dot{k} \underline{b}$) ii A point on ia edge of kegression cooresponding ts a pouid n on lai eunve i gumen loy $\quad \underline{P}=\underline{E}+\frac{k(T t+k \underline{b})}{K^{\prime} T-K T}$
Procp Ofie equation of rectufunip plaine

we have $(\underline{R}-1) \cdot n+(0-\underline{2}) \cdot \underline{n}=0$

$$
\begin{aligned}
& (\underline{R}-\underline{\imath}) \cdot(T \underline{b}-k t)-\underline{t} \cdot \underline{n}=0 \\
& (\underline{R}-\underline{\underline{1}}) \cdot(T \underline{b}-k \underline{t})=0-(2)
\end{aligned}
$$

$$
\underline{t}-\underline{n}=0
$$

Saice $(\underline{R}-\underline{1})$ i $1 t \underline{n}$ and $(T \underline{b}-k \underline{t})$ so it is // to the vectu product of lies: Two.

From eqs 0 and ©, \mathcal{H} - folloun? 「ionk kectificip hime i 1 to leoth n f(Tb-kt) : hace $/ 1 \pi n \times(Z \underline{b}-K \underline{t})$

$$
\begin{aligned}
& =T(\underline{n} \times \underline{b})-k(\underline{n} \times \underline{t}) \\
& =T \underline{t}+k \underline{b}
\end{aligned}
$$

So Ik seetificiop biep is II. to

$$
T \underline{t}+K \underline{b}
$$

(ii) $D . \not \subset$ (2) $(\underline{R}-\underline{r}) \cdot(T \underline{b}-k \underline{t})=0$ orrts for lue engle of Regression:

Also smice $(R-\underline{r})$ illt $(T \underline{t}+k \underline{b})$ we can eurite

$$
(\underline{R-\underline{r}})=l(T \underline{t}+k \underline{i})
$$

Puivir in (3)
t. $6==$

$$
\begin{aligned}
& \ell(T \underline{t}+\pi \underline{b}) \cdot((T \underline{b}-k \underline{t})+k)=0 \\
& \begin{aligned}
\Rightarrow & \ell\left(T^{\prime} k-k^{\prime} \dot{F}^{\prime}\right)+k=0 \Rightarrow l=\frac{k}{k^{\prime} T-k \tau^{\prime}} \\
& \text { fren } p=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad(\underline{R}-\underline{\underline{L}}) \cdot\left(\tau b^{\prime}+\sigma^{\prime} b-k^{\prime} \underline{t}-k \underline{t}\right) \otimes \\
& +\left(0-r^{\prime}\right) \cdot(T \underline{b}-k t)=\sigma
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& From } 0 \text { (} \underline{R}-\underline{r} \text {) } \underline{n}=0 \\
& \Rightarrow \quad(\underline{R}-\underline{\varepsilon}) \cdot(\dot{T} \underline{b}-k \underline{t})+\underline{k}=0
\end{aligned}
$$

$$
\underline{R}-\frac{1}{H \text { crec } k \frac{k(T \underline{b}-k \underline{b})}{k T-k T^{\prime}}}
$$

Ex. on Page (39)
of of suface, $F(x, y, z)=a\left(x^{2}+y\right)+x y z=0$

$$
\frac{\partial E}{\partial x}=2 a x+y z, \frac{\partial F}{\partial y}=2 x y+x z
$$

$$
\frac{\partial F}{\partial z}=x y
$$

For any p-on (an sunface $P(\alpha, \beta, \gamma)$

The eq of tangul plave in cartesical fomis

$$
\begin{aligned}
& (x-\alpha) \frac{\partial F}{\partial x}+(y-\beta) \frac{\partial F}{\partial y}+(z-\gamma) \frac{\partial F}{\partial Z}=0 \\
& (X-\alpha)(2 a \alpha+\beta \gamma)+(y-\beta)(2 a \beta+\alpha \gamma)+(2-\gamma) \alpha \beta=0 \\
\Rightarrow & X(2 a \alpha+\beta \gamma)+Y(2 a \beta+\alpha \gamma)+2 \alpha \beta-2 a \alpha^{2}-\alpha \beta \gamma-2 \alpha \beta^{2} \\
\Rightarrow & -\alpha \beta \gamma-\alpha \beta \gamma=0 \\
& (2 a \alpha+\beta \gamma) x+(2 a \beta+\alpha \gamma) y+\alpha \beta Z-2 a\left(\alpha^{2}+\beta^{2}\right)-3 \alpha \beta \gamma=0
\end{aligned}
$$

As. the phe hin ondit Enfaci, thengom we thane

$$
\begin{aligned}
& a\left(\alpha^{2}+\beta^{2}\right)+\alpha \beta \gamma=0 \Rightarrow \gamma=\frac{a\left(\alpha+\beta^{2}\right.}{\alpha \beta} \\
& \therefore \text { in } \times y \text { plane } 2=0
\end{aligned}
$$

For Projection in xy plave $2=0$

$$
\begin{aligned}
& x\left(2 a \alpha-k\left(\frac{a \alpha^{2}+a \beta^{2}}{\alpha \beta}\right)\right)+\left(2 a \beta-\alpha\left(\frac{a \alpha^{2}+a \beta^{2}}{+\beta}\right) \cdot y\right. \\
& -2 a\left(\alpha^{2}+\beta^{2}\right)+3 a\left(\alpha^{2}+\beta^{2}\right)=0 \\
& \left.\Rightarrow x\left[2 a \alpha-a \alpha^{2}-a \beta^{2}\right]+y\left[2 a \beta^{2}-a \alpha^{2}-a \beta^{2}\right] \phi+a a^{\prime} a 1^{2}+\beta^{2}\right)=0 \\
& \Rightarrow \alpha^{2}+\beta^{2}-y\left(\frac{a)\left(\alpha^{2} \beta^{2}\right)}{\beta}=a\left(\alpha^{2}+\beta^{2}\right)\right. \\
& \frac{x}{x}-4 / \beta=1
\end{aligned}
$$

$$
\begin{aligned}
& 45 \\
& \left(\frac{\partial F}{\partial x}\right)_{a i-p}=2 \alpha \alpha+\beta \gamma \\
& \left.\frac{\partial F}{\partial y}\right)_{a t}=2 a \beta+\alpha \gamma \quad\left(\frac{\partial F}{\partial z}\right)_{a-\beta}=\alpha \beta
\end{aligned}
$$

Ex. on Page (50).
$Q(1)$ Find iut envelope of the planen Thugh inu euntri of an cecipioid and cultup if in. trections of conslatel area.
Sol
Sal iq of Eeepsoribe $\frac{x^{2}}{a^{2}}+\frac{y}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ \& let extimytin $z=0$
of plase passing tangi. th, curtre of selupsoid.
Then the onea of iai soicton of the Eeupstrid cut by plare 2 is guina by

$$
\begin{align*}
& =\frac{\text { Tabc }}{\sqrt{a^{2} l^{2}+b^{2} x^{2}+c^{2} x^{2}}}=\operatorname{cosin} \cos 4=K \tag{3}\\
& F(x, y, z ; l, m, n)=l x+m y+n z=0 \\
& F_{l}=x, F_{m}=y, F_{n}-z \\
& f(C, m, \cdots)=\frac{\bar{n} a b c}{\left.a^{2} e^{2}+b^{2} n^{2}+c^{2}\right)^{2}}-x=0 \\
& f_{l}=\frac{-r^{3} b c \cdot \rho}{\left(a^{2} l^{2}+b^{2} m^{2}+c^{2} a^{3} / 2\right.} \quad \text { Sumeary } f_{m}=\frac{-\pi a b^{3} m}{\left(a^{2} l^{2}+b^{2} m^{2}+c^{2} x^{2}\right)^{3 / 2}} \\
& f_{n}=\frac{-\pi a b c^{2} n}{\left(a^{2} C^{2}+b^{2} n^{2}+c^{2} n^{2}\right)^{3 / 2}}
\end{align*}
$$

Now $\frac{F_{c}}{f_{p}}=\frac{F_{m}}{f_{m}}=\frac{F_{n}}{f_{m}} \quad \therefore \quad \frac{x}{a_{0}^{2} p}=\frac{y}{b^{2} m}=\frac{2}{c^{2} n} \cdot k$

$$
l=\frac{x}{a^{2} K}, \quad m=\frac{y}{b^{2} K} . \quad n=\frac{2}{c^{2} K}
$$

Puliy twese valuis of o, m, n in (2), we hime

$$
\begin{aligned}
& x^{3} a^{2}=\frac{y^{2}}{b^{2} K}=\frac{z^{2}}{c^{2} K}=0 \\
& \frac{x^{2}}{\sigma^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0
\end{aligned}
$$

Q(2). A Plaw mates intercopt a, b, c onime condinat axes s.t. $1 / a^{2}+1 / b^{2}+1 / c^{2}=1 / k^{2}$, Prove that its Envalofe is a conicoid wini equi conjugait deameturs. clang the axes.
Solution: \quad tet $1 a_{k}$ eq of plave ber $1 / 2+1 / b+2 / c=1$

$$
\begin{aligned}
& \text { The } f(x, y, z, a, b, c)-t_{a}+y / z+z / c-1=0 \longrightarrow 0 \\
& f(a i b, c)=1 / a^{2}+1 / b^{2}+1 / c^{2}-1 / k^{2}=0 \\
& F_{a}=-x / a^{2}, F_{1}=-1 / /^{2}, \cdot F_{c}=-z_{c} \\
& f_{c}=-2 / a, \quad f_{b}=-2 / 3^{3} \quad, f_{c}=-2 / c_{c}^{3} \\
& \text { Then } \frac{F_{a}}{f_{a}}=\frac{F_{l}}{f_{b}}=\frac{F_{c}}{f_{c}} \text { i } \frac{-x / a^{2}}{-2 / a^{3}}=\frac{-y / b^{2}}{-2 / b^{2}}=\frac{-z_{c}}{-2 / c^{3}} \\
& \Rightarrow \quad \frac{a x}{2}=\frac{b y}{z}=\frac{c z}{x}=l \\
& a=\frac{l / x}{}, \quad b=6 / y \quad c=1 / z
\end{aligned}
$$

pulif in (1)

$$
\text { (1) } \begin{aligned}
& x^{2} / p+y / p+2 y=1 \\
& x^{2}+y^{2}+z^{2}=l
\end{aligned}
$$

Available at MathCity :org
Q(3) Prove that the envelope of a plaine, The sum of Squares of whase intarcept on tha axes i constarit \& it in a Sunface $x^{3 /}+y^{2 / 3}+z^{2 / 3}=$ constain.
Sicuption
Sed. Evpf a plane lu lo $\ln +m y+n z-1 \div 0$ Thi plawen incirseth Cocodivalin axes al-pt

$$
\because(1 / 0,0,0)(0,1 / 2,0) \leftarrow(0,0, / n)
$$

Skon of squares of enke.ceph is

$$
\begin{aligned}
& n \quad \because f(l, m, n)=1 / e^{2}+1 / n^{2}+/ n^{2}-c=0 \\
& f_{l}=-2 / \rho s, \quad f_{m}=-\frac{1}{2 n} ; \quad f_{m}=-\frac{2}{m 3}
\end{aligned}
$$

A(so $F(x, y, z, l, n x, n)=l x+m y+n z-1=0$

$$
F_{0}=x, \quad F_{0}=y \quad F_{n}=z
$$

Now $\frac{F_{l}}{f_{l}}=\frac{F_{m}}{f_{m}}=\frac{F_{n}}{f_{n}}$ is written as

$$
\begin{aligned}
& \frac{x}{-2 / p^{3}}=\frac{y}{-2 / m^{3}}=\frac{z}{-n^{3}}=k \\
& l^{3} x=m^{3} y+n^{3} z=-2 k=K \\
& x=\frac{k}{l^{3}}, y=\frac{k}{m^{3}}, z=\frac{k}{n^{3}}
\end{aligned}
$$

Then $x^{2 / 3}+y^{2 / 3}+2^{2 / 3}=\left(\frac{K}{l^{3}}\right)^{2 / 3}+\left(\frac{k}{m^{3}}\right)^{2 / 3}+\left(\frac{K}{n^{3}}\right)^{2 / 3}$

$$
=\kappa^{2 / 3}\left[\frac{1}{l^{2}}+\frac{1}{m^{2}}+\frac{1}{x^{2}}\right]
$$

\therefore Constad. by. (1).
Q(3) Prove thal Thi envelope of surbece $F(A, y, 2, a ; b, C)=0$. Where a, b, c are parandus Cannedid by $\sqrt{\text { C }}$. solatas $f(a, b, c)=0$ is ollawed sy Elinionati, a, b, c pom in egs. $F=0$ and $f=0$ is $\frac{F_{a}}{f_{a}}=\frac{F_{b}}{f_{b}}=\frac{F_{c}}{f_{c}}$
Solition:

$$
\begin{align*}
& \text { Let } F(x, y, 3, \alpha, b, c)=0 \tag{c}\\
& f \quad f(a, b, c)=0
\end{align*}
$$

Xigy 《fil Frally,

$$
\begin{align*}
& d F=\frac{\partial F}{\partial a} d a+\frac{\partial F}{\partial L} d f+\frac{\partial F}{\partial c} d c=0 \tag{3}\\
& \alpha f=\frac{\partial f}{\partial a} d a+\frac{\partial f}{\partial b} d \underline{\partial f}+\frac{\partial f}{\partial c} d c=0 \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \left(\frac{\partial f}{\partial c} \frac{\partial f}{\partial a}-\frac{\partial f}{\partial c} \frac{\partial f}{\partial a}\right) d a+\left(\frac{\partial f}{\partial c} \cdot \frac{\partial F}{\partial b}-\frac{\partial f}{\partial b} \cdot \frac{\partial E}{\partial c}\right) d b=0 \\
& \because \quad\left(f_{c} F_{a}-F_{c} f_{a}\right) d a+\left(F_{b} f_{c}-F_{c} f_{b}\right) d b=b
\end{align*}
$$

set $\frac{d a}{d b}=k$, whese da, db are the changen
 A daf $d b, K$ will lu defferance a al mon zire. Equation (5) si satsfied ouly if.

$$
\begin{align*}
& f_{c} F_{a}-F_{c} f_{a}=0+f_{c} F_{b}-F_{c} f_{b}=0 \\
& f_{c} F_{a}=F_{c} f_{a} f \quad f_{c} F_{b}=F_{c} f_{b} \text { هro } \\
& \frac{f_{a}}{f_{c}}=\frac{F_{c}}{f_{b}}+\frac{F_{b}}{f_{b}}=\frac{F_{c}}{f_{c}}
\end{align*}
$$

From (6) and (7) 'mpeis

$$
\frac{F_{a}}{f_{a}}=\frac{F_{b}}{f_{b}}=\frac{F_{c}}{F_{c}} \cdots \text { Reguid Resaci }
$$

Q.(4) Prove that the envelope of a plane wibicen formn weln in coordinali plawns x Fetrahedron of conslaud voluone sia suiface $X Y Z=$ Conslaul
Solatos:" Let π eq if a planebe

$$
l x+m y+n z=1
$$

This Paue meats vill the coordivalis axes sin 昿 point ($1 / 0,0,0)(0,1 / m, 0) f(0,0,1 / m)$ so is volume of Tetraliedron is

As "volunce is consfaul:

$$
\begin{aligned}
& \quad \frac{1}{6 \ln _{n}}=C \quad \Rightarrow \frac{1}{\operatorname{lom} n}=6 C=C \\
& 2 m=\frac{1}{6 m}-C=0
\end{aligned}
$$

$$
f_{l}=\frac{1}{-l_{m n}^{2}}, \quad Z_{m}=-\frac{1}{l \ln ^{2} n}, \quad f_{n}=\frac{-1}{l \ln n}-
$$

Also. $\quad F(x, y, z, l, m, n)=e x+m y+n z-1=0$

$$
F_{p}=x, \quad F_{m}=y \quad E=z
$$

rhe $\frac{F_{c}}{f_{l}}=\frac{F_{m}}{f_{m}}=\frac{F_{n}}{f_{n}}$

$$
\begin{aligned}
& \Rightarrow \frac{x}{l_{m}^{2} n}=\frac{\frac{1}{-1}}{l+n}=\frac{2}{\frac{-1}{l+n} n^{2}}=k\left(\operatorname{san}^{1}\right. \\
& \Rightarrow \frac{\frac{i}{x}}{\frac{-1}{i_{m n}}}=\frac{m y}{\frac{-1}{\rho_{m m n}}}=\frac{n z}{\frac{-1}{\operatorname{lom}}}=k \\
& \Rightarrow l x-m y=n z=\frac{-c}{l x n} \quad \text { by (1) } \\
& \Rightarrow \quad l x=m y \text { rnz }=-k c \\
& \Rightarrow l x=m y=n z=K \\
& x=k_{l}^{\prime}, \quad, \quad y=\frac{k^{\prime}}{n} \quad z=\frac{k}{n}
\end{aligned}
$$

Weir $x y z=\frac{\left(k^{\prime}\right)^{3}}{\operatorname{lon} n}=k^{3} C$ by

$$
=\text { constant }
$$

