# **TEST ITEMS** Mathematics (HSSC-II)

(A Research Project)



Federal Board of Intermediate and Secondary Education, Islamabad Islamic Republic of Pakistan 2003

# TEST ITEMS Mathematics (HSSC-II) (A Research Project)



Federal Board of Intermediate and Secondary Education, Islamabad Islamic Republic of Pakistan 2003

#### INTRODUCTION

When the previous Government was obliged to assume power in October 1999, it found graft and corruption rampant in the country, the economy in a tailspin, and governance in the doldrums. It had to stem the rot and introduce far-reaching changes and reforms in all sectors of national life, including the economy, human resource development, health, education, etc., to keep pace with the dynamics of a fast-changing world.

In the crucial nation-building field of education, a package of reforms, named the Education Sector Reforms (ESR), was introduced. It was to be implemented over a period of time, the primary aim being to modernize education through the use of new methods and technologies. The present democratic government has wisely decided to continue and consolidate the reform process and the innovative policies introduced by its predecessor with a view to improving governance, alleviating poverty, ensuring socio-economic progress and, last but not least, ameliorating the lot of the common man.

The ESR package encompasses all aspects of education, including scientific and technical instruction, requiring reform and qualitative as well as quantitative improvement. One of the areas needing reform is the Examination System, which falls within the purview of the Examining Boards in Pakistan. Educational evaluation forms the hard core of quantitative dimensions of any education system, which should primarily focus on assessing the capacity of students for systematic application, analysis and synthesis of knowledge and consciously aim at promoting comprehension and assimilation of knowledge as well as inculcating and stimulating a spirit of inquiry in the students. An inquiring mind and insatiable curiosity make for discovery, innovation or invention, and must be the ultimate aim and objective of all education.

A concerted effort was made at the level of Inter-Board Committee of Chairmen (IBCC) to introduce modern methods and techniques for critical evaluation of the performance and potential of students. As a part of this, IBCC issued guidelines for development of test instruments (Question Papers) predicated on modern concepts of performance evaluation. As a first step, 60% weightage was given to questions of the objective type and short answers and 40% to those of the subjective type, and the Boards were asked to follow the new guidelines.

In consonance with the IBCC directive, FBISE took the initiative and arranged a workshop in the Science subjects of Physics, Chemistry, Biology and Mathematics at HSSC-I level last year, to impart professional training to teachers and to facilitate students. The initiative was highly appreciated by one and all. New textbooks have been developed at HSSC Part-II level this year, there was a need to prepare Test Items in the afore-mentioned subjects for HSSC Part-II also. For the said purpose, FBISE organized a four-day workshop from 28th to 31st July, 2003 which afforded another opportunity for training to the teachers selected from institutions in Pakistan and overseas within the jurisdiction of the Federal Board along with the preparation of model test items.

It is hoped that the test items developed in the workshop will serve as guidelines for teachers in developing more such items for critical evaluation of the performance of students.

FBISE would be only too glad to welcome any suggestions that might be offered, or any error of omission or commission that might be pointed out, for effecting further sustainable improvement in educational standards as well as in the quality and focus of education as a means to enlightenment and intellectual enrichment.

We are thankful to the Teachers and Resource Persons/Coordinators who worked diligently and with unwavering commitment and dedication to help give final shape to this publication.

#### MAHMOOD-UL-HASSAN NADEEM Director (Research)

## **Participants of Workshop**

| 1.  | Mr. Shaukat Iqbal Piracha<br><i>Resource Person</i> | F.G. Sir Syed College, Rawalpindi Cantt.                    |
|-----|-----------------------------------------------------|-------------------------------------------------------------|
| 2.  | Mrs. Farhana Rizvi                                  | Fauji Foundation Girls College, New Lalazar,<br>Rawalpindi  |
| 3.  | Mr. Muhammad Aslam Khan                             | KRL Model College, Kahuta, Pistrict<br>Rawalpindi.          |
| 4.  | Mrs. Ghazala Kalim                                  | Islamabad College for Girls,<br>F-6/2,Islamabad             |
| 5.  | Lt Col (R) Muhammad Shafi                           | Army Public School & College, Westridge-III,<br>Rawalpindi. |
| 6.  | Raja Qaiser Aftab                                   | Bahria College,E-8, Islamabad                               |
| 7.  | Mr. Liaquat-ur-Rahman Shah                          | PAF Degree College, Risalpur Cantt.                         |
| 8.  | Mr. Muhammad Akbar                                  | F.G. College for Men, F-I0/4, Islamabad.                    |
| 9.  | Mr. Riaz Ahmed                                      | F.G. Sir Syed College, 195 The Mall,<br>Rawalpindi.         |
| 10. | Mr. Muhammad Irshad                                 | F.G. Sir Syed College, Mall Road, Rawalpindi.               |

## **Table of Contents**

Title

| Unit No. 1 | Functions and Limits                   | 1  |
|------------|----------------------------------------|----|
| Unit No. 2 | Differentiation                        | 7  |
| Unit No. 3 | Integration                            | 11 |
| Unit No. 4 | Introduction to Analytic Geometry      | 15 |
| Unit No. 5 | Linear Inequalities Linear Programming | 20 |
| Unit No. 6 | Conic Section                          | 22 |
| Unit No. 7 | Vectors                                | 27 |

Page No.

#### **CHAPTER-1 (Functions & Limits)**

Item-1: Fill in the blanks: 1. The term function was recognized by a German Mathematician..... 2. The volume of sphere depends upon ..... Degree of  $2x^4 - 3xy^3 + 2x^2 + 1$  is ..... 3. If the degree of a polynomial function is 1, then it is called a ...... function. 4. Range of sin x is ..... 5. In natural logarithm, the base is ..... 6. If x & y are not separable, then it is called ..... function. 7. If  $h(x) = x^3$ , then it is an ..... function. 8.  $Lim (2x-3)^3 = \dots$ 9.  $x \rightarrow 4$  $(e^{x-1}) = \dots$ Lt 10.  $x \rightarrow 0 x$ If  $f(x) = x^2 - 1$  then it is discontinuous at..... 11. x + 112. A relation in which every element in the domain has a unique image in the range is called.....  $e^{-x} = \dots$ 13. Lim  $x \rightarrow \infty$ f(x) = |x| is ..... function. 14.  $f(x) = x^3$  is ..... 15.  $\tan h^{-1} x = \dots$ 16.  $x = a \cos \theta$ ,  $y = b \sin \theta$  are parametric equation of ..... 17.  $(f^{-1} of) (x) = f of^{-1}(x) = \dots$ 18. 19. If  $f(x) \le g(x) \le h(x)$  for all real number x containing C and if lim f(x) = L and  $x \rightarrow c$  $Lim \quad h(x) = L \text{ then } \dots$  $x \rightarrow c$  $Lim \quad a/x^p = \dots p > 0$ 20.  $X \rightarrow \infty$ 21. For continuous function Lim  $f(x) = \dots$  $x \rightarrow a$ Log x is not defined at  $x = \dots$ 22. Domain of  $f(x) = \sqrt{x}$  is ..... 23. Domain of  $f^{-1} = \dots$ 24. Sin  $7\theta$  = ..... (where  $\theta$  is in radians) 25. Lim  $x \rightarrow 0$ θ

**Item-2:** Encircle the correct answers:

| 1   | The domain of $f(x) = x^2$ is the set of all Detional Neg                                                    | T/E    |
|-----|--------------------------------------------------------------------------------------------------------------|--------|
| 1.  | The domain of $I(x) = x$ is the set of all Rational Nos.                                                     |        |
| 2.  | If a vertical line cuts a graph in more than one point, then it is a function.                               |        |
| 3.  | For any set X a function I : $X \to X$ or $I(x) = x$ , $\forall x \in X$ , it is called an inverse function. | T/F    |
| 4.  | Rational function is defined as where $P(x) / Q(x)$ are polynomials and $Q(x) \neq 0$ .                      | T/F    |
| 5.  | Domain of sec <sup>x</sup> is $\{x : x \in R \text{ and } x \neq (2x + 1) \pi/2\}$ .                         | T/F    |
| 6.  | If $g(x) = 2^x$ than it is called a logarithmic function.                                                    | T/F    |
| 7.  | When variables x & y are expressed in terms of another variable, then it is called poly                      | nomial |
|     | function.                                                                                                    | T/F    |
| 8.  | Cosine function is an even function.                                                                         | T/F    |
| 9.  | Let f & g be function defined on variable x then f $g(x) = gf(x)$ .                                          | T/F    |
| 10. | $\lim_{x \to a^{n}} \frac{(x^{n}-a^{n})}{(x-a)} = na^{n-1}$                                                  | T/F    |
|     | $x \rightarrow a$                                                                                            |        |
| 11. | lt $\sin 90^{\circ}/90^{\circ} = 1$                                                                          | T/F    |
|     | $x \rightarrow 0$                                                                                            |        |
| 12. | If $f(x) = 3x + 2$ also $f(x) = 17$ , then $x = 5$ .                                                         | T/F    |
| 13. | If $f: x \rightarrow x + 2$ then $f^{-1}$ is $y + 2$ .                                                       | T/F    |
| 14. | If $f(x) = \sqrt{x} \& g(x) = \sqrt{4 - x^2}$ then (f/g) (x) at x = 1 is given by $\sqrt{3}$ .               | T/F    |
| 15. | If $f(x) = \sin x + \cos x$ then it is neither an even nor an odd function.                                  | T/F    |
| 16. | Parametric equation of hyperbola is $x = a \sec \theta y = a \tan \theta$ .                                  | T/F    |
| 17. | The inverse of $\log_{e} x = y$ is $x = e^{y}$ .                                                             | T/F    |
| 18. | Area of sector of a circle of radius r is $\frac{1}{2} r\theta^2$                                            | T/F    |
| 19. | The graph of $y^2 = 4ax$ is symmetric about x-axis.                                                          | T/F    |
| 20. | Volume of a cube can be expressed as the area of its base.                                                   | T/F    |
| 21. | The limit of the sequence $1.1/2.1/2^2.1/2^31/2^n$ approaches to zero $(n \rightarrow \infty)$               | T/F    |
| 22. | Equation $v = ax^2 + bx + c$ always represents a parabola.                                                   | T/F    |
| 23. | $\lim_{x \to 0} \sqrt{3x^2 + x + 4} = 16$                                                                    | T/F    |
|     | $x \rightarrow 3$                                                                                            |        |
| 24  | $\lim_{\theta \to 0} \sin^2 \theta / \theta = 1$                                                             | T/F    |
|     | $\theta \rightarrow 0$                                                                                       | 1,1    |
| 25  | $\mathbf{x} \rightarrow \infty \left(1 + \frac{1}{n}\right)^n - \mathbf{e}^4$                                | T/F    |
| 49. | $\mathbf{A} \rightarrow \cdots \left(\mathbf{I} + \mathbf{T} / \mathbf{I}\right) = \mathbf{C}$               | 1/1    |

| 1.  | Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-1}$           | x <sup>n-2</sup>                  | $+ a_1$ , x + $a_0$ where $a_1$ , $a_2 E R$ is called: |
|-----|--------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|
|     | a) Rational                                                        | b)                                | Irrational                                             |
|     | c) Polynomial                                                      | (b<br>(b                          | None of these                                          |
| 2   | The range of $f(x) = x^3$ is:                                      | u)                                | Tone of these                                          |
| 2.  | a) Set of all Natural Nos                                          | b)                                | Set of all non-negative Real Nos                       |
|     | c) Set of all Real Nos                                             | (U<br>d)                          | None of these                                          |
| 2   | $\Lambda$ function $\Lambda : \mathbf{V} \to \mathbf{V}$ defined h | (u)                               | a is called function:                                  |
| 5.  | A function $A: X \rightarrow f$ defined b                          | y A(∝) = a<br>b)                  | a is called function.                                  |
|     | a) Inverse function                                                | (U<br>d)                          | None of these                                          |
| 4   | $C_{i}$ inverse function                                           | u)                                | None of these                                          |
| 4.  | If $x = a^{y}$ then $y = a^{y}$                                    | <b>L</b> )                        | 1                                                      |
|     | a) $\log_c x$                                                      | D)<br>1)                          | $\log_a X$                                             |
| ~   | c) $\log_x a$                                                      | d)                                | None of these                                          |
| э.  | Coth is defined as:                                                | 1 \                               |                                                        |
|     | a) $\ln (x + \sqrt{x^2 + 1})$                                      | b)                                | $\frac{1}{2} \ln(x+1/x-1)$                             |
| 6   | b) $\ln (x + \sqrt{x^2 - 1})$                                      | d)                                | $\ln(1/x + \sqrt{1-x^2}/x)$                            |
| 6.  | If $f(x) = f(-x)$ then it is called:                               | 1 \                               |                                                        |
|     | a) Odd function                                                    | b)                                | Even function                                          |
| _   | c) Implicit function $2^{2}$                                       | d)                                | Explicit function                                      |
| 7.  | $\cosh^2 x + \sinh^2 x =$                                          | •                                 | $\sim -2$                                              |
|     | a) Sinh <sup>2</sup> x                                             | b)                                | Cosh <sup>2</sup> x                                    |
| -   | c) 1                                                               | d)                                | None of these                                          |
| 8.  | It $(3x+4/x+3)$ is                                                 |                                   |                                                        |
|     | $x \rightarrow 2$                                                  |                                   |                                                        |
|     | a) 10                                                              | b)                                | 2                                                      |
|     | c) 5                                                               | d)                                | 1                                                      |
| 9.  | If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1$                | $\mathbf{x} + \mathbf{a}_0$ isa o | continuous function of degree n, then Lt $P(x) =$      |
|     |                                                                    |                                   | x→c                                                    |
|     | a) $a_0$                                                           | b)                                | $a^n$                                                  |
|     | c) Zero                                                            | d)                                | P(C)                                                   |
| 10. | If $f(x) = 2x + 1 \& g(x) = x^2 + 2x$                              | x - 1 then (                      | f-g(x) is given by                                     |
|     | a) $x^2 + 2$                                                       | b)                                | $x^{2} - 2$                                            |
|     | c) $-x^2 + 2$                                                      | d)                                | $-x^2 - 2$                                             |
| 11. | If $h(x) = x+2$ and $j(x) = 4-x^2$ , the                           | en (hj) (x)                       | is given by:                                           |
|     | a) $-x^2 + 6$                                                      | b)                                | $-x^2 - 6$                                             |
|     | c) $x^2 + 6$                                                       | d)                                | $x^2 - 6$                                              |
| 12. | If $g(x) = x^{3} - x$ it is:                                       |                                   |                                                        |
|     | a) Odd function                                                    | b)                                | Even function                                          |
|     | c) Neither even or odd                                             | d)                                | None of them                                           |
| 13. | If a point (a,b) lies on the graph                                 | h of the fu                       | nction which of the following point must lie on the    |
|     | graph of inverse of f.:                                            |                                   |                                                        |
|     | a) (a,b)                                                           | b)                                | (-a,b)                                                 |
|     | c) (a,-b)                                                          | d)                                | (b,a)                                                  |
| 14. | Lt $Sin px/qx =$                                                   | ,                                 |                                                        |
|     | $x \rightarrow 0$                                                  |                                   |                                                        |
|     | a) 1                                                               | b)                                | q/p                                                    |
|     | $\dot{c}$ $p/q$                                                    | d)                                | Not defined                                            |
|     |                                                                    | /                                 |                                                        |

**<u>Item-3:</u>** Choose and encircle the best possible answers:

| 15. | If $f(x) = x\sqrt{x^2-4}$ , then domain of | f(x) is:         |                          |
|-----|--------------------------------------------|------------------|--------------------------|
|     | a) R                                       | b)               | $R - \{0\}$              |
|     | c) $R - [2, -2]$                           | d)               | $R - \{4\}$              |
| 16. | If $f(x) = 2$ for all real Nos., then      | f(x+2) =         |                          |
|     | a) 0                                       | b)               | 2                        |
|     | c) 4                                       | d)               | Х                        |
| 17. | Lt $(1+3x)^{1/x} =$                        |                  |                          |
|     | $x \rightarrow 0$                          |                  |                          |
|     | a) 3                                       | b)               | 3e                       |
|     | c) ∞                                       | d)               | e <sup>3</sup>           |
| 18. | The relation $x^2y + xy^2 - 3 = 0$ is      |                  |                          |
|     | a) quadratic function                      | b)               | Explicit function        |
|     | c) Implict function                        | d)               | None of these            |
| 19. | If $A = \{1,2\}$ & $B = \{a,b\}$ and R     | $_{1}$ is{(1,a), | (2b)} then $R_1^{-1}$ is |
|     | a) $\{(a,1),(b,2)\}$                       | b)               | $\{(a,1),(2,b)\}$        |
|     | c) $\{(1,a),(2,b)\}$                       | d)               | $\{(1,a),(b,2)\}$        |
| 20. | Lt $a^t-1/t =$                             |                  |                          |
|     | $x \rightarrow 0$                          |                  |                          |
|     | a) e                                       | b)               | $\infty$                 |
|     | c) ln a                                    | d)               | log <sub>10</sub> a      |
| 21. | Lt $e^{1/x} - 1/e^{1/x} + 1 =$             |                  | -                        |
|     | $X \rightarrow \infty$                     |                  |                          |
|     | a) 2                                       | b)               | 0                        |
|     | c) <sup>1</sup> / <sub>2</sub>             | d)               | Not defined              |
| 22. | Lt $5x^2 - 3/7x^3 - 1 =$                   |                  |                          |
|     | $x \rightarrow \infty$                     |                  |                          |
|     | a) 1                                       | b)               | Undefined                |
|     | c) 0                                       | d)               | $\infty/\infty$          |

**Item-4:** Match the items in the column A with column B and write the correct answer in column C:

| COLUMN-A                        | COLUMN-B | COLUMN-C |
|---------------------------------|----------|----------|
| (a)<br>Y= ax <sup>3</sup> , a>o | di Y     |          |
| b)<br>Y=an, a>o                 |          |          |
| ©)<br>Y=ax, a<0                 |          |          |
| 1d)<br>Y=ax <sup>2</sup> , a >0 |          |          |
| y= a, a 70                      |          |          |



## ANSWERS

| Item-1                 | <u>:</u>                  | Fill in the blanks: |               |                               |          |         |          |          |                                 |           |             |        |
|------------------------|---------------------------|---------------------|---------------|-------------------------------|----------|---------|----------|----------|---------------------------------|-----------|-------------|--------|
| 1: Leit                | : Leibniz 2: Radius of sp |                     |               | nere (rad                     | ius)     | 3:4     | 4: Linea | ar       | 5: {-1 ≤                        | $x \le 1$ |             |        |
| 6: e                   | 7: Impl                   | olicit 8: Odd       |               |                               | 9: 125   |         | 10: 1    |          | 11: x =                         | -1        |             |        |
| 12: Fu                 | nction                    | 13: Zer             | 0             | 14: Eve                       | en       | 15: Odd | l        | 16: ½ lr | $n\left(\frac{1+x}{1-x}\right)$ | x <       |             |        |
| 17: Ell                | 7: Ellipse 18: x          |                     |               | 19: $\lim_{x \to c} h(x) = L$ |          | Ľ       | 20: Zero |          | 1 - x<br>21: f(a)               |           |             |        |
| 22: Zero $23: x \ge 0$ |                           |                     | 0             | 24: Rar                       | nge of f |         | 25: 7    |          |                                 |           |             |        |
| Item-2                 | :                         | Encircl             | e the cor     | rect ans                      | wers:    |         |          |          |                                 |           |             |        |
| 1: F                   | 2: F                      | 3: F                | 4: T          | 5: T                          | 6: T     | 7: F    | 8: T     | 9: F     | 10: T                           | 11: F     | 12: T       |        |
| 13: F                  | 14: F                     | 15: T               | 16: F         | 17: F                         | 18: F    | 19: T   | 20: T    | 21: T    | 22: T                           | 23: F     | 24: F       |        |
| 25: T                  |                           |                     |               |                               |          |         |          |          |                                 |           |             |        |
| Item-3                 | <u>:</u>                  | M.C.Q               | s:            |                               |          |         |          |          |                                 |           |             |        |
| 1: c                   | 2: c                      | 3: b                | 4: b          | 5: b                          | 6: b     | 7: c    | 8: c     | 9: d     | 10: c                           | 11: a     |             |        |
| 12: a                  | 13: d                     | 14: c               | 15: c         | 16: b                         | 17: c    | 18: c   | 19: a    | 20: c    | 21: b                           | 22: c     |             |        |
| <u>Item-4</u>          | ! <u>:</u>                | Match<br>column     | the iten<br>C | ns in th                      | e colum  | nn A wi | th colu  | mn B a   | nd write                        | e the co  | orrect answ | ver in |
| a: iv                  | b: i                      | c: ii               | d: iii        | e: v                          | f: vi    | g: vii  | h: x     | i: ix    | j: viii                         |           |             |        |

#### **CHAPTER-2 (Differentiation)**

Item-1: Fill in the blanks: 1. In the expression  $\phi(\theta) = \theta^2 + 1/\theta$ ,  $\theta$  is ...... variable. If  $\lim_{x \to \infty} f(x + \delta x) - f(x)$  exists then f(x) is said to be ..... 2.  $\delta x \rightarrow 0$ δx 3. The derivative of  $1/\sqrt{x}$  is ..... 4. The Leibnitz symbol for the derivative of y w.r.t. x is ..... If  $x = t^3$  and  $y = 1 + t^2$  then dy/dx is ..... 5. ..... is the derivative of  $\sin^2 2x$ . 6. The derivative of 2<sup>tanx</sup> is ..... 7. If  $y = \tan^{-1} 2x$  then  $dy/dx = \dots$ 8. 9. d/dx [cos h (3x)] is ..... The second derivative of  $e^{2x}$  is ..... 10.  $f(x) = f(0) + xf'(0) + x^2 f''(0) + x^3 f'''(0) + \dots$  is known as..... 11. 2! 3!  $e^{x+h} = e^x \{1 + h + h^2 + h^3 + \dots\}$  is called ...... series expansion of  $e^x$ . 12. 2! 3!  $f(x) = 1/x^2$  is a non ..... function on [1, 10]. 13.  $y = \sin x$  is a non ..... function on  $[0, \pi/2]$ . 14. The maximum value of 2 cos x on the interval  $[-\pi, \pi]$  is ..... 15. 16.  $f(x) = x^3 + 2x - 4$  is a non ..... function on [-1, 4]. The second derivative of  $y = -\cos(x/2)$  is ..... 17. 18. If f'(c) > 0 then f has a ..... at c. 19. A stationary point is also called a ..... if it is either a maximum or a minimum point. f is decreasing on ] a,b [, if f(x) is ..... for each x  $\varepsilon$  ] a,b [. 20. The slope of  $y = x^2 + \sin x$ , is ..... at x = 0. 21. 22. <u>d</u>  $[1/g(x)] = \dots$ dx If u and v are two functions of x then  $d/dx (u/v) = (v.u' - uv')/v^2$  is called ..... 23. The derivative of  $[f(x)]^n$  w.r.t. x is ..... 24. If  $x^3 + y^3 = 9$  then dy/dx = ...25. 26. dy/dx = dy/du. du/dx is known as ..... rule. The derivative of sin x w.r.t. cos x is ..... 27. 28.  $\dots$  is the derivative of  $\ln e^{2x}$ . 29.  $d/dx (\sin \theta + x)$  is .....  $\frac{1}{\sqrt{1+x^2}}$  is the derivative of ..... 30. Item-2: Encircle the correct answers: When y = f(x), y is called the independent variable. T/F 1. 2. If  $\lim S(t + \delta t) - S(t)$  exists, is called the instantaneous rate of change of distance δt→0 δt T/F with respect to "t". The notation f'(x) for derivative of y = f(x) was introduced by Newton. T/F 3. The derivative of  $y = \sin \pi$  w.r.t. x is  $\cos \pi$ . 4. T/F 5. The equation of tangent line of the curve  $y = x^2 + 1$  at x = 1 is y = 2x. T/F 6. d/dx (1/x) = 1T/F

| 7.                               | d/dx (c.f(x)) = c. f'(x)                                                                                                                                                                                                                                                                                                                                                                                                          | ).                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|
| 8.                               | $d/dx [(x+a)/(x-a)] = 1/(x-a)^2$                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 9.                               | <u>d</u> $[1/g(x)] = -g'(x)$ is k                                                                                                                                                                                                                                                                                                                                                                                                 | known as recip                                                                                                                                                                                                                                        | rocal lav                                                                                                                   | v.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
|                                  | dx $[g(x)]^2$                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     |              |
| 10.                              | The derivative of $(\sqrt{x} + $                                                                                                                                                                                                                                                                                                                                                                                                  | -2) $(\sqrt{x}-2)$ is 1.                                                                                                                                                                                                                              |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 11.                              | If $x = \sin t/2$ , $y = \cos t/2$                                                                                                                                                                                                                                                                                                                                                                                                | T/F                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     |              |
| 12.                              | The derivative of ln si                                                                                                                                                                                                                                                                                                                                                                                                           | n x w.r.t. x is t                                                                                                                                                                                                                                     | an x.                                                                                                                       |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 13.                              | If $x = 2at$ and $y = at^2 t$                                                                                                                                                                                                                                                                                                                                                                                                     | hen $dy/dx = x/$                                                                                                                                                                                                                                      | 2a.                                                                                                                         |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 14.                              | If $xy = 3$ then $dy/dx =$                                                                                                                                                                                                                                                                                                                                                                                                        | x/y.                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 15.                              | For finding the derivat                                                                                                                                                                                                                                                                                                                                                                                                           | tives of trigono                                                                                                                                                                                                                                      | ometric f                                                                                                                   | unction                                                                          | s f(x), x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | must be                                                                                      | in degrees.                                         | T/F          |
| 16.                              | The derivative of tan x                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{x^2 \text{ is sec}^2 x}{x^2}$                                                                                                                                                                                                                  |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 17.                              | $d/d\theta (\cos^{-1} 2\theta) = 1/\sqrt{1}$                                                                                                                                                                                                                                                                                                                                                                                      | $-4\theta^2$                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 18.                              | $d/dx [log_a^x] = lna/x$                                                                                                                                                                                                                                                                                                                                                                                                          | θ                                                                                                                                                                                                                                                     | 0                                                                                                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 19.                              | The tenth derivative of                                                                                                                                                                                                                                                                                                                                                                                                           | $f e^{\circ} w.r.t.\theta$ is e                                                                                                                                                                                                                       |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 20.                              | The fourth derivative of                                                                                                                                                                                                                                                                                                                                                                                                          | of $\cos x$ is $\sin x$                                                                                                                                                                                                                               | X.                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                            |                                                     | T/F          |
| 21.                              | A series of the form a                                                                                                                                                                                                                                                                                                                                                                                                            | $a_0 + a_1 x + a_2 x^2$                                                                                                                                                                                                                               | $(+ a_3 x^3 -$                                                                                                              | +                                                                                | + 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a_n x^n + \dots$                                                                            | is ca                                               | lled a power |
|                                  | series expansion.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       |                                                                                                                             | 3.0.                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                            | T/F                                                 | -            |
| 22.                              | Maclaurin's series exp                                                                                                                                                                                                                                                                                                                                                                                                            | bansion of sin 2                                                                                                                                                                                                                                      | x 18, x − 1                                                                                                                 | $x^{3}/3! + y$                                                                   | $x^{3}/5! - x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | '/'/! +<br>8/0/                                                                              |                                                     | T/F          |
| 23.                              | Maclaurin's series exp                                                                                                                                                                                                                                                                                                                                                                                                            | bansion of cos                                                                                                                                                                                                                                        | x 1s 1 - x                                                                                                                  | $\frac{2}{2!} - x^{-1}$                                                          | $7/4! - x^{0}/6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6! - x^{\circ}/8!$                                                                          |                                                     | T/F          |
| 24.                              | There is no tangent lin                                                                                                                                                                                                                                                                                                                                                                                                           | ie to the graph                                                                                                                                                                                                                                       | of $y =  $                                                                                                                  | $\mathbf{x} \mid \mathbf{at} \mathbf{x}$                                         | = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                                     | T/F          |
| 25.                              | When $f'(x) < 0$ for each $x = 0$                                                                                                                                                                                                                                                                                                                                                                                                 | $ch x \varepsilon ] a, b [ th$                                                                                                                                                                                                                        | tion $f(x)$ i                                                                                                               | s increa                                                                         | sing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                            |                                                     | T/F          |
| 26.                              | Relative maxima is no                                                                                                                                                                                                                                                                                                                                                                                                             | t necessarily t                                                                                                                                                                                                                                       | he highe                                                                                                                    | st point                                                                         | of the gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | raph.                                                                                        |                                                     | I/F          |
| 27.                              | f''(x) is positive at the point $x = c$ where f has relative maxima.                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     |              |
| 28.                              | If $f(x) = \cos x$ then $f''(\pi/2) = 1$ .                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | T/F          |
| 29.<br>20                        | I he increment in x sho<br>$d/dr (a + b^{-1}r) = 1/(1)$                                                                                                                                                                                                                                                                                                                                                                           | ould always be $\frac{1}{2}$                                                                                                                                                                                                                          | e positive                                                                                                                  | 2.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     |              |
| 30.                              | d/dx (coin x) = 1/(1-                                                                                                                                                                                                                                                                                                                                                                                                             | +X )                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     | 1/F          |
| <u>Item-3:</u>                   | Choose and encircle th                                                                                                                                                                                                                                                                                                                                                                                                            | ne best possibl                                                                                                                                                                                                                                       | e answer                                                                                                                    | s:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     |              |
| 1.                               | A function $f(x)$ has a r                                                                                                                                                                                                                                                                                                                                                                                                         | ninimum valu                                                                                                                                                                                                                                          | e at x = a                                                                                                                  | a if:                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                     |              |
|                                  | a) $f''(a) = 0$ , f                                                                                                                                                                                                                                                                                                                                                                                                               | '(a) = 0                                                                                                                                                                                                                                              | b)                                                                                                                          | f''(a) >                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f'(a) =                                                                                      | 0                                                   |              |
|                                  | c) $f''(a) < 0$ , $f''(a) < 0$                                                                                                                                                                                                                                                                                                                                                                                                    | '(a) = 0                                                                                                                                                                                                                                              | d)                                                                                                                          | f''(a) =                                                                         | = 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f'(a) =                                                                                      | = 0                                                 |              |
| 2.                               | If $y = f(x)$ then $dy/dx$ is                                                                                                                                                                                                                                                                                                                                                                                                     | is:                                                                                                                                                                                                                                                   | ,                                                                                                                           |                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ /                                                                                          |                                                     |              |
|                                  | a) Slope of normal line                                                                                                                                                                                                                                                                                                                                                                                                           | b) Slope of x-                                                                                                                                                                                                                                        | avis a)                                                                                                                     | C1                                                                               | N ovia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d) Clana                                                                                     | of tangent lin                                      | ne           |
| 3.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       | -axis (),                                                                                                                   | slope of                                                                         | y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | u) stope                                                                                     | 0                                                   |              |
|                                  | The derivative of cos (                                                                                                                                                                                                                                                                                                                                                                                                           | (ax/c) is:                                                                                                                                                                                                                                            | -axis C)                                                                                                                    | Slope of                                                                         | y-ax15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | u) stope                                                                                     | 8                                                   |              |
|                                  | The derivative of $\cos(a) - a/c \sin(ax/c)$ b                                                                                                                                                                                                                                                                                                                                                                                    | (ax/c) is:<br>b) a/c sin (ax/c                                                                                                                                                                                                                        | ) c) 1/0                                                                                                                    | siope of<br>c sin (ax                                                            | y-axis<br>(/c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) -1/c                                                                                      | sin (ax/c)                                          |              |
| 4.                               | The derivative of $\cos(a) - a/c \sin(ax/c) = b$<br>d/dx [ $\sin \pi/2$ ] = :                                                                                                                                                                                                                                                                                                                                                     | (ax/c) is:<br>b) a/c sin (ax/c                                                                                                                                                                                                                        | ) c) 1/6                                                                                                                    | siope of<br>c sin (ax                                                            | y-axis<br>(/c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) -1/c                                                                                      | sin (ax/c)                                          |              |
| 4.                               | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx [sin $\pi/2$ ] = :<br>sec x                                                                                                                                                                                                                                                                                                                                               | (ax/c) is:<br>) a/c sin (ax/c                                                                                                                                                                                                                         | ) c) 1/6                                                                                                                    | c sin (ax                                                                        | y-axis<br>./c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) -1/c                                                                                      | sin (ax/c)                                          |              |
| 4.                               | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx $[sin \pi/2] = :$<br>sec x<br>a) Sin x b)                                                                                                                                                                                                                                                                                                                                 | (ax/c) is:<br>a/c sin (ax/c)<br>Cos x                                                                                                                                                                                                                 | c)                                                                                                                          | c sin (ax<br>-Sin x                                                              | y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d) -1/c<br>d)                                                                                | sin (ax/c)<br>-Cos x                                |              |
| 4.<br>5.                         | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx $[sin \pi/2] = :$<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the                                                                                                                                                                                                                                                                                                    | (ax/c) is:<br>) a/c sin (ax/c)<br>) Cos x<br>en f(c) is:                                                                                                                                                                                              | c)                                                                                                                          | c sin (ax<br>-Sin x                                                              | y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>d) slope</li> <li>d) -1/c</li> <li>d)</li> </ul>                                    | sin (ax/c)<br>-Cos x                                |              |
| 4.<br>5.                         | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx [sin $\pi/2$ ] = :<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the<br>a) Maximum at x = C                                                                                                                                                                                                                                                                            | (ax/c) is:<br>) a/c sin (ax/c<br>) Cos x<br>en f(c) is:<br>C                                                                                                                                                                                          | <ul> <li>c) 1/6</li> <li>c)</li> <li>b)</li> </ul>                                                                          | -Sin x<br>minimu                                                                 | m = x + x = x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>d) -1/c</li> <li>d)</li> <li>: C</li> </ul>                                         | sin (ax/c)<br>-Cos x                                |              |
| 4.<br>5.                         | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx [sin $\pi/2$ ] = :<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the<br>a) Maximum at x = C<br>c) Stationary point                                                                                                                                                                                                                                                     | (ax/c) is:<br>b) a/c sin (ax/c)<br>c) Cos x<br>en f(c) is:<br>C                                                                                                                                                                                       | <ul> <li>c) 1/6</li> <li>c)</li> <li>b)</li> <li>d)</li> </ul>                                                              | -Sin x<br>minimu<br>Insuffic                                                     | m at x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) -1/c<br>d)<br>cC<br>ormatior                                                              | sin (ax/c)<br>-Cos x                                |              |
| 4.<br>5.<br>6.                   | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx $[sin \pi/2] = :$<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the<br>a) Maximum at x = C<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) $Sin^2 x$ b)                                                                                                                                                                                                         | (ax/c) is: a/c sin (ax/c) ) Cos x en f(c) is: Cos 2 x                                                                                                                                                                                                 | <ul> <li>c)</li> <li>c)</li> <li>b)</li> <li>d)</li> </ul>                                                                  | -Sin x<br>minimu<br>Insuffic                                                     | m at x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) -1/c<br>d)<br>cC<br>ormation                                                              | sin (ax/c)<br>-Cos x                                |              |
| 4.<br>5.<br>6.                   | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx $[sin \pi/2] = :$<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the<br>a) Maximum at x = 0<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) Sin <sup>2</sup> x b)<br>The derivative of x <sup>2</sup>                                                                                                                                                            | (ax/c) is:<br>a/c sin (ax/c)<br>Cos x<br>en f(c) is:<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                 | <ul> <li>c) 1/6</li> <li>c)</li> <li>b)</li> <li>d)</li> <li>c)</li> </ul>                                                  | -Sin x<br>minimu<br>Insuffic                                                     | m at x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) -1/c<br>d)<br>Cormatior<br>d)                                                             | sin (ax/c)<br>-Cos x<br>N<br>Sin2 x/2               |              |
| 4.<br>5.<br>6.<br>7.             | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx [sin $\pi/2$ ] = :<br>sec x<br>a) Sin x b)<br>If f '(x) = 0 at x = c the<br>a) Maximum at x = C<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) Sin <sup>2</sup> x b)<br>The derivative of x <sup>2</sup> +<br>a) -x/y b) 22                                                                                                                                       | (ax/c) is:<br>a/c sin (ax/c)<br>Cos x<br>en f(c) is:<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                 | <ul> <li>c) 1/d</li> <li>c)</li> <li>b)</li> <li>d)</li> <li>c)</li> <li>c)</li> </ul>                                      | -Sin x<br>minimu<br>Insuffic<br>Cos <sup>2</sup> x                               | $m = x = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d) slope<br>d) $-1/c$<br>d)<br>c C<br>ormation<br>d)<br>$v^2/x^2$                            | sin (ax/c)<br>-Cos x<br>n<br>Sin2 x/2               |              |
| 4.<br>5.<br>6.<br>7.             | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx $[sin \pi/2] = :$<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the<br>a) Maximum at x = C<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) Sin <sup>2</sup> x b)<br>The derivative of x <sup>2</sup> +<br>a) -x/y b) 2x<br>If x = a cos <sup>2</sup> $\theta$ y = b si                                                                                          | (ax/c) is:<br>(ax/c) is:<br>(ax/c) a/c sin (ax/c)<br>Cos x<br>en f(c) is:<br>C<br>(c) Cos2 x<br>$y^2 = 9$ is:<br>x + 2y = 0<br>$\sin^2 \theta$ then dy/d                                                                                              | <ul> <li>c)</li> <li>c)</li> <li>b)</li> <li>d)</li> <li>c)</li> <li>c)</li> <li>x is:</li> </ul>                           | -Sin x<br>minimu<br>Insuffic<br>Cos <sup>2</sup> x<br>y/x                        | <pre>y-axis /c) m at x = ient in fo d)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) $-1/c$<br>d)<br>c C<br>ormation<br>d)<br>$y^2/x^2$                                        | sin (ax/c)<br>-Cos x<br>N<br>Sin2 x/2               |              |
| 4.<br>5.<br>6.<br>7.<br>8.       | The derivative of $\cos(a) -a/c \sin(ax/c)$ b<br>$d/dx [\sin \pi/2] = :$<br>$\sec x$<br>a) $\sin x$ b)<br>If $f'(x) = 0$ at $x = c$ the<br>a) Maximum at $x = 0$<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) $Sin^2 x$ b)<br>The derivative of $x^2 + a$<br>a) $-x/y$ b) 22<br>If $x = a \cos^2 \theta$ , $y = b \sin^2 \theta$                                                                                        | (ax/c) is:<br>(ax/c) is:<br>(ax/c) a/c sin (ax/c)<br>(ax/c) cos x<br>en f(c) is:<br>C<br>(c) cos 2 x<br>y <sup>2</sup> = 9 is:<br>x + 2y = 0<br>in <sup>2</sup> $\theta$ then dy/d:<br>(b) c)                                                         | <ul> <li>c)</li> <li>c)</li> <li>b)</li> <li>d)</li> <li>c)</li> <li>c)</li> <li>x is:</li> <li>-b/a</li> </ul>             | -Sin x<br>-Sin x<br>minimu<br>Insuffic<br>Cos <sup>2</sup> x<br>y/x<br>d)        | $\frac{1}{c}$<br>m at x =<br>ient in for<br>d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) slope<br>d) $-1/c$<br>d)<br>c C<br>ormation<br>d)<br>$y^2/x^2$<br>( a sin $\theta$        | sin (ax/c)<br>-Cos x<br>n<br>Sin2 x/2               |              |
| 4.<br>5.<br>6.<br>7.<br>8.       | The derivative of $\cos(a) -a/c \sin(ax/c)$ b<br>$d/dx [\sin \pi/2] = :$<br>$\sec x$<br>a) $\sin x$ b)<br>If $f'(x) = 0$ at $x = c$ the<br>a) Maximum at $x = 0$<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) $Sin^2 x$ b)<br>The derivative of $x^2 +$<br>a) $-x/y$ b) 22<br>If $x = a \cos^2 \theta$ , $y = b \sin a$<br>a) $b/a$ b) $a/c$                                                                            | (ax/c) is:<br>(ax/c) is:<br>(ax/c) is:<br>(ax/c) a/c sin (ax/c)<br>(ax/c) cos x<br>en f(c) is:<br>C<br>(b) Cos 2 x<br>y <sup>2</sup> = 9 is:<br>x + 2y = 0<br>in <sup>2</sup> $\theta$ then dy/d:<br>(b) c)<br>x <sup>0</sup> w r t fo x:             | <ul> <li>c)</li> <li>c)</li> <li>b)</li> <li>d)</li> <li>c)</li> <li>c)</li> <li>x is:</li> <li>-b/a</li> </ul>             | -Sin x<br>-Sin x<br>minimu<br>Insuffic<br>Cos <sup>2</sup> x<br>y/x<br>d)        | m  at  x = $m  at  x = $ $m$ | d) slope<br>d) $-1/c$<br>d)<br>cormation<br>d)<br>$y^2/x^2$<br>/ a sin $\theta$              | sin (ax/c)<br>-Cos x<br>n<br>Sin2 x/2               |              |
| 4.<br>5.<br>6.<br>7.<br>8.<br>9. | The derivative of cos (<br>a) -a/c sin (ax/c) b<br>d/dx [sin $\pi/2$ ] = :<br>sec x<br>a) Sin x b)<br>If f'(x) = 0 at x = c the<br>a) Maximum at x = C<br>c) Stationary point<br>d/dx [Sin x Cos x] is:<br>a) Sin <sup>2</sup> x b)<br>The derivative of x <sup>2</sup> +<br>a) -x/y b) 2x<br>If x = a cos <sup>2</sup> $\theta$ , y = b si<br>a) b/a b) a/<br>The derivative of Sin x<br>a) Cos x <sup>0</sup> b) x <sup>0</sup> | (ax/c) is:<br>(ax/c) is:<br>(ax/c) a/c sin (ax/c)<br>(ax/c) cos x<br>en f(c) is:<br>C<br>(c) cos 2 x<br>y <sup>2</sup> = 9 is:<br>x + 2y = 0<br>in <sup>2</sup> $\theta$ then dy/d:<br>(b c)<br>x <sup>0</sup> w.r.t. to x:<br>(c) cos x <sup>0</sup> | <ul> <li>c)</li> <li>c)</li> <li>b)</li> <li>d)</li> <li>c)</li> <li>c)</li> <li>x is:</li> <li>-b/a</li> <li>c)</li> </ul> | -Sin x<br>-Sin x<br>minimu<br>Insuffic<br>$\cos^2 x$<br>y/x<br>d)<br>$\pi/180$ S | $m \text{ at } \mathbf{x} =$<br>ient in for<br>d)<br>$b \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d) slope<br>d) $-1/c$<br>d)<br>c C<br>ormation<br>d)<br>$y^2/x^2$<br>/ $a \sin \theta$<br>d) | sin (ax/c)<br>-Cos x<br>Sin2 x/2<br>$\pi/180$ Cos x | ζ0           |

| 10. | If $y = x^7 + x^6 + x^5$ th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | then $D^8(y) =:$                          |                |                       |                   |       |                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|-----------------------|-------------------|-------|---------------------------|
|     | a) 7! b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7! x c)                                   | 7! + 6!        |                       | d)                | 0     |                           |
| 11. | d/dx [cos C. Sin 45 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )] =:                                     |                |                       |                   |       |                           |
|     | a) 0 b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sin C. Sin $45^{\circ}$                   | c)             | -Sin C.               | $\sin 45^{\circ}$ | d)    | $\cos C. \cos 45^{\circ}$ |
| 12. | $d/dx [x^{x^2}]$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                |                       |                   |       |                           |
|     | a) $x^{x^2}$ [1+lnx]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) $x^{x^{2+1}}$ [1+lnx]                  | c)             | x <sup>x2-1</sup> [1- | ⊦lnx]             | d) :  | $x^{x^{2+1}}$ [1+2lnx]    |
| 13. | $d/dx$ ( $a^{b+c}$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                |                       |                   |       |                           |
|     | a) 0 b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(b+c) a^{b+c-1}$                         | c)             | ba <sup>b+c</sup>     | d)                | (b+c  | c) a <sup>b+c</sup> Ina   |
| 14. | $y = \cos(bx + c)$ the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $d^4/dx^4 \cos(bx)$                       | (+c):          |                       |                   |       |                           |
|     | a) $\cos(bx + c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b) $Sin(bx + c)$                          | c) $b^4 C$     | Cos (bx +             | + c)              | d) 1  | $b^4$ Sin (bx + c)        |
| 15. | If $y^3 = x^2$ then $dy/dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k is:                                     |                |                       |                   |       |                           |
|     | a) $(3/2)(y^2/x^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) $(2/3)(x/y^2)$                         | c) (2/         | $/3) (x^2/y^2)$       | <sup>2</sup> )    | d) (  | (3/2) (x/y)               |
| 16. | $d^4/dx^4(x^8 + 12)$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                |                       |                   |       |                           |
|     | a) $8.7.6x^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) $8x^7$                                 | c)             | (8!/4!)               | $\mathbf{x}^4$    | d)    | $8.7.6.5.4.x^3$           |
| 17. | d/dx [Cos ax + Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bx + Cos cx]:                             | ,              | . ,                   |                   | ,     |                           |
|     | a) $(a+b+c) \sin x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | b)             | -(a+b+c               | c) Sin x          |       |                           |
|     | c) a $\sin ax + b \sin ax$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bx + c Sin cx                             | d)             | -(a Sin               | ax + bS           | in bx | + c Sin cx)               |
| 18. | $d/dx (\cos^{-1}\sqrt{x}) =:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                |                       |                   |       |                           |
|     | a) $1 / \sqrt{2(1-x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b) $1 / \sqrt{2x}$                        | c)             | $1 / \sqrt{x(1)}$     | -x)               | d)    | $-1 / \sqrt{2x(1-x)}$     |
| 19. | d/dx [Sin h <sup>-1</sup> (ax + b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o)]:                                      |                |                       |                   |       |                           |
|     | a) $1 / \sqrt{1 - (ax + b)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | b)             | a / $\sqrt{1+0}$      | $(ax+b)^2$        | _     |                           |
|     | c) $a / \sqrt{1 + (ax+b)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | d)             | a+b / √               | 1-(ax+b)          | $)^2$ |                           |
| 20. | $d/dx (\ln f(x)) =:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                |                       |                   |       |                           |
|     | a) $f'(x) / f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | b)             | f(x) / f'             | $(\mathbf{x})$    |       |                           |
|     | c) $-f'(x)/f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | d)             | - f(x) / 1            | $f'(\mathbf{x})$  |       |                           |
| 21  | $1 + \mathbf{y} + \mathbf{y}^2/2 + \mathbf{y}^3/3 + \mathbf{y}^2/2 + \mathbf{y}^3/3 $ | is an e                                   | u)<br>evnancio | n of                  |                   |       |                           |
| 21. | a) $\sin x$ b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $e^{2x}$ c)                               | Tan y          | d)                    | ex                |       |                           |
| 22  | $1 t^2/21 t^4/41 t^6/61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is an eve                                 | ansion /       | of.                   | C                 |       |                           |
| 22. | a) $\cos^{-1}t$ b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sin t = C                                 |                | d)                    | Cost              |       |                           |
| 23  | The minima of the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sinction $v = x^2 =$                      | v on [0_1      | u)<br>[] is:          | COST              |       |                           |
| 23. | a) $-1/4$ b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ | 1/4            | d)                    | -1/2              |       |                           |
| 24  | $Cos h^{-1}x$ can also be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | written as:                               | 1/ 4           | u)                    | -1/2              |       |                           |
| 27. | a) $1/\sqrt{1+x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) $1 / \sqrt{1 - x^2}$                   | c) $\ln (x)$   | $(\pm\sqrt{x^2-1})$   | d)                | ln (x | $(+\sqrt{x^2+1})$         |
| 25  | The equation of tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gent line to the c                        | $urve x^2$     | $+ v^2 = c^2$         | at (a b)          | ·     | (1) (X   1)               |
| 20. | a) $x/a = y/h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b) $ax + by = C$                          | 2              | c) by $+$             | av (a, b)         | d)    | ax + by = C               |
| 26  | $d/dx (Sin x)^{-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{b} = \mathbf{c}$                 |                | <b>c)</b> 0A 1        | uy – C            | u)    | ux + 0y = C               |
| 20. | a) $1/\sqrt{1-x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) $-(\sin x)^{-2}$                       | c) - Co        | osec x co             | of x              | (b    | Cosec x cot x             |
| 27. | $d/dx (3^{3x+7}) =:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) (2111)                                 | •) ••          |                       |                   | ۵)    |                           |
| _,, | a) $3^{3x+7}(\ln 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) $3^{3x+7}/\ln^{3x+7}$                  | 13             | c) $3^{3x}$           | $^{+8}/\ln 3$     | d)    | $3^{3x+8}$ (ln3)          |
| 28  | $1 - x + x^2 / 2! - x^3 / 3!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3! + x^4 / 4! +$                         |                | is an exp             | ansion of         | of.   | - ()                      |
| 20. | a) $e^x$ b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sin x$ c)                               | Cos x          | d)                    | e <sup>-x</sup>   |       |                           |
| 29  | Value of $d^2/dx^2$ (-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(x) = \pi/4$ is                          | с.<br>с.       | ω)                    | •                 |       |                           |
| _/. | a) $1/\sqrt{2}$ b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-1/\sqrt{2}$ c)                          | 1/2            | d)                    | -1/2              |       |                           |
| 30. | Two numbers such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | that their differe                        | nce is 50      | ) and pro             | duct is 1         | minir | num are:                  |
|     | a) $50.0$ b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 050 c)                                    | 2525           | d)                    | 25. 25            |       |                           |
|     | ,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -,,                                       | ,              |                       | ,                 |       |                           |

| COLUMN-A                              | COLUMN-B            | COLUMN-C |
|---------------------------------------|---------------------|----------|
| a) d/dx (c)                           | i) 6                |          |
| b) y = sin x on $[0, \pi/2]$          | ii) 2               |          |
| c) $y = 1/x^3$ on [-5, -3]            | iii) 1              |          |
| d) $d/dx (x)^{2/3}$ at $x = 8$        | iv) Decreasing      |          |
| e) Maxima of                          | $v) - \frac{1}{4}$  |          |
| $y = 4 \cos x \text{ on } [-\pi,\pi]$ | ,                   |          |
| f) Third derivative of $x^3 - 5$      | vi) <sup>1</sup> /2 |          |
| g) Slope of the tangent line of       | vii) Increasing     |          |
| $y = x^2 + 1$ at $x = 1$              |                     |          |
| h) d/dx (sin (cos x)) at $x = \pi/2$  | viii) 4             |          |
| i) $d/dx (1+x)^{-1}$ at $x = 1$       | ix) Zero            |          |
| j) Third derivative of                | x) 1/3              |          |
| $x^{3}/12 - x^{2}/6 + x/2 + 7$        |                     |          |
|                                       | xi) 5               |          |
|                                       | xii) –1             |          |

**Item-4:** Match the items in the column A with column B and write the correct answer in column C:

## **ANSWERS**

| Item-1                           | <u>:</u>    | Fill in t | the blanl        | ks:                   |          |                   |             |            |                         |             |                |
|----------------------------------|-------------|-----------|------------------|-----------------------|----------|-------------------|-------------|------------|-------------------------|-------------|----------------|
| 1: Independent 2: Differentiable |             |           | le               |                       | 3: -1/2  | x <sup>-3/2</sup> | 4: dy/d     | х          | 5: 2/3t                 |             |                |
| 6: 4 sin                         | $2x \cos 2$ | 2x        | 7: $2^{tanx}$    | sec <sup>2</sup> x.ln | 2        | 8: 2/(1-          | $+4x^{2}$ ) | 9: 3 sir   | nh3x                    |             |                |
| $10: 4e^{2x}$                    | ζ.          | 11:Ma     | claurin's        | series                | 12: Tay  | ylor serie        | es          | 13: Inc    | reasing                 |             |                |
| 14: Dec                          | reasing     | 15:2      |                  | 16: De                | creasing |                   | 17: ¼ c     | $\cos x/2$ |                         |             |                |
| 18: Rel                          | ative Mi    | inima     | 19: Tu           | rning po              | int      | 20: Les           | s than z    | ero        |                         |             |                |
| 21:1                             |             | 22: -[g   | $(x)]^{-2} g(x)$ | κ) <b>′</b>           | 23: Qu   | otient ru         | le          | 24: n[f    | (x)] <sup>n-1</sup> f(x | () <b>'</b> |                |
| 25: -x <sup>2</sup> /            | $y^2$       | 26: Ch    | ain rule         |                       | 27: -со  | tx                | 28:2        | 29:1       | 30: sin                 | $h^{-1}x$   |                |
| Item-2                           | <u>.</u>    | Encircl   | e the co         | rrect ans             | wers:    |                   |             |            |                         |             |                |
| 1: T                             | 2: T        | 3: F      | 4: F             | 5: T                  | 6: F     | 7: T              | 8: F        | 9: T       | 10: T                   | 11: F       |                |
| 12: F                            | 13: T       | 14: F     | 15: F            | 16: F                 | 17: F    | 18: F             | 19: T       | 20: F      | 21: T                   | 22: T       |                |
| 23: F                            | 24: T       | 25: F     | 26: T            | 27: F                 | 28: F    | 29: F             | 30: F       |            |                         |             |                |
| Item-3                           | <u>.</u>    | M.C.Q     | s:               |                       |          |                   |             |            |                         |             |                |
| 1: b                             | 2: d        | 3: a      | 4: c             | 5: c                  | 6: b     | 7: a              | 8: c        | 9: d       | 10: d                   | 11: a       |                |
| 12: d                            | 13: a       | 14: c     | 15: b            | 16: c                 | 17: d    | 18: d             | 19: b       | 20: a      | 21: d                   | 22: d       |                |
| 23: а                            | 24: c       | 25: b     | 26: c            | 27: d                 | 28: d    | 29: a             | 30: c       |            |                         |             |                |
| Item-4                           | <u>.</u> Ma | tch the i | tems in          | the colu              | mn A wi  | ith colun         | nn B and    | l write th | ne correc               | t answe     | r in column C: |
|                                  | a: i        | Х         | b: vii           | c: iv                 | d: x     | e: viii           | f: i        | g: ii      | h: xii                  | i: v        | j: vi          |

## **CHAPTER-3** (Integration)

| <u>Item-1:</u> | Fill in the blanks:                                                                                                           |                     |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| 1.             | The inverse process of differentiation is called                                                                              |                     |  |  |  |  |  |
| 2.             | In $dv = f(x) dx$ ,, is called the differential coefficient.                                                                  |                     |  |  |  |  |  |
| 3.             | The differential of x is denoted by                                                                                           |                     |  |  |  |  |  |
| 4.             | If $\phi'(x) = f(x)$ , then is called an integral of $f(x)$ .                                                                 |                     |  |  |  |  |  |
| 5.             | $x^{2} + x + c$ is the indefinite integral of                                                                                 |                     |  |  |  |  |  |
| 6.             | In $\int f(x) dx$ ; f (x) is called                                                                                           |                     |  |  |  |  |  |
| 7.             | In $a^{b} f(x) dx$ the upper limit is                                                                                         |                     |  |  |  |  |  |
| 8.             | In $a^{b} f(x) dx$ , the Limit is a.                                                                                          |                     |  |  |  |  |  |
| 9.             | In $a^{fx} f(t)dt$ , the integral will be a function of                                                                       |                     |  |  |  |  |  |
| 10.            | are used to find the area under the curves.                                                                                   |                     |  |  |  |  |  |
| 11.            | The area above the x-axis and under the curve $y = f(x)$ from a to b is                                                       |                     |  |  |  |  |  |
| 12.            | Area under the curve $y = \sin x$ and above x-axis, from 0 to $\pi$ is                                                        |                     |  |  |  |  |  |
| 13.            | If $_{0}\int^{1} f(x) dx = 5$ and $_{1}\int^{3} f(x) dx = 3$ , then $_{0}\int^{3} f(x) dx = \dots$                            |                     |  |  |  |  |  |
| 14.            | Area under the line $y = x$ and above the x-axis from 0 to 1 is                                                               |                     |  |  |  |  |  |
| 15.            | Differential equations contain at least derivative of a depender                                                              | nt variable.        |  |  |  |  |  |
| 16.            | The order of differential equation is the order of the in the equation                                                        | on.                 |  |  |  |  |  |
| 17.            | The order of differential equation $x d^2y/dx^2 + dy/dx - 2x = 0$ is                                                          |                     |  |  |  |  |  |
| 18.            | The solution of a differential equation represents a family of curve                                                          | es.                 |  |  |  |  |  |
| 19.            | The general solution of differential equation of order n contains arbitrary constants.                                        |                     |  |  |  |  |  |
| 20.            | n arbitrary in the solution of a differential equation can be detern<br>conditions.                                           | nined by n initial  |  |  |  |  |  |
| 21.            | The solution obtained by giving a particular value to arbitrary constant in general solution is of the differential equation. |                     |  |  |  |  |  |
| 22.            | The highest order derivative in the differential equation is the of equation.                                                 | of the differential |  |  |  |  |  |
| 23.            | The term $f'(x) dx$ is called of the dependent variable y.                                                                    |                     |  |  |  |  |  |
| 24.            | $\int e^{x}/1 + e^{x} dx = \dots$                                                                                             |                     |  |  |  |  |  |
| 25.            | The interval [a,b] is called the of integration in $a^{b}$ f(x) dx                                                            |                     |  |  |  |  |  |
| Item-2:        | Encircle the correct answers:                                                                                                 |                     |  |  |  |  |  |
| 1.             | $\int (ax+b) dx = \frac{(ax+b)^{n+1}}{n+1} \text{ where } n \in \mathbb{Z}$                                                   | T/F                 |  |  |  |  |  |
| 2.             | $d/dx \{ \int f(x)dx \} = f(x) + c$                                                                                           | T/F                 |  |  |  |  |  |
| 3.             | $\int d/dx \{f(x)\} dx = f(x) + c.$                                                                                           | T/F                 |  |  |  |  |  |
| 4.             | The general solution of differential equation in variable separable for                                                       | rm contains two     |  |  |  |  |  |
|                | independent variables.                                                                                                        | T/F                 |  |  |  |  |  |
| 5.             | The order of a differential equation is the order of the highest derivative in th                                             | ne equation. T/F    |  |  |  |  |  |
| 6.             | Area bounded by the curve $x = f(y)$ and x-axis is $a^{j_0} f(x) dx a \le x \le b$ .                                          | T/F                 |  |  |  |  |  |
| 7.             | A=Area of the Shaded region                                                                                                   | T/F                 |  |  |  |  |  |
|                | $= -\pi \int_{0}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx$                                                                        |                     |  |  |  |  |  |
| 8.             | $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$                                                                                 | T/F                 |  |  |  |  |  |
| 9.             | $dv = \delta v$                                                                                                               | T/F                 |  |  |  |  |  |
| 10.            | $y = ce^{-x}$ is solution of differential equation $dy/dx = -y$ .                                                             | T/F                 |  |  |  |  |  |

| 11.                                                                                             | $a^{p}f(x)$ dx has a definite value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T/F                    |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 12.                                                                                             | Area under the curve is always taken positive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T/F                    |
| 13.                                                                                             | If f(x) is even function then $\int_{a}^{a} f(x) dx = 2 \int_{a}^{a} f(x) dx$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T/F                    |
| 14.                                                                                             | The degree of differential equation $xd^2v/dx^2 + (dv/dx)^3 + 1 = 0$ is 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T/F                    |
|                                                                                                 | (and land also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|                                                                                                 | $\begin{bmatrix} \Pi(\mathbf{x}) \\ \sigma(\mathbf{x}) \end{bmatrix} = \int \Pi(\mathbf{x}) d\mathbf{x} \mathbf{x} \begin{bmatrix} \Pi \\ \sigma(\mathbf{x}) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 15.                                                                                             | ) g(x) ) g(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T/F                    |
| 16.                                                                                             | $\int [f(x)]^n f'(x) dx = [f(x)]^{n+1} / _{n+1} + C \text{ where n is any integer.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T/F                    |
| 17.                                                                                             | The integral of product of two functions is the product of their integrals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T/F                    |
| 18.                                                                                             | $\int a^{kx} dx = a^{kx} / \frac{1}{\ln a} + c  (a > 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/F                    |
| 19.                                                                                             | $d(e^{ax}) = ae^{ax}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T/F                    |
| 20.                                                                                             | Volume of cube with length of a side x is $x^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T/F                    |
|                                                                                                 | $\int d\mathbf{x} = \ln  \mathbf{a}\mathbf{x} + \mathbf{b}  + \mathbf{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 21.                                                                                             | $\int ax + b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T/F                    |
| 22.                                                                                             | The arbitary constants involved in the solution of differential equation can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | be determined by       |
|                                                                                                 | initial values conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T/F                    |
| 22.                                                                                             | $\int \sec x  dx = \ln  \sec x - \tan x  + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T/F                    |
| 23                                                                                              | $\int \cot(ax+b)dx = \frac{1}{a} \ln \sin(ax+b)  + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T/F                    |
| 23.<br>24                                                                                       | $\int cor(dx + b)dx = 1/d \ln  \sin(dx + b)  + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T/F                    |
| 24.<br>25                                                                                       | If S is the distance then $dS/dt$ represents acceleration of the particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T/F                    |
| 25.<br>26                                                                                       | $\int \ln y  dy = 1/y \pm C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/Г<br>Т/F             |
| 20.                                                                                             | $\int \sin x  dx = 1/x + C.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/Г<br>Т/Г             |
| 27.                                                                                             | $\int 2x e^{x^2} dx = e^{x^2} / c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/F<br>T/E             |
| 28.                                                                                             | $\int 2x e^{-1} dx = e^{-1} / 2 + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| 29.<br>20                                                                                       | $\int dx/x \ln x = \ln  x  + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| 50.                                                                                             | x- inx + k is the result of integrating $(x-2)/x$ w.r.t. x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/F                    |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| <u>Item-3:</u>                                                                                  | Choose and encircle the best possible answers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| <u>Item-3:</u>                                                                                  | Choose and encircle the best possible answers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| <u>Item-3:</u><br>1.                                                                            | Choose and encircle the best possible answers:<br>$f(x) = x^2$ , when x =2 and dx = 0.01. Which one is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| <u>Item-3:</u><br>1.                                                                            | Choose and encircle the best possible answers:<br>$f(x) = x^2$ , when x =2 and dx = 0.01. Which one is true?<br>a) dy = 0.0001 b) dy = 0.001 c) dy = .02 d) dy = 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| <u>Item-3:</u><br>1.<br>2.                                                                      | Choose and encircle the best possible answers:<br>$f(x) = x^2$ , when x =2 and dx = 0.01. Which one is true?<br>a) dy = 0.0001 b) dy = 0.001 c) dy = .02 d) dy = 2.01<br>Which one is correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| <u>Item-3:</u><br>1.<br>2.                                                                      | Choose and encircle the best possible answers:<br>$f(x) = x^2$ , when x =2 and dx = 0.01. Which one is true?<br>a) dy = 0.0001 b) dy = 0.001 c) dy = .02 d) dy = 2.01<br>Which one is correct?<br>a) $\int Cosec^2 x  dx = -Cotx + C$ b) $\int Sec^2 x  dx = tan^2 x + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| <u>Item-3:</u><br>1.<br>2.                                                                      | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + C$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + C$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{Cd}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| <u>Item-3:</u><br>1.<br>2.<br>3.                                                                | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \operatorname{Cosec}^{2}x  dx = -\operatorname{Cotx} + C$ b) $\int \operatorname{Sec}^{2}x  dx = \tan^{2} x + C$<br>c) $\int \operatorname{Cosec}^{2}x  dx = \operatorname{Cotx} + \frac{Cd}{2}$ $\int \operatorname{Sec}^{2}x  dx = -\tan x + C$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| <u>Item-3:</u><br>1.<br>2.<br>3.                                                                | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \operatorname{Cosec}^{2}x  dx = -\operatorname{Cotx} + C$ b) $\int \operatorname{Sec}^{2}x  dx = \tan^{2}x + C$<br>c) $\int \operatorname{Cosec}^{2}x  dx = \operatorname{Cotx} + Cd)$ $\int \operatorname{Sec}^{2}x  dx = -\tan x + C$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.                                                          | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) dy = 0.001 b) dy = 0.001 c) dy = .02 d) dy = 2.01<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.                                                          | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) dy = 0.0001 b) dy = 0.001 c) dy = .02 d) dy = 2.01<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) a sec $\theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + C$ b) $\ln x^{-1}  + C$ c) $-1/x^{2} + C$ d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                      |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.<br>5.                                                    | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(x^{2}-5x+6)  dx$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (x <sup>2</sup> -5x+6) |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.<br>5.                                                    | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a) - (Ax+B) / (x^{2}-5x+6) - b) = A/(x-3) + B/(x-2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x <sup>2</sup> -5x+6)  |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.<br>5.                                                    | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) dy = 0.001 b) dy = 0.001 c) dy = .02 d) dy = 2.01<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$ c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \underline{\text{Cd}}$ If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a) - (A(x+2) + B/(x+3))$ d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (x <sup>2</sup> -5x+6) |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.<br>5.<br>6.                                              | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) dy = 0.001 b) dy = 0.001 c) dy = .02 d) dy = 2.01<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \text{Cd}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a) - (A(x+2) + B/(x+3))  d$ None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (x <sup>2</sup> -5x+6) |
| <u>Item-3:</u><br>1.<br>2.<br>3.<br>4.<br>5.<br>6.                                              | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)  (Ax+B) / (x^{2}-5x+6)  b)  A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)  d)  \text{None of these}$<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + \text{C}  b)  1/3 (x^{2}+1)^{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (x <sup>2</sup> -5x+6) |
| Item-3:         1.         2.         3.         4.         5.         6.                       | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = \text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)  (Ax+B) / (x^{2}-5x+6)  b)  A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)  d)  \text{None of these}$<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + \text{C}  b)  1/3 (x^{2}+1)^{3/2} + \text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x <sup>2</sup> -5x+6)  |
| <u>Item-3:</u> 1. 2. 3. 4. 5. 6. 7.                                                             | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true}?$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \frac{\text{Cd}}{2}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>( $Ax+B$ ) $/(x^{2}-5x+6)$ b) $A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)$ d) None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + \text{C}$ b) $1/3 (x^{2}+1)^{3/2}$<br>c) $1/3 (x^{2}+1)^{-3/2} + \text{C}$ d) $1/3 (\sqrt{x^{2}+1})^{3} + \text{C}$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (x <sup>2</sup> -5x+6) |
| Item-3:         1.         2.         3.         4.         5.         6.         7.            | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true}?$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{Cd}$ $\int \text{Sec}^{2}x  dx = -\tan x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>( $Ax+B$ ) / ( $x^{2}-5x+6$ ) b) $A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)$ d) None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + \text{C}$ b) $1/3 (x^{2}+1)^{3/2}$<br>c) $1/3 (x^{2}+1)^{-3/2} + \text{C}$ d) $1/3 (\sqrt{x^{2}+1})^{3} + \text{C}$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :<br>a) $e^{x} (1/x) + \text{C}$ b) $e^{x} \ln x + \text{C}$ c) $e^{x} (1+\ln x/x) + \text{Cc}$ $e^{x} \ln x/x + \text{C}$                                                                                                                                                                                                                                                                                                                                                                                | (x <sup>2</sup> -5x+6) |
| <u>Item-3:</u> 1. 2. 3. 4. 5. 6. 7. 8.                                                          | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>c) $\int \text{Cosec}^{2}x  dx = -\text{Cotx} + \text{C}$ b) $\int \text{Sec}^{2}x  dx = \tan^{2}x + \text{C}$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + \text{C}$ b) $\ln x^{-1}  + \text{C}$ c) $-1/x^{2} + \text{C}$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>( $Ax+B$ ) / $(x^{2}-5x+6)$ b) $A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)$ d) None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + \text{C}$ b) $1/3 (x^{2}+1)^{3/2}$<br>c) $1/3 (x^{2}+1)^{-3/2} + \text{C}$ d) $1/3 (\sqrt{x^{2}+1})^{3} + \text{C}$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :<br>a) $e^{x} (1/x) + \text{C}$ b) $e^{x} \ln x + \text{C}$ c) $e^{x} (1 + \ln x/x) + \text{C}$ e <sup>x</sup> lnx/x + C<br>Which one is the area of lined portion showing one arch of sine curve?                                                                                                                                                                                                                                                                                                     | x <sup>2</sup> -5x+6)  |
| Item-3:         1.         2.         3.         4.         5.         6.         7.         8. | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \operatorname{Cosec}^{2}x  dx = -\operatorname{Cotx} + C$ b) $\int \operatorname{Sec}^{2}x  dx = \tan^{2}x + C$<br>c) $\int \operatorname{Cosec}^{2}x  dx = \operatorname{Cotx} + \underline{Cd}$ $\int \operatorname{Sec}^{2}x  dx = -\tan x + C$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + C$ b) $\ln x^{-1}  + C$ c) $-1/x^{2} + C$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>a) $(Ax+B) / (x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>a) $(Ax+B) / (x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>a) $(Ax+B) / (x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>a) $(Ax+B) / (x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>b) $A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)  d$ None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + C  b)  1/3 (\sqrt{x^{2}+1})^{3/2}$<br>c) $1/3 (x^{2}+1)^{-3/2} + C  d)  1/3 (\sqrt{x^{2}+1})^{3} + C$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :<br>a) $e^{x} (1/x) + C  b) e^{x} \ln x + C  c) e^{x} (1 + \ln x/x) + Cc) e^{x} \ln x/x + C$<br>Which one is the area of lined portion showing one arch of sine curve? | (x <sup>2</sup> -5x+6) |
| Item-3:         1.         2.         3.         4.         5.         6.         7.         8. | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \operatorname{Cosec}^{2} x  dx = -\operatorname{Cotx} + C$ b) $\int \operatorname{Sec}^{2} x  dx = \tan^{2} x + C$<br>c) $\int \operatorname{Cosec}^{2} x  dx = \operatorname{Cotx} + C \text{ d)}$ $\int \operatorname{Sec}^{2} x  dx = -\tan x + C$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + C$ b) $\ln x^{-1}  + C$ c) $-1/x^{2} + C$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>( $Ax+B$ ) / $(x^{2}-5x+6)$ b) $A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)$ d) None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + C$ b) $1/3 (x^{2}+1)^{3/2}$<br>c) $1/3 (x^{2}+1)^{3/2} + C$ d) $1/3 (\sqrt{x^{2}+1})^{3} + C$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :<br>a) $e^{x} (1/x) + C$ b) $e^{x} \ln x + C$ c) $e^{x} (1 + \ln x/x) + Cc) e^{x} \ln x/x + C$<br>Which one is the area of lined portion showing one arch of sine curve?                                                                                                                                                                                                                                                                                                                                            | (x <sup>2</sup> -5x+6) |
| Item-3:         1.         2.         3.         4.         5.         6.         7.         8. | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \operatorname{Cosec}^{2}x  dx = -\operatorname{Cotx} + C$ b) $\int \operatorname{Sec}^{2}x  dx = \tan^{2}x + C$<br>c) $\int \operatorname{Cosec}^{2}x  dx = \operatorname{Cotx} + C \text{ d)}$ $\int \operatorname{Sec}^{2}x  dx = -\tan x + C$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + C$ b) $\ln x^{-1}  + C$ c) $-1/x^{2} + C$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a)$<br>( $Ax+B$ ) / $(x^{2}-5x+6)$ b) $A/(x-3) + B/(x-2)$<br>c) $A/(x+2) + B/(x+3)$ d) None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + C$ b) $1/3 (\sqrt{x^{2}+1})^{3/2}$<br>c) $1/3 (x^{2}+1)^{3/2} + C$ d) $1/3 (\sqrt{x^{2}+1})^{3} + C$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :<br>a) $e^{x} (1/x) + C$ b) $e^{x} \ln x + C$ c) $e^{x} (1 + \ln x/x) + Cc) e^{x} \ln x/x + C$<br>Which one is the area of lined portion showing one arch of sine curve?                                                                                                                                                                                                                                                                                                                                          | (x <sup>2</sup> -5x+6) |
| Item-3:         1.         2.         3.         4.         5.         6.         7.         8. | Choose and encircle the best possible answers:<br>$f(x) = x^{2}, \text{ when } x = 2 \text{ and } dx = 0.01. \text{ Which one is true?}$ a) $dy = 0.0001$ b) $dy = 0.001$ c) $dy = .02$ d) $dy = 2.01$<br>Which one is correct?<br>a) $\int \operatorname{Cosec}^{2}x  dx = -\operatorname{Cotx} + C$ b) $\int \operatorname{Sec}^{2}x  dx = \tan^{2}x + C$<br>c) $\int \operatorname{Cosec}^{2}x  dx = \operatorname{Cotx} + Cd$ $\int \operatorname{Sec}^{2}x  dx = -\tan x + C$<br>If an integrand involves $\sqrt{x^{2}-a^{2}}$ , which one is the suitable substitution?<br>a) $x = a \sin \theta$ b) $a \sec \theta$ c) $x = a \tan \theta$ d) $x - a = a \sin \theta$<br>Which one is the anti derivative of $1/x$ ?<br>a) $\ln x  + C$ b) $\ln x^{-1}  + C$ c) $-1/x^{2} + C$ d) None of these<br>If $I = \int (5x+8)/(x^{2}-5x+6)  dx$ , choose the correct partial fractions of $(5x+8)/(a^{2}-5x+6)  dx)$ , choose the correct partial fractions of $(5x+8)/(a^{2}-5x+6)  dx)$ d) None of these<br>Which one is not the anti derivative of $x\sqrt{x^{2}+1}$ ?<br>a) $1/3 (x^{2}+1)^{3/2} + C$ b) $1/3 (x^{2}+1)^{3/2}$<br>c) $1/3 (x^{2}+1)^{3/2} + C$ d) $1/3 (\sqrt{x^{2}+1})^{3/2} + C$<br>Choose the correct response to $\int e^{x} (1/x + \ln x)  dx$ :<br>a) $e^{x} (1/x) + C$ b) $e^{x} \ln x + C$ c) $e^{x} (1 + \ln x/x) + Cc) e^{x} \ln x/x + C$<br>Which one is the area of lined portion showing one arch of sine curve?<br>$1 + \sqrt{x^{2} + x}$                                                                                                                                                                                                                                                                                                                            | (x <sup>2</sup> -5x+6) |

9. Which one is the area bounded by the x-axis and graph of sine curve from  $-\pi$  to  $\pi$ ? None of these a) 0 b) 2 c) 4 d) If  ${}_{-2}\int^{1} g(x) dx = 5$ ;  ${}_{1}\int^{3} g(x) dx = 4$ , choose the correct one: 10.  $\int_{-2}^{3} g(x) = 9$ d)  $\int_{-2}^{3} g(x) = 1$ c)  $\sqrt{3}g(x) dx = 45$ a)  $_{-2}\int^{3} g(x) dx = 0$  b) Which one is the correct value of  $\int x^3 dx$ ? 11. a) 20 b) 24 d) None of these c) 28 12. What is the area bounded by the line y = 2 and the x-axis from -1 to 1? a) 2 b) 4 0 d) 1 c) Which one of the following is correct? 13. a) A differential equation involves at least one term containing derivative. b) A differential equation involves exactly one term containing derivative. c) A differential equation involves at the most one term containing derivative. d) None of these. What is the order of the differential equation  $d^2y/dx^2 + (dy/dx)^3 + 3 dy/dx = 2x$ 14. Three d) a) One b) Two c) Six What is the degree of the differential equation  $d^2y/dx^2 + (dy/dx)^3 + 3 dy/dx = 2x$ 15. a) One Two Three d) b) c) Six 16. Give the solution of the differential equation x dy/dx = y + 1: a) xv' = v + Cb) xy = y + Cc) y = cx - 1d) y = cx + 1Which one of the following is the differential equation of x + y + c = 0? 17. a) dy + dx = 0 $dy/dx = x^2/2$ b) c) dv/dx + dx/dv = 0 $x^{2}/2 + v^{2}/2 + cx = 0$ d) Choose the differential equation of straight line: 18. a) y = mx + Cb) dy/dx = mx + C c) dy/dx + mx = C d) dy/dx = mWhat is the general solution of the differential equation  $dy/dx = 3x^2$ ? 19.  $y = x^3 + 1$  $\mathbf{v} = \mathbf{x}^3 + \mathbf{C}$ a) y = 6x + Cc) b) d) y = 6x + 1What is the particular solution of the differential equation x dy/dx + 8 = 2y? 20. a)  $y = Cx^2 + 4$  $-Cx^{2} + 4$  $y = x^2 + 4$ d)  $y = -x^2 + C$ b) c)  $\int a^{x} dx = ?$ 21. a)  $a^{x+1}/x+1$ b) xa<sup>x-1</sup> c) a<sup>x</sup>/loga  $a^{x} \log a$ d) 22.  $\int (1 + x) / x \, dx = ?$ a)  $\log x + 1$ b)  $\log(xc)$ log x - 1  $\log x + x$ c) d)  $\int odx = ?$ 23. a)  $-1/x^2$ b) c) Constant d) 1/xх  $\int (x+2)/(x+1) dx = ?$ 24. a)  $\log_e(x+1)$ b)  $\log_{e}(x+1) + 1$  $\log_{e}(x+1) + x^{2} + C$ c)  $\log_{e}(x+1) + x$ d)  $\int e^{x} (\sec x + \tan^{2} x) dx = ?$ 25. a)  $e^{x} \sec^{2} x$  $e^{x} \sec x$  $e^{x} tan^{2} x$  $e^{x} tan x$ b) c) d)

| COLUMN-A                                | COLUMN-B                           | COLUMN-C |
|-----------------------------------------|------------------------------------|----------|
| a) Reverse process of                   | i) Family of curves                |          |
| differentiation.                        |                                    |          |
| b) $\int (ax+b)^n dx$                   | ii) $x^3 - a^3$                    |          |
| c) $\int (ax+b)^{-1}$ , $ax + b \neq 0$ | iii) Particular value of arbitrary |          |
|                                         | constant                           |          |
| d) General solution of differential     | iv) $1/a \ln  ax+b  + C$           |          |
| equation.                               |                                    |          |
| e) Particular solutions.                | v) Integration                     |          |
| f) $a^{x} 3t^{2} dt$                    | vi) $(ax+b)^{n+1}/a(n+1) + C$      |          |
| g) $\int f(x) dx$                       | vii) $\phi(b)-\phi(a)$             |          |
| h) $\int_0^{\pi} \cos x  dx$            | viii) x $d^2y/dx^2+dy/dx-2x = 0$   |          |
| i) Differential equation                | ix) Infinite                       |          |
| j) Arbitrary constants                  | x) 0                               |          |

**Item-4:** Match the items in the column A with column B and write the correct answer in column C:

## **ANSWERS**

| Item-1                            | <u>:</u> | Fill in t | he blank  | ks:        |         |        |              |                        |           |            |
|-----------------------------------|----------|-----------|-----------|------------|---------|--------|--------------|------------------------|-----------|------------|
| 1: Integration or anti-derivation |          |           |           | 2: f ′ (2  | x)      | 3: dx  | 4: $\phi(x)$ | )                      | 5: 2x + 1 |            |
| 6: Inte                           | grand    | 7: b      |           | 8: Lov     | ver     | 9: x   |              | 10: Definite integrals |           |            |
| 11: a∫ <sup>b</sup>               | f(x) dx  | 12:2      |           | 13:8       |         | 14: ½  |              | 15: Or                 | ne        |            |
| 16: Hig                           | ghest de | erivative | e         | 17:2       |         | 18: Ge | eneral       |                        | 19: n     |            |
| 20: Co                            | nstants  | 21: Pa    | rticular  | solution   | n       | 22: Or | der          |                        | 23: Di    | fferential |
| 24: $\ln  1+e^{x}  + C$ 25: Range |          |           |           |            |         |        |              |                        |           |            |
|                                   |          |           |           |            |         |        |              |                        |           |            |
| Item-2                            | <u>:</u> | Encircl   | e the con | rrect ans  | wers:   |        |              |                        |           |            |
| 1: F                              | 2: F     | 3: T      | 4: F      | 5: T       | 6: F    | 7: F   | 8: F         | 9: T                   | 10: T     | 11: F      |
| 12: T                             | 13: T    | 14: F     | 15: F     | 16: F      | 17: T   | 18: F  | 19: F        | 20: T                  | 21: F     | 22:T       |
| 23: T                             | 24: F    | 25: F     | 26: F     | 27: T      | 28:F    | 29: F  | 30: T        |                        |           |            |
| -                                 |          |           |           |            |         |        |              |                        |           |            |
| Item-3                            | <u>:</u> | M.C.Q     | s:        |            |         |        |              |                        |           |            |
| 1: a                              | 2: a     | 3: b      | 4: a      | 5: b       | 6: c    | 7: b   | 8: b         | 9: c                   | 10: b     | 11: a      |
| 12: b                             | 13: a    | 14: b     | 15: a     | 16: c      | 17: a   | 18: d  | 19: c        | 20: c                  | 21: c     | 22: d      |
| 23: c                             | 24: c    | 25: b     |           |            |         |        |              |                        |           |            |
| Item-4                            | :        | Match     | the item  | s in the o | columns | :      |              |                        |           |            |

 $\overline{a: (v)}$  b: (iv) c: (vi) d: (i) e: (iii) f: (ii) g: (vii) h: (x) i: (viii) j: (ix)

#### **CHAPTER-4** (Introduction to Analytic Geometry)

Item-1: Fill in the blanks: 1. X-coordinate is the directed distance from ..... 2. Y-coordinate is the directed distance from ..... 3. All points (x,y) with x > 0, y > 0 lie in ..... quadrant. 4. All points (x,y) with x < 0, y > 0 lie in ..... quadrant. All points (x,y) with x < 0, y < 0 lie in ..... quadrant. 5. All points (x,y) with x > 0, y < 0 lie in ..... quadrant. 6. Distance between two points A  $(x_1, y_1)$  and B  $(x_2, y_2)$  is given by  $|AB| = \dots$ 7. If the directed distances AP and PB have opposite signs then P is said to divide AB 8. 9. If P (x,y) is the mid point of AB with end points A  $(x_1,y_1)$  and B  $(x_2,y_2)$  then x = ....., y = ..... Bisectors of angles of a triangle are ..... and point of concurrency has 10. coordinates (.....) 11. Point-slope form of the equation of a straight line is ..... 12. Slope of a line joining two points A  $(x_1, y_1)$ , B  $(x_2, y_2)$  is ..... 13. a) Slope of x-axis is ..... b) Slope of y-axis is ..... Equation of a line with x-intercept 'a' and y intercept 'b' is ..... 14. A linear equation in two variables x and y is ..... 15. 16. Slope of general equation ax + by + c = 0 is  $m = \dots$ 17. The equation x  $\cos \alpha + y \sin \alpha = p$  represents ...... of a straight line. Two non-parallel lines intersect each other at ...... point. 18. 19. The necessary and sufficient condition of concurrency of the given three lines  $a_1x+b_1y+c_1=0$ ,  $a_{2}x+b_{2}y+c_{2}=0$  and  $a_{3}x+b_{3}y+c_{3}=0$  is ..... 20. Altitudes of a triangle are..... 21. Distance 'd' from the point P  $(x_1, y_1)$  to the line ax + by + c = 0 is  $d = \dots$ 22. Area of triangle whose vertices are P ( $x_1, y_1$ ), Q ( $x_2, y_2$ ) and R ( $x_3, y_3$ ) is  $\Delta = \dots$ 23. A quadrilateral having two parallel and two non-parallel sides is called ..... 24. If points P ( $x_1, y_1$ ), Q ( $x_2, y_2$ ) and R ( $x_3, y_3$ ) are collinear then area i.e.  $\Delta = \dots$ 25. The lines lying on the same plane are called ..... lines. 26. Angle between the two lines  $l_1$  and  $l_2$  having slopes  $m_1$ ,  $m_2$  respectively is  $\tan \theta =$ 27. When two lines  $l_1$  and  $l_2$  having slopes  $m_1$ ,  $m_2$  respectively are parallel then ..... If two lines  $l_1$ ,  $l_2$  having slope  $m_1$ ,  $m_2$  respectively are perpendicular then ..... 28. 29. An equation f(x,y) = 0 is said to be homogeneous of degree n if  $f(x, x, y) = \dots$ 30. A general second degree homogeneous equation can be written as ..... Item-2: Encircle the correct answers: 1. All points (x,y) with x < 0, y < 0 lie in 1st quadrant. T/F 2. All points (x,y) with x < 0, y > 0 lie in 2nd quadrant. T/F All points (x,y) with x > 0, y > 0 lie in 3rd quadrant. 3. T/F All points (x,y) with x > 0, y < 0 lie in 4th quadrant. T/F 4. 5. The point P is said to divide the line segment AB in ratio  $k_1$ :  $k_2$  internally according as P is beyond AB. T/F

| 6.        | If $k_1 : k_2 = 1 : 1$ then P becomes mid point of AB and Co-ordinates of P are                                                                                                                               | 2                  | $\mathbf{x} = (\mathbf{x}_1)$   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|
|           | $(+ x_2)/2, y = (y_1 + y_2)/2$ T/F                                                                                                                                                                            |                    |                                 |
| 7.        | If a line l is parallel to x-axis then $\alpha = 90^{\circ}$ .                                                                                                                                                | T/F                |                                 |
| 8.        | If a line l is parallel to y-axis then $\alpha = 0^{\circ}$ .                                                                                                                                                 | T/F                |                                 |
| 9.        | Equation of a straight line perpendicular to y-axis at $(0,a)$ is $y = a$ .                                                                                                                                   | T/F                |                                 |
| 10.       | Equation of a straight line parallel to y-axis at a distance 'b' from it is $y = b$ .                                                                                                                         | T/F                |                                 |
| 11.       | If $a > 0$ in the equation of $y = a$ then the line l is below x-axis.                                                                                                                                        | T/F                |                                 |
| 12.       | If a=0 in equation y=a, then line 1 becomes x-axis and the equation of x-axis $= 0.$ T/F                                                                                                                      | is                 | У                               |
| 13.       | If a line intersects x-axis at (a,0) then a is called y-intercept of the line.                                                                                                                                | T/F                |                                 |
| 14.       | If a line l intersects y-axis at (0,b) then 'b' is called x-intercept of the line.                                                                                                                            | T/F                |                                 |
| 15.       | Equation of a straight line with slope m and y-intercept c is $y = mx + c$ .                                                                                                                                  | T/F                |                                 |
| 16.       | $x-x_1/\cos\alpha = y - y_1/\sin\alpha = r$ is symmetric form of equation of a straight line.                                                                                                                 | T/F                |                                 |
| 17.       | Three lines $a_1x+b_1y+c = 0$ , $a_2x+b_2y+c_2 = 0$ and $a_3x+b_3y+c_3 = 0$ are concurrent if<br>$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} \neq 0$                                    | T/F                |                                 |
|           | $\begin{vmatrix} a_2 & b_2 & c_2 \end{vmatrix} \neq 0$                                                                                                                                                        |                    |                                 |
| 19        | The medians of a triangle are concurrent                                                                                                                                                                      | T/F                |                                 |
| 10.       | The neutral of a AADC is a point which divides each median in the ratio 2.1                                                                                                                                   | 1/Г<br>Т/Г         |                                 |
| 19.<br>20 | The centroid of a $\Delta$ ABC is a point which divides each median in the ratio 2:1.                                                                                                                         |                    |                                 |
| 20.       | The point P $(x_1, y_1)$ is above the line $ax + by + c = 0$ if $ax_1 + by_1 + c < 0$ .                                                                                                                       | I/F                | 0 (                             |
| 21.       | Equation of a non-vertical straight line passing through two points P $(x_1, y_1)$ ,                                                                                                                          |                    | $\mathbf{Q}$ ( $\mathbf{x}_2$ , |
| 22        | $y_2$ ) 18 $(y-y_1)(x_2-x_1) = (x-x_1)(y_2-y_1)$ .<br>The distance d from a point $(x, y_1)$ to the line hore base 0 is $d = \sqrt{(x, y_1)^2 + (x, y_2)^2}$                                                  | T/F                |                                 |
| 22.       | I ne distance d from a point $(x_1, y_1)$ to the fine fix+by+c=0 is d = $v(x_2-x_1) + (y_2-y_1)$<br>If the points $\mathbf{P}(x_1, y_2) = \mathbf{O}(x_1, y_2)$ and $\mathbf{P}(x_1, y_2)$ are collinear then | 1/Г<br>Т/Г         |                                 |
| 25.       | If the points $P(x_1,y_1)$ , $Q(x_2,y_2)$ and $K(x_3,y_3)$ are confined then                                                                                                                                  | Ι/Γ                |                                 |
|           | $\Delta = 1/2 \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$                                                                                                                  |                    |                                 |
| 24.       | Area of trapezoidal region = $\frac{1}{2}$ (sum of // sides) (distance between // sides).                                                                                                                     | T/F                |                                 |
| 25.       | Area of a triangular region whose vertices are P ( $x_1, y_1$ ), Q ( $x_2, y_2$ ) and R ( $x_3, y_3$ ) is $\begin{vmatrix} x & y & 1 \end{vmatrix}$                                                           | T/F                |                                 |
|           | $\Delta = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix}$                                                                                                                                       |                    |                                 |
| 26.       | A linear equation $ax + by + c = 0$ in two variables x and y has its matrix form                                                                                                                              |                    |                                 |
|           | [a b] [x y] = 0                                                                                                                                                                                               | T/F                |                                 |
| 27.       | The general equation $ax + by + c = 0$ is called homogeneous equation of the second two variables x,y. T/F                                                                                                    | ond de             | gree in                         |
| 28.       | If the matrix $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ is singular then the lines are concurrent.                                                                | T/F                |                                 |
| 29.       | A pair of lines represented by homogeneous second degree equation $ax^2+2hxy+b$<br>imaginary if $h^2 > ab$ . T/F                                                                                              | by <sup>2</sup> =0 | will be                         |
| 30.       | A pair of lines represented by $ax^2+2hxy+by^2=0$ will be orthogonal if $a + b = 0$ .                                                                                                                         | T/F                |                                 |
| Item-3:   | Choose and encircle the best possible answers:                                                                                                                                                                |                    |                                 |
| 1         | Equation of straight line with slope m and passing through $(x_1, y_1)$ is:                                                                                                                                   |                    |                                 |
| 1.        | a) $v_1 = x_1$ b) $v_1 = mx_1 + c$                                                                                                                                                                            |                    |                                 |
|           | c) $x/x_1 + y/y_1 = 1$ d) $y_1 - m(x_1 + c)$                                                                                                                                                                  |                    |                                 |
| 2.        | Equation of a line passing through $(x_1, y_1)$ . $(x_2, y_2)$ is:                                                                                                                                            |                    |                                 |
|           | a) $(y-y_1)(x_2-x_1) = (y_2-y_1)(x-x_1)$ b) $(y-y_2)(y_2-y_1) = (x-x_2)(x_2-x_1)$<br>c) $y-y_1 = x-x_1$ d) $y-y_2 = (x-x_2)$                                                                                  |                    |                                 |
|           |                                                                                                                                                                                                               |                    |                                 |

| 3.             | Equation of x-axis is:                                                                                                                                                                                                                              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | a) $x = 0$ b) $y = 0$ c) $x - y = 0$ d) $x = 1$                                                                                                                                                                                                     |
| 4.             | If a line 1 is parallel to y-axis then inclination $\alpha =:$                                                                                                                                                                                      |
|                | a) $0^0$ b) $90^0$ c) $45^0$ d) $80^0$                                                                                                                                                                                                              |
| 5.             | If slope of $AB = Slope$ of BC then the points A, B and C are:                                                                                                                                                                                      |
|                | a) Collinear b) Coincident c) Non-collinear d) vertices of triangle                                                                                                                                                                                 |
| 6.             | Equation of a st. line having x-intercept "a" and y-intercept "b" is:                                                                                                                                                                               |
|                | a) $x/a - y/b = 1$ b) $x/a + y/b = 0$                                                                                                                                                                                                               |
|                | c) $x/a + y/b = 1$ d) $a/x + b/y = 1$                                                                                                                                                                                                               |
| 7.             | Equation of the line passing through (8,-3) having slope 0 is:                                                                                                                                                                                      |
|                | a) $x = 8$ b) $y + 3 = 0$ c) $y = 3$ d) $x - 3 = 0$                                                                                                                                                                                                 |
| 8.             | The equation $x \cos \alpha + y \sin \alpha = p$ is in the form:                                                                                                                                                                                    |
|                | a) Slope-intercept b) Symmetric c) Intercept d) Perpendicular                                                                                                                                                                                       |
| 9.             | A general equation of a straight line is of degree:                                                                                                                                                                                                 |
|                | a) Zero b) Two c) One d) Three                                                                                                                                                                                                                      |
| 10.            | If $m_1$ and $m_2$ are the slopes of two lines $l_1$ and $l_2$ then the angle $\theta$ between them is:                                                                                                                                             |
|                | a) $\tan \theta = m_2 - m_1 / 1 + m_1 m_2$ b) $\tan \theta = m_2 + m_1 / 1 + m_1 m_2$                                                                                                                                                               |
|                | c) $\tan \theta = m_2 - m_1 / 1 - m_1 m_2$ d) $\tan \theta = m_2 + m_1 / 1 - m_1 m_2$                                                                                                                                                               |
| 11.            | Slope of a line $ax + by + c = 0$ is:                                                                                                                                                                                                               |
|                | a) a/b b) b/a c) -a/b d) c/a                                                                                                                                                                                                                        |
| 12.            | The point dividing A (-6,3) and B (5,-2) in the ratio 2:3 internally has coordinates:                                                                                                                                                               |
|                | a) $(3/5,0)$ b) $(-28,13)$ c) $(-1/5, 1/5)$ d) $(-8/5,1)$                                                                                                                                                                                           |
| 13.            | Distance between the two parallel lines $2x + y + 2 = 0$ and $6x + 3y - 8 = 0$ is:                                                                                                                                                                  |
|                | a) 2 b) $14/3\sqrt{5}$ c) $14/\sqrt{3}$ d) $8/\sqrt{45}$                                                                                                                                                                                            |
| 14.            | Two line $l_1 : a_1x + b_1y + c_1 = 0$ and $l_2 : a_2x + b_2y + c_2 = 0$ are perpendicular if:                                                                                                                                                      |
|                | a) $a_1a_2 + b_1b_2 = 0$ b) $a_1b_2 + a_2b_1 = 0$                                                                                                                                                                                                   |
|                | c) $a_1b_1 + a_2b_2 = 0$ d) $a_1b_2 - a_2b_1 = 0$                                                                                                                                                                                                   |
| 15.            | Two st. lines $a_1x + b_1y + c_1 = 0$ , $a_2x + b_2y + c_2 = 0$ are parallel if:                                                                                                                                                                    |
|                | a) $a_1/b_1 = a_2/b_1$ b) $a_1/a_2 = b_1/b_2$                                                                                                                                                                                                       |
| 1.6            | c) $a_1a_2 = b_1b_2$ d) $a_1/c_1 = a_2/c_2$                                                                                                                                                                                                         |
| 16.            | Distance of points (0,4) from the line $x + y + 4 = 0$ is:                                                                                                                                                                                          |
| 17             | a) 4 b) 8 c) $4\sqrt{2}$ d) $4\sqrt{2}$                                                                                                                                                                                                             |
| 17.            | Determine whether the point $(-/,6)$ is above, below or lie on the line $3x - 5y + 8 = 0$ :                                                                                                                                                         |
| 10             | a) Below b) Above c) On the line d) None of them<br>Distance between the two since $A(2, 1) = D(2, 4)$ is                                                                                                                                           |
| 18.            | Distance between the two given points $A(5,1)$ , $B(-2,-4)$ is:                                                                                                                                                                                     |
| 10             | a) $5\sqrt{2}$ b) $\sqrt{36}$ c) $\sqrt{2}$ d) $\sqrt{10}$<br>If the points $\mathbf{P}(\mathbf{x}, \mathbf{y})$ $\mathbf{O}(\mathbf{x}, \mathbf{y})$ and $\mathbf{P}(\mathbf{x}, \mathbf{y})$ are collinear than the area of the triangular radius |
| 19.            | If the points $P(x_1,y_1)$ , $Q(x_2,y_2)$ and $R(x_3,y_3)$ are commear then the area of the triangular region must be:                                                                                                                              |
|                | a) Zero b) Unity c) Positivo d) Nogativo                                                                                                                                                                                                            |
| 20             | a) Zero b) Unity c) Positive d) Negative<br>Two non-parallel and conlener lines $a + b + c = 0$ , $a + b + c = 0$ intersect only if:                                                                                                                |
| 20.            | 1 we non-paramet and coplanar lines $a_1x + b_1y + c_1 = 0$ , $a_2x + b_2y + c_2 = 0$ intersect only if.<br>a) $a_1a_2 = b_1b_2 = 0$ $b_1 = -1$                                                                                                     |
|                | a) $a_1a_2 - b_1b_2 - b$ b) $a_1a_2 - b_1b_2 - 1$<br>a) $a_1b_2 - b_1b_2 - 1$                                                                                                                                                                       |
| 21             | $a_1a_2 - a_2b_1 \neq 0 \qquad a_1a_2 - b_1b_2 \neq 1$<br>An equation $a_1^2 + b_1b_2 + b_2^2 = 0$ represents two real and distinct straight lines if:                                                                                              |
| 21.            | An equation $ax + 2hxy + by = 0$ represents two real and distinct straight lines if:<br>a) $b^2 > ab$ b) $b^2 < ab$ c) $b^2 = ab$ d) $b = 0$                                                                                                        |
| $\gamma\gamma$ | An equation $ax^2 + 2bxy + by^2 = 0$ represents two real and coincident lines if:                                                                                                                                                                   |
| <i>LL</i> .    | All equation $ax + 2hxy + by = 0$ represents two real and concructing times in:<br>a) $b^2 < ab$ (b) $b^2 = ab$ (c) $b^2 > ab$ (c) None of them                                                                                                     |
| 23             | An equation $ax^2 + 2bxy + by^2 = 0$ represents two imaginary lines if:                                                                                                                                                                             |
| 23.            | An equation $ax + 2hxy + 0y = 0$ represents two inflaginary lines if.                                                                                                                                                                               |
| 24             | a) $\Pi \ge aU = U$<br>Two lines represented by $ay^2 \pm 2byy \pm by^2$ will be orthogonal if:                                                                                                                                                     |
| ∠+.            | a + b = 0 b) $a - b$ c) $a = 0$ d) $b = 0$                                                                                                                                                                                                          |
|                | $a_{j} = a_{j} = 0$ $b_{j} = 0$ $b_{j} = 0$ $b_{j} = 0$ $b_{j} = 0$                                                                                                                                                                                 |

| 25. | The act | ute angle bet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ween the | e lines re          | epresent   | ed by x <sup>2</sup> | -xy-6    | $y^2 = 0$ is | 3:                       |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|------------|----------------------|----------|--------------|--------------------------|
|     | a)      | $30^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b)       | $60^{0}$            | c)         | $75^{\circ}$         | d)       | $45^{0}$     |                          |
| 26. | An equ  | ation of st. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ine with | slope 2             | and y-in   | tercept :            | 5 is:    |              |                          |
|     | a)      | y = 5x + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b)       | y - 2x =            | = 5        | c) y =               | = 2x     | d) y =       | = 2x + 5                 |
| 27. | Two lii | 1 = 5x + 7y = | = 35 & 3 | x – 7y =            | = 21 inter | rsect at:            |          |              |                          |
|     | a)      | (0,7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b)       | (7,1)               | c)         | (2,5)                | d)       | (7,0)        |                          |
| 28. | The po  | int (-4,7) lies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s in:    |                     |            |                      |          |              |                          |
|     | a)      | 1 <sup>st</sup> quadrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t b)     | 2 <sup>nd</sup> qua | drant      | c) 3 <sup>rd</sup>   | quadrant | td)          | 4 <sup>th</sup> quadrant |
| 29. | Radius  | of the circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with A(  | -5,-2) ai           | nd B (5,-  | -4) as en            | d points | of diam      | eter is:                 |
|     | a)      | (1/2)√26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b)       | 9/2                 | c)         | 2√56                 | d)       | $\sqrt{26}$  |                          |
| 30. | Centroi | id of the tria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ngle who | ose verti           | ces are A  | A (3,-5),            | B(-7,4)  | and C(1      | 0,-2) is:                |
|     | a)      | (5,-3/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b)       | (2,-1)              | c)         | (-2,1)               | d)       | (3/2,-3      | /4)                      |

**Item-4:** Match the items in the column A with column B and write the correct answer in column C:

| COLUMN-A                                       | COLUMN-B                                        | <u>COLUMN-C</u> |
|------------------------------------------------|-------------------------------------------------|-----------------|
| a) Slope of a straight line with               | i) 0                                            |                 |
| inclination α:                                 |                                                 |                 |
| b) For a nonzero real k, the                   | ii) Normal form                                 |                 |
| equation $l_1+kl_2=0$ represents a:            |                                                 |                 |
| c) General equation of straight                | iii) $ \mathbf{A}  \neq 0$                      |                 |
| line:                                          |                                                 |                 |
| d) The equation                                | iv) $\theta = \tan^{-1}(m_2 - m_1/1 + m_1.m_2)$ |                 |
| $x-x_1/\cos \alpha = y-y_1/\sin \alpha = r$    |                                                 |                 |
| represents a straight line:                    |                                                 |                 |
| e) A general second degree                     | v) ax + by + c = 0                              |                 |
| homogeneous equation:                          |                                                 |                 |
| f) The equation                                | vi) $h^2 > ab$                                  |                 |
| $x \cos \alpha + y \sin \alpha = p$            |                                                 |                 |
| represents a straight line:                    | 2                                               |                 |
| g) If the point $P(x_1, y_1)$ lies on 1        | vii) $ax^2 + 2hxy + by^2 = 0$                   |                 |
| then the distance $d = :$                      |                                                 |                 |
| h) A system of linear                          | viii) Family of st. lines.                      |                 |
| equations has a solution iff:                  |                                                 |                 |
| i) A pair of lines represented                 | ix) Symmetric form                              |                 |
| by $ax^2 + 2hxy + by^2 = 0$ are                |                                                 |                 |
| real and distinct:                             |                                                 |                 |
| j) Given two lines $l_1, l_2$ , angle $\theta$ | x) m = tan $\alpha$                             |                 |
| between them:                                  |                                                 |                 |
|                                                | xi) Intercept form                              |                 |
|                                                | xii) 1                                          |                 |

#### ANSWERS

Item-1: Fill in the blanks: 5: 3<sup>rd</sup> 6: 4<sup>th</sup> 4:  $2^{nd}$ 1: Y-axis 2: X-axis 3: First 7:  $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ 8: Externally 9:  $(x_1+x_2)/2, (y_1+y_2)/2$ 10: Concurrent,  $(ax_1 + bx_2 + cx_3/a + b + c, ay_1 + by_2 + cy_3/a + b + c)$ . 11:  $y-y_1 = m(x-x_1)$ 12:  $y_2 - y_1 / x_2 - x_1$ 13: a). 0 b). Undefined 14: x/a+y/b=115: ax+by+c = 016: -a/b 17: Normal form 18: one and only one 21:  $|ax_1+by_1+c| / \sqrt{a^2+b^2}$ 19:  $a_1 b_1 c_1$ 20: Concurrent  $|a_2 b_2 c_2| = 0$  $a_3 b_3 c_3$  $\begin{array}{c|c} : & x_1 y_1 1 \\ \frac{1}{2} & x_2 y_2 1 \end{array}$ 23: Trapezium 25: Coplanar 22: 24: Zero x<sub>3</sub> y<sub>3</sub> 1 30:  $ax^2+2hxy+by^2 = 0$ 28:  $m_1m_2 = -1$  29:  $k^n f(x,y)$ 26:  $m_2 - m_1/1 + m_1 m_2$ 27:  $m_1 = m_2$ Item-2: Encircle the correct answers: 1: F 2: T 3: F 7: F 4: T 5: F 6: T 8: F 9: T 10: F 11: F 12: T 13: F 14: F 15: T 16: T 17: F 18: T 19: T 20: F 21: T 22: F 23: T 24: T 27: F 28: T 25: F 26: F 29: F 30: T M.C.Qs: Item-3: 1: d 2: a 3: b 4: b 5: a 6: c 7: b 8: d 9: c 10: a 11: c 12: d 14: a 19: a 22: b 13: b 15: b 16: c 17: a 18: a 20: c 21: a 23: c 24: a 25: d 26: b 27: d 28: b 29: a 30: b Item-4: Match the items in the column A with column B and write the correct answer in column C: 1: x 2: viii 3: v 4: ix 5: vii 6: ii 7: i 8: iii 9: vi 10: iv

#### **CHAPTER-5** (Linear Inequalities and Linear Programming)

#### **Item-1:** Fill in the blanks:

- 1. A vertical line divides the plane into ...... and ..... half planes.
- 2. A non vertical line divides the plane into ...... and ...... half planes.
- 3. In linear inequality, the linear Eq. Ax + by = c is called .....
- 4. A test point is chosen which determines that the half plane is on which side of the .....
- 5. If 2x 3 > 1, then x is greater than .....
- 6. The solution set (x,y) for the inequalities in feasible region is always .....
- 7. A point of a solution region where two of its boundary line, intersect, is called.....
- 8. The system of linear inequalities involved in the problem concerned are called.....
- 9. Each point of the feasible region is called a ..... of the system of linear inequalities.
- 10. A function which is to be maximized or minimized is called an .....
- 11. If the line segment obtained by joining any two points of a region lies entirely within the region, then the region is called.....
- 12. The feasible solution which maximizes or minimizes the objective function is called the
- 13. The maximum and minimum values of the objective function occur at ..... of the feasible region.
- 14. The graph of the linear equation is a .....
- 15. The point (0,0) does not ..... the inequality.

#### **<u>Item-2:</u>** Encircle the correct answers:

- 1. The order (or sense) of an inequality is changed by multiplying its each side by a negative constant. T/F
- 2. The order (or sense) of an inequality is changed by adding a constant to its each side. T/F
- 3. A solution of a linear inequality in x and y is an order pair which does not satisfy the inequality. T/F
- 4. A vertical line divides the plane into upper and lower half planes.
- 5. The order pairs (x,y) satisfying the inequalities ax + by < c, ax + by > c are called half planes. T/F
- 6. There are finite many ordered pairs that satisfy the inequality ax + by < c, so its graph will be a half plane. T/F
- 7. The graphs of ax + by < c are closed half planes.
- 8. The graphs of  $ax + by \le c$  or  $ax + by \ge c$  are open half plane.
- 9. The graph of the inequality 2x > -3 is the open half plane to the left of the line 2x = -3. T/F
- 10. The graph of y < 2 consists of the boundary line and the open half plane below the line y = 2. T/F
- 11. The variables used in the system of linear inequalities relating to the problems of every day life are non-negative and are called non-negative constraints. T/F
- 12. The non-negative constraints play an important role for making decision. So these variables are called decision variables. T/F
- 13. The region restricted to the first quadrant, is referred as a feasible region for the set of given constraints. T/F
- 14. Any point of the feasible region of the system of the linear inequalities is called corner point. T/F
- 15. The point (4,1) is a corner point of the linear inequalities  $x-y \le 3$ ,  $x+2y \le 6$ . T/F

#### **Item-3:** Choose and encircle the best possible answers:

- 1. Let a,b,c all positive real number such that a < b then:
  - a) ac > bc b) ac < bc c) ac = bc
- 2. If 3x 2 < 4 then:
  - a) x is the set of all positive real Nos.
  - b) x is the set of all negative real Nos.
  - c) x is the set of all real No. less than and equal to 2

T/F

T/F

T/F

|     | d) x is the set of all real No. less that | an 2                    |                  |                           |
|-----|-------------------------------------------|-------------------------|------------------|---------------------------|
| 3.  | The associated equation of the linear     | inequality $ax + b < b$ | c is:            |                           |
|     | a) $ax + b \ge c$ b) $ax + b$             | >c c) a                 | ax + b = c       | d) $ax + b < c$           |
| 4.  | A point of a solution region where tw     | o of its boundary li    | ines intersect   | is called:                |
|     | a) Optional point b)                      | Boundary point          | c) Corn          | er point                  |
| 5.  | A set consisting of all the feasible so   | lution of the system    | n of linear in e | equalities is called a:   |
|     | a) Feasible solution set b)               | Feasible region         | c) Decis         | sion variables            |
| 6.  | If $x + y = 3$ then the solution set cont | ains:                   |                  |                           |
|     | a) Infinite many elements                 | b) Only one             | element          |                           |
|     | c) Finite number of element d)            | Empty set               |                  |                           |
| 7.  | The linear Eq. $Y = 0$ represents:        |                         |                  |                           |
|     | a) x-axis b) y-axis c)                    | A line parallel to      | x-axis d)        | A line parallel to y-axis |
| 8.  | The linear Eq. $X = o$ represents:        |                         |                  |                           |
|     | a) x-axis b) y-axis c)                    | A linear parallel t     | o x-axis d)      | A line parallel to y-axis |
| 9.  | The linear Eqs. $X-3y+1=0$ and $2x-6y$    | +7=0:                   |                  |                           |
|     | a) Intersect at "a" point b) Do           | not intersect c)        | (2,1) is a poi   | nt of intersection        |
| 10. | If $ax + by < c$ and $d > 0$ then:        |                         |                  |                           |
|     | a) $a/d x + b/d y > c/d$                  | b) $cdx + bdy$          | y > cd           |                           |
|     | c) $a/d x + b/d y < c/d$                  | d) $a/d x + b/d x$      | /d y < c/d       |                           |

**Item-4:** Match the items in the column A with column B and write the correct answer in column C:

| COLUMN-A              | COLUMN-B                             | COLUMN-C |
|-----------------------|--------------------------------------|----------|
| a) $ax + by = c$      | i) Open half plane                   |          |
| b) Non vertical line  | ii) First quadrant                   |          |
| c) ax + by < c        | iii) Non-negative constraints        |          |
| d) $ax + by \le c$    | iv) Left and Right half planes       |          |
| e) Corner point       | v) Associated Eq                     |          |
| f) Feasible Region    | vi) Ordered pairs in feasible region |          |
| g) Optional solution  | vii) Closed half plane               |          |
| h) Decision variables | viii) Intersection of boundary lines |          |
| i) Vertical line      | ix) Maximum or minimum               |          |
| j) Feasible solution  | x) Upper and Lower half plane        |          |

## **ANSWERS**

|          |             |          |           |            | 4      |           | <u> </u> |          |           |           |             |       |
|----------|-------------|----------|-----------|------------|--------|-----------|----------|----------|-----------|-----------|-------------|-------|
| Item-1   | <u>:</u>    | Fill in  | the blar  | ıks:       | _      |           |          |          |           |           |             |       |
| 1: Left  | and Rig     | ht 2: U  | Upper a   | nd Lower   | 3:0    | Correspor | nding ec | uation   | 4: Boun   | dary line | e           |       |
| 5: x > 3 | 3/2         | 6: x     | $x \ge 0$ |            | 7: 0   | Corner po | int or v | ertex    | 8: Proble | em const  | raints      |       |
| 9: Feas  | ible solu   | tion 1   | 0: Obje   | ctive      | 11:    | Convex    | 12: O    | ptimal s | olution   | 13: Co    | rner point  |       |
| 14: Stra | aight line  | e 15:    | Satisfy   |            |        |           |          | •        |           |           | 1           |       |
|          | U           |          |           |            |        |           |          |          |           |           |             |       |
| Item-2   | :           | Encirc   | le the co | orrect ans | wers:  |           |          |          |           |           |             |       |
| 1: T     | 2: F        | 3: F     | 4: F      | 5: T       | 6: F   | 7: F      | 8: F     | 9: F     | 10: T     | 11: T     | 12: T       |       |
| 13: T    | 14: F       | 15: T    |           |            |        |           |          |          |           |           |             |       |
|          |             |          |           |            |        |           |          |          |           |           |             |       |
| Item-3   | <u>:</u>    | M.C.Q    | )s:       |            |        |           |          |          |           |           |             |       |
| 1: b     | 2: d        | 3: c     | 4: c      | 5: a       | 6: a   | 7: a      | 8: b     | 9: b     | 10: c     |           |             |       |
|          |             |          |           |            |        |           |          |          |           |           |             |       |
| Item-4   | <u>:</u> Ma | atch the | items in  | n the colu | mn A v | with colu | mn B ai  | nd write | the corre | ct answe  | er in colur | nn C: |
|          |             |          |           |            |        |           |          |          |           |           |             |       |

a: v b: x c: i d: vii e: viii f: ii g: ix h: iii i: iv j: vi

## **CHAPTER-6 (Conic Section)**

| Item-1: | Fill in the blanks:                                                                            |              |
|---------|------------------------------------------------------------------------------------------------|--------------|
| 1.      | $(x-h)^2 + (y-k)^2 = r^2$ is an equation of circle with center and radius                      |              |
| 2.      | $x^2 + y^2 = r^2$ is equation of circle with center                                            |              |
| 3.      | $x^{2} + y^{2} + 2gx + 2fy + c = 0$ is a general form of an equation of a                      |              |
| 4.      | $xx_1 + yy_1 + g(x+x_1) + f(y+y_1) + C = 0$ is the equation of to the circle.                  |              |
| 5.      | The point $P(x_1, y_1)$ lies the circle if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + C < 0$ .           |              |
| 6.      | The point $P(x_1, y_1)$ lies the circle if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + C = 0$ .           |              |
| 7.      | The point $P(x_1, y_1)$ lies the circle if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + C > 0$ .           |              |
| 8.      | Length of tangent to the circle from a point $(x_1, y_1)$ is =                                 |              |
| 9.      | A line segment whose end points lie on a circle is called a                                    |              |
| 10.     | A of a circle is chord containing the center of the circle.                                    |              |
| 11.     | Length of a diameter of the circle $x^2 + y^2 = a^2$ is                                        |              |
| 12.     | Perpendicular dropped from the center of a circle on chord the chord.                          |              |
| 13.     | The perpendicular bisector of any chord of a circle passes through the of a                    | a circle.    |
| 14.     | The number e is called the of the conic.                                                       |              |
| 15.     | If $e = 1$ , then the conic is a                                                               |              |
| 16.     | If $e < 1$ , then the conic is an                                                              |              |
| 17.     | If $e > 1$ , then the conic is a                                                               |              |
| 18.     | The line through the focus and $\perp r$ to the directix is called of the parabola.            |              |
| 19.     | The focal chord $\perp r$ to the axis of the parabola is called of the parabola.               |              |
| 20.     | The standard equation of is $y^2 = 4ax$ .                                                      |              |
| 21.     | $x^2/a^2 + y^2/b^2 = 1$ is an equation of                                                      |              |
| 22.     | Equation of major axis of an ellipse $x^2/a^2 + y^2/b^2 = 1$ is                                |              |
| 23.     | End points of latus rectum in $2^{n\alpha}$ quadrant to the ellipse $x^2/a^2 + y^2/b^2 = 1$ is |              |
| 24.     | Equation of directrix of an ellipse $x^2/a^2 + y^2/b^2 = 1$ is                                 |              |
| 25.     | Equation of an ellipse if $a > b$ is                                                           |              |
| 26.     | Equation of an ellipse if a < b is                                                             |              |
| 27.     | In an ellipse $x^2/a^2 + y^2/b^2 = 1$ , $a^2-a^2c^2 = \dots$                                   |              |
| 28.     | In an ellipse $x^2/a^2 + y^2/b^2 = 1$ , $a^2e^2 - a^2 = \dots$                                 |              |
| 29.     | Equation of an asymptotes, of a hyperbola $x^2/a^2 + y^2/b^2 = 1$ are                          |              |
| 30.     | Equation of transverse axis of $x^2/a^2 + y^2/b^2 = 1$ is                                      |              |
| Item-2: | Encircle the correct answers:                                                                  |              |
| 1.      | $x^2/a^2 + y^2/a^2 = 1$ is equation of an ellipse.                                             | T/F          |
| 2.      | Length of a diameter of a circle $x^2 + y^2 = a^2$ is "a"                                      | T/F          |
| 3.      | A line segment whose end points lie on a circle is called diameter of the circle.              | T/F          |
| 4.      | An angle of a semi-circle is a right angle.                                                    | T/F          |
| 5.      | The point $(x_1, y_1)$ lies inside the circle if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$       | T/F          |
| 6.      | The equation $y = mx + a (1+m^2)^{n/2}$ is a tangent to a circle $x^2+y^2+2gx+2fy+c = 0$       | T/F          |
| 7.      | The line joining the center of a circle to the mid point of a chord is perpendic               | cular to the |
| 0       | chord.                                                                                         | T/F          |
| 8.      | The perpendicular at outer end of a radial segment is tangent to the circle.                   | T/F          |
| 9.      | If $e > 1$ , then conic is parabola.                                                           | T/F          |
| 10.     | If $e < 1$ , then conic is ellipse.                                                            | T/F          |
| 11.     | If $e = 1$ , then conic is hyperbola.                                                          | T/F          |
| 12.     | In each ellipse length of major axis = $2a$ and length of minor axis = $b$ .                   | T/F          |
| 13.     | Direct ices of $x^2/a^2 + y^2/b^2 = 1$ , $a > b$ are $y = \pm c/e^2$ .                         | T/F          |
| 14.     | Eccentricity of the ellipse is $e = c/a$ .                                                     | T/F          |
| 15.     | There are four types of parabola.                                                              | T/F          |

| 16.        | ax <sup>2</sup> +2hxy+by <sup>2</sup> +2gx+2fy+c=0 represents a pair of line if:                                                                                                                                      | T/F            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|            | a h g                                                                                                                                                                                                                 |                |
|            | $\begin{vmatrix} \mathbf{h} & \mathbf{b} & \mathbf{f} \end{vmatrix} \neq 0$                                                                                                                                           |                |
| 17         | $ g_1 c $<br>$ax^2+2hxy+by^2+2gx+2fy+c=0$ represents an ellipse or a circle if $h^2 - ah < 0$                                                                                                                         | T/F            |
| 17.        | $ax^{+2hxy+by} + 2gx+2fy+c=0$ represents an empse of a check in $n^2 = ab < 0$<br>$ax^2 + 2hxy+by^2 + 2gx+2fy+c=0$ represents a parabola if $h^2 - ab = 0$                                                            | T/F            |
| 10.        | $ax^{2}+2hxy+by^{2}+2gx+2fy+c=0$ represents a purebola if $h^{2} = ab > 0$                                                                                                                                            | T/F            |
| 20         | If $y = mx + c$ touches $y^2 = 4ax$ then $c \neq a/m$                                                                                                                                                                 | T/F            |
| 20.<br>21  | If y = mx + c touches $x^2/a^2 + y^2/b^2 = 1$ then $c = +\sqrt{a^2m^2+b^2}$                                                                                                                                           | T/F            |
| 21.        | If y = mx + c touches m/a - $y^2/b^2 = 1$ then $c = \pm \sqrt{a^2m^2 \pm b^2}$                                                                                                                                        | T/F            |
| 23         | Equation of the tangent to the ellipse $x^2/a^2 + y^2/b^2 = 1$ at $(x_1, y_1)$ is $x_1/a^2 + y_1/b^2 = 1$                                                                                                             | T/F            |
| 23.<br>24. | Equation conjugate axis of $x^2/a^2-v^2/b^2 = 1$ is $v = 0$                                                                                                                                                           | T/F            |
| 25.        | Equation of the asymptotes of $x^2/a^2 - y^2/b^2 = 1$ are $y = +a/bx$                                                                                                                                                 | T/F            |
| 26.        | (a Cos $\theta$ , b Sin $\theta$ ) lies an ellipse $x^2/a^2 + y^2/b^2 = 1$                                                                                                                                            | T/F            |
| 27.        | Length of latus rectum of $x^2/a^2 + y^2/b^2 = 1$ is $2b^2/a$                                                                                                                                                         | T/F            |
| 28.        | Equation of latera recta of $x^2/a^2 + y^2/b^2 = 1$ are $x = \pm ae$                                                                                                                                                  | T/F            |
| 29.        | Product of the distances from the foci to any tangent to the hyperbola $x^2/a^2 - y^2/b^2 =$                                                                                                                          | $= 1$ is $b^2$ |
|            |                                                                                                                                                                                                                       | T/F            |
| 30.        | The ellipse and hyperbola are called central conics because each has a center of syn                                                                                                                                  | nmetry.        |
|            |                                                                                                                                                                                                                       | T/F            |
| Item-3:    | Choose and encircle the best possible answers:                                                                                                                                                                        |                |
| 1.         | $(x-h)^2 + (y+k)^2 = r^2$ is equation of circle with center:                                                                                                                                                          |                |
|            | a) $(0,0)$ b) $(-h,k)$ c) h,-k) d) $(h,k)$                                                                                                                                                                            |                |
| 2.         | $x^2+y^2-2gx-2fy+c=0$ is equation of circle with center:                                                                                                                                                              |                |
|            | a) $(g,f)$ b) $(-g,-f)$ c) $(-g, f)$ d) $g, -f)$                                                                                                                                                                      |                |
| 3.         | A point $P(x_1,y_1)$ lies outside the circle if:                                                                                                                                                                      |                |
|            | a) $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$                                                                                                                                                                            |                |
|            | b) $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c > 0$                                                                                                                                                                            |                |
|            | c) $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c < 0$                                                                                                                                                                            |                |
| 4          | d) None of these $r^2 + r^2 + 2rr + 2fr + r^2$                                                                                                                                                                        |                |
| 4.         | Radius of the circle x + y + $2gx + 2iy + c = 0$                                                                                                                                                                      |                |
| 5          | a) $g + I - c$ b) $\forall g + I - c$ c) $\forall g + I + c$ d) $\forall g + I - c$<br>If one and of a diameter of $4x^2 + 4x^2 + 24x$ , $8x + 15 = 0$ airely by (2.2) the set                                        | ordinata of    |
| 5.         | If one end of a diameter of $4x + 4y + 24x - 8y + 15 = 0$ circle be (2,5) the co-content of a diameter of $4x + 4y + 24x - 8y + 15 = 0$ circle be (2,5) the co-content of a diameter of $4x + 4y + 24x - 8y + 15 = 0$ | ordinate of    |
|            | a) $(11)$ b) $(81)$ c) $(-8-9)$ d) $(89)$                                                                                                                                                                             |                |
| 6          | Centre of the circle $45x^2 + 45y^2 - 60x + 36y + 19 = 0$ is:                                                                                                                                                         |                |
| 0.         | a) $(-2/3 - 2/5)$ b) $(-2/3 - 2/5)$ c) $(2/3 - 2/3)$ d) $(0 - 2/3)$                                                                                                                                                   | 5)             |
| 7.         | The point (6.9) lies the circle $x^2 + y^2 = 100$ :                                                                                                                                                                   | ~)             |
|            | a) On b) Outside c) Inside d) None of these                                                                                                                                                                           |                |
| 8.         | Equation of tangent to the circle $x^2 + y^2 = 10$ at the point whose abscissa is 1 is:                                                                                                                               |                |
|            | a) $x + 3y = 10$ b) $-x + 3y = 10$ c) $-x - 3y = 10$ d) $x + 3y = 10$                                                                                                                                                 | 10             |
| 9.         | Which of the following equation is the circle with center at origin and touching                                                                                                                                      | to the line    |
|            | with equ. 3x-7y=29:                                                                                                                                                                                                   |                |
|            | a) $x^2 + y^2 = 12$ b) $2x^2 + 2y^2 = 29$ c) $x^2 + y^2 = 15$ d) $x^2 + y^2 = 15$                                                                                                                                     | 10             |
| 10.        | Length of tangent from (3,4) to the circle $2x^2+2y^2+3x-4y+7=0$ is:                                                                                                                                                  |                |
|            | a) 25 b) $\sqrt{5}$ c) $5/2$ d) 5                                                                                                                                                                                     |                |
| 11.        | If eccentricity $e = 1$ then conic is:                                                                                                                                                                                |                |
|            | a) Ellipse b) Circle c) Hyperbola d) Parabola                                                                                                                                                                         |                |
|            |                                                                                                                                                                                                                       |                |

<sup>12.</sup> The focus of parabola  $x^2$ +4ay is:

|     | a) (0,0) b) (a                                 | u,0) c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0,a)              | d)                     | (0,-a)                               |              |                           |
|-----|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|--------------------------------------|--------------|---------------------------|
| 13. | The vertex of the parab                        | ola $y^2 = 8ax$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                  |                        |                                      |              |                           |
|     | a) (0,0) b) (2                                 | 2,0) c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2,2)              | d)                     | (0,2)                                |              |                           |
| 14. | The directrix of the par                       | abola y <sup>2</sup> = 8x i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s:                 |                        |                                      |              |                           |
|     | a) $x+2=0$ b)                                  | x-2=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | c)                     | x + 4 = 0                            | d)           | x-4 = 0                   |
| 15. | The equ. of the parabol                        | la with focus (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3,1) & d          | lirectrix              | x = 3 is tangent a                   | at the ver   | tex of parabola $y^2$     |
|     | =4ax is:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                        | C                                    |              | 1 2                       |
|     | a) $(v-1)^2 = -12x$ b)                         | $(v+1)^2 = 12x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c)                 | $(v+1)^2 =$            | = -12x d) (v-1)                      | $()^2 = 12x$ |                           |
| 16. | Tangent at the vertex of                       | f parabola $v^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4ax is:            |                        | / 0                                  | /            |                           |
|     | a) $y = 0$ b)                                  | $\mathbf{x} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | c)                     | $\mathbf{x} = \mathbf{a}$            | d)           | $\mathbf{v} = \mathbf{a}$ |
| 17  | Equation of latus-rectu                        | m of parabola y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $v^2 = 4ax$        | is <sup>.</sup>        |                                      | <i>u</i> )   | j u                       |
| 17. | a) $v = a$ b)                                  | v = -a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y – 14A            | ()                     | x9                                   | d)           | $\mathbf{x} = \mathbf{a}$ |
| 18  | $\Delta x$ is of parabola $(x-h)^2$            | $-4a(v_{-}k)$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 0)                     | n = u                                | u)           | $\Lambda = \mathbf{u}$    |
| 10. | Axis of parabola $(x-h)$                       | = 4a(y-k) is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | c)                     | v – h                                | d)           | $\mathbf{v} = \mathbf{v}$ |
| 10  | a) $y = K$ (b)<br>If accomparisity $a < 1$ the | X = II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | ()                     | X – -11                              | u)           | y – -x                    |
| 19. | If eccentricity $e < 1$ the                    | Developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  | -)                     | TT                                   | ( <b>L</b>   | T211:                     |
| 20  | a) Circle b)                                   | ) Paraboli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | а                  | c)                     | Hyperbola                            | d)           | Ellipse                   |
| 20. | Standard form of an eq                         | u. of ellipse is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • `                | 2, 2                   | 2 2                                  |              |                           |
|     | a) $x^{2}/a^{2} + y^{2}/b^{2} = 1$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b)                 | $x_{2}^{-}/a_{-}^{-}y$ | $l^2/b_2^2 = 1$                      |              |                           |
|     | c) $x^{2}/b^{2} + y^{2}/a^{2} = 1$             | 2.2 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d)                 | $x^{2} + a^{2} =$      | $= r^2$                              |              |                           |
| 21. | Eccentricity of ellipse x                      | $x^{2}/a^{2} + y^{2}/b^{2} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l is:              |                        |                                      |              |                           |
|     | a) $e = c/a$ b)                                | e = a/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | c)                     | e = -a/c                             | d)           | -c/a                      |
| 22. | Foci of an ellipse $x^2+4y$                    | $y^2 = 16$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                        |                                      |              |                           |
|     | a) $(\pm 2\sqrt{3})$ b)                        | $(0, \pm 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3)                 | c)                     | ( <u>+</u> 3√2)                      | d) (0        | ), <u>+</u> 3√2)          |
| 23. | Eccentricity (e) of an el                      | llipse $x^2 + 4y^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16 is:             |                        |                                      |              |                           |
|     | a) $2/\sqrt{3}$ b)                             | $-2/\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | c)                     | $\sqrt{3}/2$                         | d)           | $-\sqrt{3}/2$             |
| 24. | Vertex of an ellipse $x^2$ +                   | $-4v^2 = 16$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ,                      |                                      | ,            |                           |
|     | a) $(+4, 0)$ b)                                | (0, +4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | c)                     | (+2, 0)                              | d)           | (0, +2)                   |
| 25. | Equ. of major axis of el                       | llipse $x^2/a^2 + y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $^{2}/b^{2} = 1$ i | s:                     | <u>(-</u> -, •)                      |              | (•, • -)                  |
|     | a) $v = 0$ b)                                  | x = a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | c)                     | $\mathbf{v} = \mathbf{a}$            | d)           | $\mathbf{x} = \mathbf{a}$ |
| 26  | Equ of ellipse with ver                        | tices $(+5, 0)$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd end o           | f memoi                | r axis (0 + 1) is                    |              |                           |
| 20. | a) $x^2/1 + y^2/5 = 1$                         | b) $x^2 + 25x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $v^2 = 25$         | c) $x^2$               | $\frac{2}{5} + \frac{v^2}{1} = 1$ d) | None o       | f these                   |
| 27  | If accentricity $a > 1$ the                    | n conic is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 23               | <b>c</b> ) A           | /3 + y /1 = 1 u)                     | i tone o     | i these                   |
| 21. | a) Circle b) $\mathbf{P}$                      | arabolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2)                 | Ellingo                | d)                                   | Uuparh       | 010                       |
| 20  | a) Circle b) $\mathbf{F}_{a}^{2}$              | $\frac{1}{2}$ $\frac{1}$ | ()                 | Empse                  | u)                                   | пурего       | ola                       |
| 20. | For hyperbola $x/4 + y$                        | a = 1 vertices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ale.               | (12)                   | 4)                                   | Nonad        | fthese                    |
| 20  | a) $(0, \pm 2)$ b)                             | $(0, \underline{0})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{c}{2}$ 0-2  | $(\pm 2, 0)$           | u)                                   | None of      | these                     |
| 29. | Ends of latus rectum of $16/2 + 2$             | nyperbola 16y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / - 9x =           | = 144 are              | $(\cdot 2 + 1 < 2) = 1$              | NT           | C (1                      |
| 20  | a) $(\pm 16/3, \pm 3)$ b)                      | (+3, 4/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                  | c)                     | $(\pm 3, 16/3)$ d)                   | None of      | these                     |
| 30. | For hyperbola $4x^{-}9y^{-}$ .                 | 32x + 36y - 8 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | If center          | r 1s:                  |                                      | 1            | (1.2)                     |
|     | a) (-2, -4) b)                                 | (-2, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | c)                     | (2, -4)                              | d)           | (4, 2)                    |
| 31. | Equation of tangent $t_1$ x                    | $x^{2}/a^{2} - y^{2}/b^{2} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | which n            | nakes an               | angle 45° with x                     | -axis is:    |                           |
|     | a) $y = 2x \pm \sqrt{a^2 + b^2}$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b)                 | y = x +                | $\sqrt{a^2+b^2}$                     |              |                           |
|     | c) $y = x \pm \sqrt{a^2 + b^2}$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d)                 | None of                | f these                              |              |                           |
| 32. | In the parabola $y^2 = 8x$ ,                   | , origin is being                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g shifted          | to (1,1)               | the new equation                     | is:          |                           |
|     | a) $y^2 = 8x + 2y - 9$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b)                 | $y^2 = 8x$             | - 2y –9                              |              |                           |
|     | c) $y^2 = 8x - 8$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d)                 | $(y^2-1)^2 =$          | = 8x                                 |              |                           |
| 33. | 2xy = 3 is an equation of                      | of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                      |                                      |              |                           |
|     | a) Parabola b)                                 | Ellipse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | c)                     | Hyperbola                            | d)           | Circle                    |
| 34. | The equation of tangen                         | t line to the cur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $x^2-4v$           | $^{2}+4=0$ at          | t y = 1 is:                          | ,            |                           |
|     | a) $v = 1$ b) v                                | +1=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c)                 | x = 1                  | d) $v = x-1$                         |              |                           |
| 35. | The focus of the parabo                        | $v^2 = 8x$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | -                      |                                      |              |                           |
|     | a) $(2,0)$ b) $(0)$                            | ),2) c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (4.0)              | d)                     | (0.4)                                |              |                           |
|     | ., (=,*, 0) (0                                 | ,, -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 、·,~/              | ,                      | <u>\-</u> 7-/                        |              |                           |
| 36. | Length of the latus rect                       | um of the para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bola $x^2 =$       | = 8(v+2)               | is:                                  |              |                           |
|     |                                                | pulu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | ~(j · =)               |                                      |              |                           |

|     | a) 2          | b)       | -2                 | c)                    | 4            | d)       | 8       |       |       |        |
|-----|---------------|----------|--------------------|-----------------------|--------------|----------|---------|-------|-------|--------|
| 37. | The length    | of the n | najor axis         | s of $4x^2+9$         | $9y^2 = 36:$ |          |         |       |       |        |
|     | a) 4          | b)       | 6                  | c)                    | $\sqrt{5}$   | d)       | 10      |       |       |        |
| 38. | The center    | of an el | lipse (x-1         | $(2)^{2}/4 + (2)^{2}$ | $(x+2)^2/10$ | 6 = 1 is | :       |       |       |        |
|     | a) (2,4)      |          | b)                 | (2,-4)                |              | c)       | (1,-2)  |       | d)    | (-1,2) |
| 39. | If $a = b$ in | the equ. | of $x^{2}/a^{2} +$ | $-y^2/b^2 = 1$        | 1 then co    | onic wil | l be:   |       |       |        |
|     | a) Circle     |          | b)                 | Ellipse               | c)           | Нуре     | rbola   | d)    | Parab | ola    |
| 40. | $Ax^2 + By^2$ | + Gx + 3 | Fy + C =           | 0 represe             | ents a cir   | cle if:  |         |       |       |        |
|     | a) $A = B$    | b)       | $A \neq B$         | c)                    | A < B        | d)       | None of | these |       |        |

**<u>Item-4:</u>** Match the items in the column A with column B and write the correct answer in column C: <u>**O:1**</u>

| COLUMN-A                          | <u>COLUMN-B</u>                    | COLUMN-C |
|-----------------------------------|------------------------------------|----------|
| a) Equ. of circles with center at | i) $x^2 - y^2 = b^2$               |          |
| origin.                           |                                    |          |
| b) Eqn. of an ellipse a > b       | ii) $x^2 = -4ay$                   |          |
| c) Eqn. of hyperbola when $a =$   | iii) $x^2 + y^2 + 2gx + 2fy + c =$ |          |
| b                                 | 0                                  |          |
| d) Eqn. of parabola whose focus   | iv) $x^2 + y^2 = r^2$              |          |
| at (0,-a)                         |                                    |          |
| e) Eqn. of circle in general form | v) $x^2 / a^2 + y^2 / b^2 = 1$     |          |

| <u>Q:2</u>                                   |                                                |          |
|----------------------------------------------|------------------------------------------------|----------|
| COLUMN-A                                     | COLUMN-B                                       | COLUMN-C |
| a) Radius of $x^2+y^2+2gx+2fy+c=0$           | $i)\sqrt{x_1^2 + y_1 + 2gx_1 + 2fy_1 + c} = 0$ |          |
| b) Parametric equation of an                 | ii) $x = a \cos \theta$ , $y = b \sin \theta$  |          |
| ellipse                                      |                                                |          |
| c) Parametric equation of                    | iii) $x = a \sec \theta$ , $y = b \tan \theta$ |          |
| hyperbola                                    |                                                |          |
| d) Parametric eqn. of parabola               | iv) $\sqrt{g^2+f^2}-c$                         |          |
| e) Length of tangent segment of              | v) $x = at^{2}$ , $y = 2at$                    |          |
| $p(x_1,y_1)$ to the circle $x^2 + y^2 + y^2$ |                                                |          |
| 2gx + 2fy + c = 0                            |                                                |          |

## <u>Q:3</u>

| COLUMN-A                              | COLUMN-B      | COLUMN-C |
|---------------------------------------|---------------|----------|
| a) Length of latus rectum of          | i) b          |          |
| parabola                              |               |          |
| b) Length of latus rectum of          | ii) 2a        |          |
| ellipse $x^2 / a^2 + y^2 / b^2 = 1$   |               |          |
| c) Length of latus rectum of          | iii) $2b^2/a$ |          |
| hyperbola $x^2 / a^2 - y^2 / b^2 = 1$ |               |          |
| d) Length of transverse axis of $x^2$ | iv) 4a        |          |
| $/a^{2} - y^{2} / b^{2} = 1$          |               |          |
| e) Length of semi-minor axis of       | v) $b^2/a$    |          |
| $x^{2} / a^{2} + y^{2} / b^{2} = 1$   |               |          |

| <u>Q:4</u>                         |             |                 |
|------------------------------------|-------------|-----------------|
| COLUMN-A                           | COLUMN-B    | <u>COLUMN-C</u> |
| a) The tangent line to a circle at | i) Parabola |                 |
| any point is                       |             |                 |
| b) For e = 1                       | ii) x = 3   |                 |
| c) Vertex of $y^2 = 6(x+3)$        | iii) (0,-3) |                 |
| d) Centre of $x^2/16+(y+3)^2/9=1$  | iv) (-3,0)  |                 |
| e) Directrix of $y^2 = 12x$ is     | v) Unique   |                 |

32

## <u>Q:5</u>

| COLUMN-A                                     | COLUMN-B        | <u>COLUMN-C</u> |
|----------------------------------------------|-----------------|-----------------|
| a) $x = a \cos \theta$ , $y = b \sin \theta$ | i) $x + y = 3$  |                 |
| b) Eqn. of tangent line to                   | ii) 4           |                 |
| $x^{2}/9+y^{2}/12=1$ at point (3,4)          |                 |                 |
| c) Normal to the circle $x^2+y^2=10$         | iii) 3/2        |                 |
| at point (5,5) is                            |                 |                 |
| d) The centricity of $x^2/2-y^2=1$           | iv) $y - x = 0$ |                 |
| e) Latus rectum of $x^2/9+y^2/6=1$           | v) Ellipse      |                 |

## ANSWERS

| Item-1        | <u>:</u>          | Fill in the blanks: |               |                 |                |               |               |                   |                |           |                |
|---------------|-------------------|---------------------|---------------|-----------------|----------------|---------------|---------------|-------------------|----------------|-----------|----------------|
| 1: {(h,k      | x), r}            | 2: Orig             | in            | 3: Circl        | e              | 4: Tang       | gent          | 5: Insid          | e              | 6: On     |                |
| 7: Outs       | ide               | 8: $\sqrt{x_1^2}$   | $+y_1^2+2g_2$ | $x_1 + 2fy_1 +$ | c              | 9: Chor       | ď             | 10: Dia           | meter          | 11: 2a    |                |
| 12: Bis       | ect               | 13: Cer             | ntre          | 14: Ecc         | entricity      | ,             | 15: Par       | abola             | 16: Elli       | pse       |                |
| 17: Hyj       | perbola           | 18: Axi             | is            | 19: Lat         | us ractui      | n             | 20: Par       | abola             | 21: Elli       | pse       |                |
| 22: y =       | 0                 | 23: (-al            | $, -b^{2}/a)$ |                 | 24: x =        | a/e           | 25: $x^{2}/a$ | $u^2 + y^2/b^2 =$ | = 1            |           |                |
| 26: $x^2/t$   | $y^2 + y^2/a^2 =$ | = 1                 | 27: $b^2$     |                 | 28: $b^2$      |               | 29: y =       | <u>+</u> b/a x    | 30: y =        | 0         |                |
| 14 3          | _                 | <b>F</b>            |               |                 |                |               |               |                   |                |           |                |
| <u>11em-2</u> | <u>:</u><br>2. E  | Encirci<br>2. E     | e the cor     | Tect ans        | wers:          | <b>7</b> . T  | 0. T          | 0. E              | 10. T          | 11. E     | 10. T          |
| Г: Г<br>12. Г | 2: F<br>14. T     | 5: Г<br>15. Т       | 4: I<br>16: E | ): Г<br>17. Т   | 0: F<br>10. T  | /: I<br>10. T | 8: 1<br>20: E | 9: F              | 10: 1<br>22. T | 11: F     | 12: 1<br>24: E |
| 15: F         | 14: 1<br>26: T    | 15: 1<br>27: T      | 10: F         | 1/: 1<br>20. T  | 18: 1<br>20: T | 19:1          | 20: F         | 21:1              | 22: 1          | 25: 1     | 24: F          |
| 25: F         | 20: 1             | 27:1                | 28: 1         | 29:1            | 50: 1          |               |               |                   |                |           |                |
| Item-3        | :                 | M.C.Q               | s:            |                 |                |               |               |                   |                |           |                |
| 1: c          | 2: a              | 3: b                | 4: b          | 5:              | 6: c           | 7: b          | 8: a          | 9: b              | 10: d          | 11: d     | 12: c          |
| 13: a         | 14: a             | 15: a               | 16: b         | 17: d           | 18: b          | 19: d         | 20: a         | 21: a             | 22: a          | 23: c     | 24: a          |
| 25: а         | 26: b             | 27: d               | 28: c         | 29: d           | 30: d          | 31: b         | 32: a         | 33: c             | 34:            | 35:       | 36: d          |
| 37: b         | 38: c             | 39: a               | 40: a         |                 |                |               |               |                   |                |           |                |
|               |                   |                     |               |                 |                |               |               |                   |                |           |                |
| Item-4        | : Matcl           | h the iter          | ns in the     | column          | A with c       | olumn B       | and writ      | the con           | rect answ      | wer in co | lumn C:        |
| <u>Q-1:</u>   | a: iv             | b: v                | c: i          | d: ii           | e: iii         |               |               |                   |                |           |                |
| <u>Q-2:</u>   | a: v              | b: iv               | c: ii         | d: iii          | e: I           |               |               |                   |                |           |                |
| <u>Q-3:</u>   | a: iv             | b: iii              | c: v          | d: ii           | e: i           |               |               |                   |                |           |                |
| <u>Q-4:</u>   | a: v              | b: i                | c: iv         | d: iii          | e: ii          |               |               |                   |                |           |                |
| <u>Q-5:</u>   | a: v              | b: i                | c: iv         | d: iii          | e: ii          |               |               |                   |                |           |                |

## CHAPTER-7 (Vectors)

| Item-1:        | Fill in the blanks:                                                                                                                                                                                                                                 |                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1.             | A vector quantity has a magnitude as well as                                                                                                                                                                                                        |                         |
| 2.             | A scalar quantity is only defined by its                                                                                                                                                                                                            |                         |
| 3.             | If A & B are any two points then its magnitude is                                                                                                                                                                                                   |                         |
| 4.             | A unit vector has magnitude equal to                                                                                                                                                                                                                |                         |
| 5.             | Two vectors $\overrightarrow{AB} \& \overrightarrow{CD}$ are said to be equal if their are equal as                                                                                                                                                 | well as their           |
|                | directions are                                                                                                                                                                                                                                      |                         |
| 6.             | If 0 is the origin and $p(x,y)$ is any paint in the plane then the position vector $OP =$                                                                                                                                                           |                         |
| 7.             | If AB & BC are any two vectors acting along two sides of the triangle AB                                                                                                                                                                            | C then their            |
|                | resultant is equal to                                                                                                                                                                                                                               |                         |
| 8.             | If $\vec{r} = xi + yi$ then its magnitude is equal to $ r $                                                                                                                                                                                         |                         |
| 9.             | $\mathbf{r} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{i}$ then the unit vector $\mathbf{r} = \dots$                                                                                                                                                |                         |
| 10.            | If 0 is the origin and $p(x, y, z)$ is any point in the space then OP =                                                                                                                                                                             |                         |
| 11.            | If $\vec{r} = xi + yi + zk$ then its magnitude $ r  = \dots$                                                                                                                                                                                        |                         |
| 12.            | If $p(x,y,z)$ and $O(x_2,y_2,z_2)$ are any two points in space then the distance betwee                                                                                                                                                             | en P & O is             |
|                | equal to                                                                                                                                                                                                                                            |                         |
| 13.            | If any line in the psace makes angles $\alpha$ , $\beta$ , $\gamma$ with x-axis, v-axis and z-axis then                                                                                                                                             | $\cos^2 \alpha +$       |
|                | $\cos^2\beta + \cos^2\gamma = \dots$                                                                                                                                                                                                                |                         |
| 14.            | If any line in the space makes angles $\alpha$ , $\beta$ , $\gamma$ then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \dots$                                                                                                                     |                         |
| 15.            | The scalar product of any two vectors a & b is a                                                                                                                                                                                                    |                         |
| 16.            | If a and b are two vectors in space then a. $b = \dots$                                                                                                                                                                                             |                         |
| 17.            | If $a = a_1i + a_2j + a_3k$ and $b = b_1i + b_2j + b_3k$ then $a \cdot b = \dots$                                                                                                                                                                   |                         |
| 18.            | Two vectors a, b are said to be perpendicular if $a \cdot b = \dots$                                                                                                                                                                                |                         |
| 19.            | If i, j, k are unit vectors in space then $i.j = \dots j.k. = \dots k.i. = \dots i.i. = \dots$                                                                                                                                                      |                         |
|                | j.k. = k.k. =                                                                                                                                                                                                                                       |                         |
| 20.            | The cross product of two vectors a & b is donated by a x b and it is equal to                                                                                                                                                                       |                         |
| 21.            | If $a = a_1i + a_2j + a_3k$ and $b = b_1i + b_2j + b_3k$ then a x b =                                                                                                                                                                               |                         |
| 22.            | If i.j.k are any three unit vectors in the space, then:                                                                                                                                                                                             |                         |
|                | $I x j = \dots $ $i x i = \dots $ $j x k = \dots$                                                                                                                                                                                                   |                         |
|                | $i x j = \dots k x i = \dots k x k = \dots$                                                                                                                                                                                                         |                         |
| 23.            | If $\mathbf{u} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ $\mathbf{v} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ $\mathbf{w} == c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$ then $\mathbf{u}$ . ( $\mathbf{v} \times \mathbf{w}$ ) = |                         |
| 24.            | The scalar triple product of three vectors u, v, w shows the of a paralle                                                                                                                                                                           | el.                     |
| 25.            | The volume of a tetrahedron 0ABC is equal to                                                                                                                                                                                                        |                         |
| -              |                                                                                                                                                                                                                                                     |                         |
| <u>Item-2:</u> | Encircle the correct answers:                                                                                                                                                                                                                       | T/F                     |
| 1.             | The scalar quantity is a vector quantity.                                                                                                                                                                                                           |                         |
| 2.<br>2        | The distance between two points in any direction is a vector quantity.                                                                                                                                                                              | 1/F<br>T/E              |
| 5.<br>1        | If $0$ is origin and $p(x, y, z)$ is any point in the space then $op = xi + yi - zk$                                                                                                                                                                | 1/F<br>T/F              |
| 4.<br>5        | If 0 is the origin and $p(x, y, z)$ is any point in the space then $op = xi + yj - zk$ .                                                                                                                                                            | 1/1 <sup>-</sup><br>T/F |
| J.<br>6        | If $p = y_i + y_i$ then $ \mathbf{x}  = \sqrt{(x^2 - y^2)}$                                                                                                                                                                                         | 1/F<br>T/E              |
| 0.<br>7        | If $r = xi + yj$ then $ r  = \sqrt{(x - y)}$ .                                                                                                                                                                                                      | 1/Г<br>Т/Г              |
| /.             | If $r = 2i + 4i$ then $ r  = \sqrt{20}$                                                                                                                                                                                                             | 1/F<br>T/E              |
| 8.             | If $r = 31 + 4j$ then $ r  = \sqrt{29}$                                                                                                                                                                                                             |                         |
| 9.<br>10       | If $r = 41 + 2j$ then $ r  = \sqrt{21}$<br>If $r(r, r)$ outs line is in the rest $A(1, 2)$ , $P(2, 4)$ is the ratio 2.4 then AD = $2\sqrt{7}$ AD                                                                                                    | /F<br>T/E               |
| 10.            | If $p(x,y)$ cuts the line joining $A(2,4) P(7,9)$ in the ratio 2:4 then $AP = 3/7 AB$                                                                                                                                                               | 1/F<br>T/E              |
| 11.            | If $p(x,y)$ cuts the fine joining $A(5,4) D(7,6)$ in the ratio 5.4 then $DP = 5/7$ BA                                                                                                                                                               | 1/Г<br>Т/Г              |
| 12.<br>12      | If $r = 1/21 + \sqrt{5/2}$ [life] $ r  = 2$ .<br>Two vectors AB and CD are equal vectors than their directions are the series                                                                                                                       | 1/F<br>T/E              |
| 15.            | I wo vectors AD and CD are equal vectors then their directions are the same.                                                                                                                                                                        | 1/ <b>Г</b>             |

| 14.     | If $\overrightarrow{AB} = \overrightarrow{CD}$ then their directions are not in same direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T/F           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 15.     | If i,j,k are three unit vectors in space then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T/F           |
|         | i. $i.j = k$ ii. $j.k = i$ iii. $k.i = j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| 16.     | If I,j,k are any three unit vectors in space then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/F           |
|         | i. $i x j = i$ ii. $j x k = j$ iii. $k x i = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| 17.     | If r,j,k are any three unit vectors in space then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/F           |
|         | i) $i x j = 0$ ii. $J x k = 0$ iii. $k x i = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| 18.     | If i,j,k are any three unit vectors in space then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/F           |
|         | i) $i.j. = 1$ ii. $j.k. = 1$ iii. $k.i. = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 19.     | If $a = a_1i + a_2j + a_3k$ and $b = b_1i + b_2j + b_3k$ then $a \ge b_1a_2 + b_1a_2 $ | T/F           |
| 20.     | If a x b are two vectors then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T/F           |
|         | i j k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|         | $a.b = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 21      | $ \mathbf{b}_1 \mathbf{b}_1 \mathbf{b}_3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m m           |
| 21.     | a&b are any two vectors in space then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T/F           |
| 22      | $a.b = a \times b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/E           |
| 22.     | If $a, b, c$ are any three vectors then:<br>a (b, v, c) always gives the area of a restorate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/F           |
| 22      | a.( $b \times c$ ) always gives the area of a rectangle.<br>If $a$ , $b$ , $c$ are any three vectors in the space then $a$ , ( $b \times c$ ) gives volume of $a$ p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orolloloningd |
| 25.     | If a, b, c are any three vectors in the space then a. (b x c) gives volume of a p $T/F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | araneiepiped. |
| 24      | If $a = a_i + a_i + a_i + a_i + b_i + b_i$   | T/F           |
| 24.     | $a = a_1 a_2 a_3 a_4 a_5 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1           |
| 25      | a b c are any three vectors then:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T/F           |
| 20.     | i), $a_{1}(b \ge c) = [abc]$ ii) $b_{2}(c \ge a) = [bca]$ iii) $c_{1}(a \ge b) = [cab]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/1           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Item-3: | Choose and encircle the best possible answers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| 1.      | If $\vec{A} \times \vec{B} = 0$ then $\theta = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|         | a) $90^{\circ}$ b) $0^{\circ}$ c) $45^{\circ}$ d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| 2.      | What is the value of $(2i - j) \cdot (3i + k)$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|         | a) a -6 b) 3 c) 4 d) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 3.      | What is equal to $i \cdot i = j \cdot j = k \cdot k$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|         | a) 0 b) 1 c) -1 d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| 4.      | What is equal to i x $i = j x j = k x k$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|         | a) 0 b) 1 c) $-1$ d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 5.      | If x . $y = 0$ then what is $\theta$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|         | a) 0 b) -1 c) 90 d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 6.      | The scalar projection of $A = i - 2j + k$ is onto the direction to $B = 4i - 4j + 7k$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| -       | a) 19/8 b) 9/19 c) 8/19 d) 19/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| 7.      | The scalar projection of $A = 21 + 3j + 6k$ to the direction of $B = 1 + 5j + 3j$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 0       | a) $6$ b) -5 c) 5 d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 8.      | $21 \times 3K = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 0       | a) $b$ b) $-bj$ c) $bj$ d) $-bK$<br>2i $r_{i}$ (21) $-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 9.      | $51 \times (-2K) = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 10      | (2) $v_i$ (2) $v_i$ (2) $v_i$ (3) $v_i$ (3) $v_i$ (4) $v_i$ (4) $v_i$ (5) $v_i$ (7)      |               |
| 10.     | $(2J \times I) = 3K = 2$<br>a) $5k$ b) $5i$ c) $5i$ d) None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 11      | $I_{A} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 11.     | $ A \wedge D  +  A \cdot D  = i$<br>a) $AB$ b) $BA$ c) $ A ^2  B ^2$ d) None of the shore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| 12      | a) $DA = 0$ $DA = 0$ $ A   D  = 0$ Note of the above.<br>If three vectors a h c are container than the scalar tripleproduct a ( h y c) = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| 12.     | a) 1 b) 0 c) $-1$ d) $+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| 13      | If $A = 2i - 3i - k$ , $B = i + 4i - 2k$ then $A \times B = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |

|     | $(10^{2} - 2^{2} - 11)$ (1) (0) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | > 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1              | 1) NJ C (1 1                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|
| 1.4 | a) $101 + 31 + 11k$ b) $101 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 6k                 | $\bullet^{c)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +31−K          | d) None of the above              |
| 14. | If $A = 21 - 3j - k$ , $B = 1 + 4j - 2k$ then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | what (A              | A + B) x (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (A-B) = ?      |                                   |
|     | a) $i - 6j + 22k$<br>b) $-2i - 6j - 22k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • <sup>c)</sup>      | 2i + 6j +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22k d)         | None of the above                 |
| 15. | If $A = 3i - j + 2k$ , $B = 2i + j - k$ and $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C = i - 2j           | $\mathbf{j} + \mathbf{k}$ then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | what is (      | $A \times B \times C = ?$         |
|     | a) $24i + 7j - 5k$ b) $-24i - 7j + 5k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kc) 22i              | + 7j –6k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d) No          | ne of the above                   |
| 16. | Area of the triangle with vertices A (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3 <u>,2)</u> B     | (2,-1,1) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ind C(-1,2     | ,3):                              |
|     | a) $\sqrt{65/2}$ b) $\sqrt{107/2}$ c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | √107                 | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None of        | the above                         |
| 17. | The value of $(2i - 3j) \cdot (i + j - k) \times (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (i - k) = (i - k)    | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                   |
|     | a) $+4$ b) 0 c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1 🔸                 | <u>d</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None of        | the above                         |
| 18. | If $A = 3i + 2j - k$ and $B = 4i - j + 2k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | then A.              | B = ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                   |
|     | a) 6 b) 8 c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -8                   | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None of        | the above                         |
| 19. | The angle between $A = 3i + 2j - 6k a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd $\mathbf{B} = 4$  | i-3j+k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is:            |                                   |
|     | a) $0$ b) $45$ c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                   | d) 🛌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90             |                                   |
| 20. | If $A = a_1i + a_2j + a_3k$ , $B = b_1i + b_2j + b_2i + b_$ | b <sub>3</sub> k and | $C = c_1 i + c_2 i + c_3 i + c_4 i + c_4 i + c_5 i + $ | $-c_2j + c_3k$ | then volume of the parallelepiped |
|     | is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U              |                                   |
|     | a) $ a_1 a_2 a_3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b)                   | $ a_1 b_1 c_1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |
|     | $b_1 b_2 b_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | $a_1 b_2 c_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                   |
|     | $c_1 c_2 c_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | $a_1 b_3 c_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                   |
|     | c) $ a_1 0 a_3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d)                   | None of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f the abov     | e                                 |
|     | $b_1 0 b_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |
|     | $c_1 0 c_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |
| 21. | Area of the parallelogram having diag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gonals A             | = 3i + i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | –2k and B      | = i - 3i + k is:                  |
|     | a) 5 b) 3 c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                    | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5√3            | - 5                               |
| 22. | $(i + 2i) \times k = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                   |
|     | a) $3i - i$ b) $2i - i$ c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 + 2k               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d)             | None of the above                 |
| 23. | The area of the triangle with vertices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (1,1,1             | ) B (1.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )) C (1.0.0    | )) is:                            |
|     | a) 2 b) -2 c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                    | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None of        | the above                         |
| 24. | If $F = 3i - i + k$ , $d = 2i + i + 4k$ then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | work do              | ne =?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                   |
|     | a) -9 b) 9 c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                    | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None of        | the above                         |
| 25. | If $A = 6i + 7j$ , $B = -7/2i + 3j$ then A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | & B are:             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                   |
|     | a) Parallel b) Perpendicular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) N                 | leither                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d) No          | ne of the above                   |
|     | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ., -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .,             |                                   |

**Item-4:** Match the items in the columns A with column B and write the correct answer in column C:

| <u>Q:1</u>       |                    |          |
|------------------|--------------------|----------|
| COLUMN-A         | COLUMN-B           | COLUMN-C |
| a) a . b         | i) a . b / ab      |          |
| b) a x b         | ii)  a x b  / ab   |          |
| c)  3i – 4j      | iii) ab Sin θ      |          |
| d) $\cos \theta$ | iv) 5              |          |
| e) Sin θ         | v) ab Cos $\theta$ |          |

| <u>Q:2</u> |
|------------|
|------------|

| COLUMN-A                               | COLUMN-B                     | COLUMN-C |
|----------------------------------------|------------------------------|----------|
| a) $(2i - j) \cdot (3i + k)$           | i) x and y are perpendicular |          |
| b) I x j                               | ii) 1                        |          |
| c) k . k                               | iii)Work done = $9$          |          |
| d) $(2i - j - k) \cdot (3i + 2j - 5k)$ | iv) k                        |          |
| e) x. y. = 0                           | v) 6                         |          |

<u>Q:3</u>

| COLUMN-A                           | <u>COLUMN-B</u> | <u>COLUMN-C</u> |
|------------------------------------|-----------------|-----------------|
| a)  2i - 3j + 6k                   | i) m = 5        |                 |
| b) $(6i - 2j + 5k).(2i - 4j + 7k)$ | ii) $a = 23/19$ |                 |
| c) (4i-5j-2k) . (-i+2j+4k) x       | iii) 99         |                 |
| (5i+2j+3k)                         |                 |                 |
| d) $(3i+mj-2k).(2i-4j-7k) = 0$     | iv) 55          |                 |
| e) (2i-5j+k) . (3i+2j+2k) x        | v) 7            |                 |
| (2i-j+ak) = 0                      |                 |                 |

## <u>Q:4</u>

| COLUMN-A                            | COLUMN-B   | COLUMN-C |
|-------------------------------------|------------|----------|
| a) Area of a $\Delta$ with vertices | i) A     B |          |
| A(2,1,-3), B(1,1,0), C(1,-3,2)      |            |          |
| b) $A = 6i+7j$ and $B = -7/2i+3j$   | ii) √195   |          |
| c) If $A=3i-j-2k$ , $B=2i+3j+k$     | iii) 2√195 |          |
| then  AxB                           |            |          |
| d) If $A=3i-j-2k$ , $B=2i+3j+k$     | iv) √6     |          |
| then $ (A+B) \times (A-B) $ is:     |            |          |
| e)  2i+j-k                          | v) √41     |          |

## <u>Q:5</u>

| COLUMN-A                          | COLUMN-B                 | COLUMN-C |
|-----------------------------------|--------------------------|----------|
| a) $ A x B ^2 +  A - B ^2$        | i) √107/2                |          |
| b) a. $(b x c) = 0$               | ii) 1                    |          |
| c) i.(j x k)                      | iii) 8                   |          |
| d) $(3i+2j-k).(4i-j+2k)$          | iv) a, b, c are coplanar |          |
| e) Area of $\Delta$ with vertices | v) $ A ^2  B ^2$         |          |
| A(1,3,2,) B(2,-1,1) C(-1,2,3)     |                          |          |

## <u>Q:6</u>

| COLUMN-A                                | COLUMN-B            | COLUMN-C |
|-----------------------------------------|---------------------|----------|
| a) $(2i + 3j + 6k) \cdot (i + 5j + 3k)$ | i) 4                |          |
| b) (2i) x (3k)                          | ii) 6j              |          |
| c) (3i) x (-2k)                         | iii) 0              |          |
| d) (2i–3j).(I+j-k) x (3i-k)             | iv) –6j             |          |
| e)a. (a x c)                            | v) Work done $= 35$ |          |

## <u>Q:7</u>

| COLUMN-A                        | <u>COLUMN-B</u>               | <u>COLUMN-C</u> |
|---------------------------------|-------------------------------|-----------------|
| a) a. (b x c)                   | i) 0                          |                 |
| b)[(3i-j+2k)x(2i+j-k)]x(I-2j+k) | ii) 1                         |                 |
| c) a. $(b x a) = 0$             | iii) Vectors a & b Are        |                 |
|                                 | coplanar                      |                 |
| d) k. (i x j)                   | iv) 17i+6j-5k                 |                 |
| e)a x a                         | v) Volume of a parallelepiped |                 |

<u>Q:8</u>

| COLUMN-A                           | COLUMN-B             | COLUMN-C |
|------------------------------------|----------------------|----------|
| a) (4i-3j+k).(4i-7j+4k)            | i) -8i -6k           |          |
| b) Area of $\Delta$ with vertices  | ii) 2i –j            |          |
| A(3,-1,2) B(1,-1,-3) C (4,3,1)     |                      |          |
| c) 2j x (3i –4k)                   | iii) i –10j –3k      |          |
| d(i+2j) xk                         | iv) Work done = $41$ |          |
| e) $(4i + j - 2k) \times (3i + k)$ | v) √165/2            |          |

<u>Q:9</u>

| COLUMN-A                                 | <u>COLUMN-B</u>           | <u>COLUMN-C</u> |
|------------------------------------------|---------------------------|-----------------|
| a) (I-2j-3k).(2i+j-k)x(I+3j-2k)          | i) A right angle triangle |                 |
| b) 1/6 [a.(b x c)]                       | ii) 14i-14j-14k           |                 |
| c) $A = 3i - 2j + k$ , $B = 2 - 3j - 5k$ | iii) 99                   |                 |
| and C=2i+j-4k vertices of a $\Delta$     |                           |                 |
| d) $(4i+j+3k)x(2i-3j+5k)$                | iv) volume of tetrahedron |                 |
| e) (4i-5-2k) . (-i+2j+4k) x              | v) 20                     |                 |
| (5i+2j+3k)                               |                           |                 |

#### Q:10

| COLUMN-A                       | COLUMN-B                      | COLUMN-C |
|--------------------------------|-------------------------------|----------|
| a) 2(I+2j-3k) + 3 (5i-3j+7k)   | i) Area of a parallelogram    |          |
| b) P(1,3,2,) Q(4,1,4) R(6,5,5) | ii) Work done                 |          |
| c)  a x b                      | iii) Area of $\Delta$ ABC     |          |
| d) F. AB                       | iv) Form right angle triangle |          |
|                                | PQR                           |          |
| e) 1/2  a x b                  | v) 17i-5j+15k                 |          |

#### ANSWERS

#### **Item-1:** Fill in the blanks:

3: |AB| 4:1 2: Magnitude 1: Direction 5: Magnitudes, same 7: 3<sup>rd</sup> side of a triangle but in opposite direction 8:  $|r| = \sqrt{x^2 + y^2}$ 6: xi + yj  $10: \overrightarrow{OP} = xi + yj + zk$ 11:  $|r| = \sqrt{y^2 + z^2}$ 9: r / | r | 12:  $\overline{PQ} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1) + (z_2 - z_1)^2}$ 13:1 14:2 15: Scalar quantity 16: a. b = ab Cos  $\theta$  where a and b are the magnitudes of the vectors a and b and  $\theta$  is the angle between them. 17:  $a.b = a_1b_1 + a_2b_2 + a_3b_3$ 20:  $a \times b = ab$  Sin  $\theta$  (n).  $a \times b$  are magnitudes of a & b and  $\theta$  is the angle between them.  $\mathbf{\dot{u}}_{.}(\mathbf{\dot{v}} \mathbf{x} \mathbf{w}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ 21:  $\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{vmatrix}$  22:  $\mathbf{i} \cdot \mathbf{x} \cdot \mathbf{j} = \mathbf{k}$  $\mathbf{j} \cdot \mathbf{x} \cdot \mathbf{k} = \mathbf{i}$ i x i = 0 23:  $\mathbf{i} \mathbf{x} \mathbf{i} = \mathbf{0}$  $b_1 \ b_2 \ b_3$  $k \ge i = j$  $\mathbf{k} \mathbf{x} \mathbf{k} = \mathbf{0}$ 24: Volume 25: 1/6 volume of the parallelepiped

| Item-2   | <u>.</u>   | Encircle | e the cor | rect answ  | wers: |          |            |       |          |              |
|----------|------------|----------|-----------|------------|-------|----------|------------|-------|----------|--------------|
| 1: F     | 2: F       | 3: F     | 4: F      | 5: F       | 6: F  | 7: T     | 8: F       | 9: T  | 10: T    | 11: F        |
| 12: F    | 13: T      | 14: F    | 15: i) F  | ii) F iii) | F     | 16: i) F | ii) F iii) | F     | 17: i) F | ii) F iii) F |
| 18: i) F | ii) F iii) | F        | 19: F     | 20: T      | 21: F | 22: F    | 23: T      | 24: T | 25: i) T | ii) T iii) T |

| Item-3: |       | M.C.Qs: |       |       |       |       |       |       |       |       |       |
|---------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1: b    | 2: d  | 3: b    | 4: a  | 5: c  | 6: d  | 7: c  | 8: b  | 9: c  | 10: a | 11: c | 12: b |
| 13: a   | 14: b | 15: a   | 16: b | 17: a | 18: b | 19: d | 20: a | 21: d | 22: b | 23: c | 24: b |
| 25: b   |       |         |       |       |       |       |       |       |       |       |       |

**Item-4:** Match the items in the columns A with column B and write the correct answer in column C:

| <u>Q.1:</u>  | a: 5 | b: 3 | c: 4         | d: 1 | e: 2 |
|--------------|------|------|--------------|------|------|
| <b>Q.2:</b>  | a: 5 | b: 4 | c: 2         | d: 3 | e: 1 |
| <u>Q.3:</u>  | a: 5 | b: 4 | c: 3         | d:1  | e: 2 |
| <u>Q.4:</u>  | a: 5 | b: 1 | c: 2         | d: 3 | e: 4 |
| <u>Q.5:</u>  | a: 5 | b: 4 | c: 2         | d: 3 | e: 1 |
| <u>Q.6:</u>  | a: 5 | b: 4 | c: 2         | d: 1 | e: 3 |
| <u>Q.7:</u>  | a: 5 | b: 4 | c: 3         | d: 2 | e: 1 |
| <u>Q.8:</u>  | a: 4 | b: 5 | <b>c</b> : 1 | d: 2 | e: 3 |
| <u>Q.9:</u>  | a: 5 | b: 4 | <b>c</b> : 1 | d: 2 | e: 3 |
| <u>Q.10:</u> | a: 5 | b: 4 | c: 1         | d: 2 | e: 3 |