MathCity.org

Merging man and maths

Federal Board - Arraal 2008 Paper II Mathematics Paper-II , Time Allowed: 2.40 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc

Section –B (4 ´ 10 =40 marks)		
Q # 2. Attempt any TEN parts. Graph paper will be supplied on demand.		
(i) Determine whether the given function is even or odd: $f(x) = x^{2/3} + 6$	Ex 1.1 – 9(iv) – p11	
(ii) Evaluate; $\lim_{q\to 0} \frac{\tan q - \sin q}{\sin^3 q}$.	Ex 1.3 – 3(xii) – p27	
(iii) Find $\frac{dy}{dx}$ if $x = y \sin y$.	Ex 2.5 – 3 – p79	
(iv) Differentiate a^x w.r.t x by ab-intio method. ($a > 0$).	Ex 2.6 – Art2.10 – p80	
(v) Show that $y = \frac{\ln x}{x}$ has maximum value at $x = e$.	Ex 2.9 – 4 – p113	
(vi) Evaluate; $\int \sec x dx$	Ex 3.3 – Exp5(ii) – 133	
(vii) Evaluate: $\int \ln(x + \sqrt{x^2 + 1}) dx$	Ex 3.4 – Exp5 – p139	
(viii) Find the area above the x-axis bounded by curve $y^2 = 3 - x$ from $x = -1$ to $x = 2$	Ex 3.7 – 11 – p168	
(ix) Find h such that points $A(-1,h)$, $B(3,2)$ and $C(7,3)$ are collinear	Ex 4.1 – 7 – p186	
(x) Find an equation of the perpendicular bisector joining the points $A(13,5)$ and $B(19,8)$.	Ex 4.3 – 11 – p216	
(xi) Show that line $2x + 3y - 13 = 0$ is tangent to the circle $x^2 + y^2 + 6x - 4y = 0$	Ex 6.1 – 6 – p256	
(xii) write an equation of the parabola whose focus is $F(2,5)$ and directrix is $y=1$.	Ex 6.4 – 2(ii) – p281	
(xiii) Show that the vectors $2\underline{i} - \underline{j} + \underline{k}$, $\underline{i} - 3\underline{j} - 5\underline{k}$ and $3\underline{i} - 4\underline{j} - 4\underline{k}$ form sides of a right angle triangle	Ex 7.3 – Exp6– p347	
(xiv) Find the points of intersection of $\frac{x^2}{18} + \frac{y^2}{8} = 1$ and $\frac{x^2}{3} - \frac{y^2}{3} = 1$	Ex 6.7 – 8 – p309	

Section C (40 Marks)		
Note: Attempt any FIVE Questions. Graph paper will be supplied on demand.		
Q # 3. If <i>q</i> is measured in radian then prove that $\lim_{q \to 0} \frac{\sin q}{q} = 1$.	Ex 1.3 – Art1.5.8 – p25	
Q # 4 . The perimeter of a triangle is $20cm$. If one side is of length $8cm$, what are lengths of other two sides of maximum area of triangle.	Ex 2.10 – Exp3 – p115	

Q # 5. Evaluate; $\int_{0}^{\frac{p}{2}} \frac{\sin x}{(1+\cos x)(2+\cos x)} dx$.	Ex 3.6 -32 – p164
Q # 6. Find the area of region bounded by the triangle whose sides are: 7x - y - 10 = 0; $10x + y - 41 = 0$; $3x + 2y + 3 = 0$.	Ex 4.4 – 14 – p224
Q #7.Minimize $z = 2x + y$ subject to the constraints $x + y \ge 3$, $7x + 5y \le 35$, $x \ge 0$, $y \ge 0$.	Ex 5.3 – 4 – p248
Q # 8. Find an equation of the ellipse having vertices $(0,\pm5)$, eccentricity $\frac{3}{5}$. And sketch the graph	Ex 6.5 – 1(vi) – p296
Q # 9. Prove by the vector method that perpendicular bisectors of the sides of triangle are concurrent	Ex 7.3 – 8 – p350

Chart between marks of Question from Exercises and Examples

For news and updates visit http://www.MathCity.org

Print on Legal page for best view

MathCity.org is really very thankful to *Miss Sumbul* of Punjab College, Sargodha for providing this paper in Document format.