MathCity.org

Federal Board – Model Paper 2009

Merging man and maths

Mathematics II (Objective), Time Allowed: 20 Min. Marks: 20, Available online @ http://www.mathcity.org/fsc

Section – A (20 marks)

Note: Section A is compulsory.

Q. 1(c): Choose and tick (\checkmark) the best possible answer. i) If $S = \{a, b, c\}$ then the number of distinct relations on S is (b) 2^9 (c) 2^3 (d) 9^2 (a) 9 ii) Let $g = \{(1, 1), (2, 3), (3, 2), (4, 4)\}$ be a function from S onto S, then the value of $g^{-1}(2)$ is, (a) 2 (b) 3 (c) 4 (d) 1 iii) The value of $\lim_{x\to 0} \frac{\sin ax}{hx}$ is (d) $\frac{b}{a}$ (b) $\frac{a}{b}$ (c) b (a) a iv) The projection of $\underline{a} = \hat{\underline{i}} - 2\hat{\underline{j}} + \hat{\underline{k}}$ along $\underline{b} = 4\hat{\underline{i}} - 4\hat{\underline{j}} + 7\hat{\underline{k}}$ is (a) $\frac{19}{8}$ (b) $\frac{9}{19}$ (c) $\frac{8}{19}$ (d) $\frac{19}{9}$ v) A equation $(x-1)^2 + (y-3)^2 + (z-5)^2 = 25$ represents (c) a plane (d) an ellipse (a) a circle (b) a sphere vi) The solution set of x > 10 is _____ (a) $10 > x > \infty$ (b) $10 < x < -\infty$ (c) $10 > x > -\infty$ (d) $10 < x < \infty$ vii) Equation of the line *l* given in the figure is (a) y = 2x + 1 (b) y = 2x - 1 (c) y = x + 2 (d) y = x - 2viii) The value of $\int \frac{1}{v \ln v} dy$ is (a) $\ln|y| + c$ (b) $\ln \frac{1}{y} + c$ (c) $\frac{1}{y} + c$ (d) $\ln[\ln|y|] + c$

ix) If f and g are continuous functions and $\int_{-\infty}^{3} f(y) dy = 8$, $\int_{-\infty}^{1} f(z) dz = 9$ then the value of $\int f(z) dz$ is (c) 6 (a) 7 (b) 1 (d) 17 x) The derivative of $\sin^{-1}a + \tan^{-1}a$ w.r.t x is equal to (a) $\frac{1}{\sqrt{1-a^2}}$ (b) $\frac{1}{1+a^2}$ (c) $\frac{1}{\sqrt{1-a^2}} + \frac{1}{1+a^2}$ (d) 0 xi) The derivative of f(x) = |x| does not exit at (a) x = 0(b) x = 1(c) \mathbb{R} (d) None of these xii) The point *P*(-5,6) lies ______ the circle $x^2 + y^2 + 4x - 6y = 12$ (b) Out side (c) On (d) None of these (a) Inside xiii) The curve $y^2 = 4ax$ is symmetric about (a) y-axis (b) x-axis (c) Both a & b (d) None of these xiv) If the velocity of a particle moving in a straight line is given by $v = 3t^2$ then the distance traveled by it in the first *T* seconds is (c) $3T^2 + c$ (d) $T^3 + c$ (b) $t^3 + c$ (a) $3t^2 + c$ xv) The value of the $(\hat{i} + 2\hat{j}) \times \hat{k} =$ (a) $3\underline{\hat{i}} - \hat{j}$ (b) $2\hat{i} - \hat{j}$ (c) $2 + 2\hat{k}$ (d) None of these xvi) The stationary point of the function $f(x) = 5x^2 - 6x + 2$ is (a) 5/3 (b) 3/5(d) 1 (c) 0xvii) Two lines $l_1: a_1x + b_1y + c_1 = 0$ and $l_2: a_2x + b_2y + c_2 = 0$ are perpendicular if (a) $a_1b_2 - b_1a_2 = 0$ (b) $a_1a_2 + b_1b_2 = 0$ (c) $a_1b_1 + a_2b_2 = 0$ (d) None of these xviiii) Angle between two non-vertical lines with slopes m_1 and m_2 is (a) $\tan^{-1}\left(\frac{m_2 + m_1}{1 + m_1 m_2}\right)$ (b) $\tan^{-1}\left(\frac{m_2 - m_1}{1 + m_1 m_2}\right)$ (c) $\frac{m_2 - m_1}{1 - m_1 m_2}$ (d) None of these xix) $\int_{0}^{a} f(x) dx = 0$, when f is function (a) Even (b) Odd (d) Rational (c) Polynomial xx) The parametric equation $x = r\cos\theta$, $y = r\sin\theta$ represent a (a) Parabola (b) Ellipse (c) Circle (d) Hyperbola

MathCity.org

Federal Board – Model Paper 2009

Mathematics II (Subjective), Time Allowed: 2.40 Hours Max. Marks: 80, Available online @ http://www.mathcity.org/fsc

Section-B

Attempt any Ten parts. All parts carry equal marks (4 ×10 =40 marks)

Q # 2(i) Define even and odd function and determine whether $f(x) = \frac{3x}{x^2 + 1}$ is even or

odd.

(ii) Find the domain and range of $g(x) = \begin{cases} x-1 & ; x < 3 \\ 2x+1 & ; 3 \le x \end{cases}$

(iii) Find the value of m & n, so that f is continuous at x = 3.

	(mx	;	<i>x</i> < 3
f(x) = -	n		x = 3
	(-2x+9)	;	x > 3

(iv) Find $\frac{dy}{dx}$ if $y = \log_{10}(ax^2 + bx + c)$.

(v) Determine the interval in which f is increasing or decreasing if $f(x) = \sin x$; $x \in [-\pi, \pi]$.

(vi) Find the approximate increase in the volume of cube if the length of its each edge changes from 5 to 5.02.

(vii) Evaluate: $\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$.

(viii) Evaluate;
$$\int_{-1}^{2} (x+|x|) dx$$
.

(ix) Derive equation of a straight line in one point and slope form.

(x) Find the point P on the join of A(1,4) and B(5,6) that is twice as far from A as B is from A and lies on the same side of A as B does.

(xi) Find the centre and radius of the circle with the given equation $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ (xii) Find the eccentricity, the coordinate of the vertices and foci of the hyperbola $\frac{y^2}{16} - \frac{x^2}{49} = 1.$

(xiii) Find a vector whose magnitude is 4 and parallel to $2\hat{i} - 3\hat{j} + 6\hat{k}$.

(xiv) Find an equation of the parabola having its focus at origin and directrix parallel to the y-axis.

Section_C

Attempt any FIVE questions. All questions carry equal marks (5×8=40)

Q # 3: Prove that
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$$
.

Q # **4** : Prove by vector method that in any triangle *ABC* (with usual notations) $c = a \cos B + b \cos A$

Q # 5 : Differentiate $\cos \sqrt{x}$ w.r.t x by definition.

Q # 6: Find the general solution of the equation $\frac{dy}{dx} - x = xy^2$. Also find the particular solution if y=1 when x=0.

Q # 7: Find an equation of the line having x-intercept -9 and slope -4.

Q # 8: Graph the feasible region of the following system of linear inequalities and find the corner points.

 $x+y\leq 5 \quad , \quad -2x+y\geq 2 \quad , \quad x\geq 0\,.$

Q # 9: Find equation of circle of radius 2 and tangent to the line x - y - 4 = 0 at A(1,-3).

For more news and updates visit http://www.mathcity.org If you have a question; ask at http://forum.mathcity.org