Section - B ($4 \times 10=40$ marks)

Q \# 2. Attempt any TEN parts. Graph paper will be supplied on demand.
(i) Determine whether the given function is even or odd:

$f(x)=x^{2 / 3}+6$	Ex 1.1-9(iv) - p11
(ii) Evaluate; $\lim _{\theta \rightarrow 0} \frac{\tan \theta-\sin \theta}{\sin ^{3} \theta}$	Ex 1.3-3(xii)-p27
(iii) Find $\frac{d y}{d x}$ if $x=y \sin y$.	Ex 2.5-3-p79
(iv) Differentiate a^{x} w.r.t x by ab-intio method. $(a>0)$.	$\begin{aligned} & \text { Ex } 2.6 \text { - Art } 2.10 \text { - } \\ & \text { p80 } \end{aligned}$
(v) Show that $y=\frac{\ln x}{x}$ has maximum value at $x=e$.	Ex 2.9-4-p113
(vi) Evaluate; $\int \sec x d x$	$\begin{aligned} & \text { Ex } 3.3-\operatorname{Exp5}(\mathrm{ii})- \\ & 133 \\ & \hline \end{aligned}$
(vii) Evaluate: $\quad \int \ln \left(x+\sqrt{x^{2}+1}\right) d x$	Ex 3.4 - Exp5-p139
(viii) Find the area above the x -axis bounded by curve $y^{2}=3-x$ from $x=-1$ to $x=2$	Ex 3.7-11-p168

(ix) Find h such that points $A(-1, h), B(3,2)$ and $C(7,3)$ are collinear	Ex 4.1-7-p186
(\mathbf{x}) Find an equation of the perpendicular bisector joining the points $A(13,5)$ and $B(19,8)$.	Ex $4.3-11-\mathrm{p} 216$

(xi) Show that line $2 x+3 y-13=0$ is tangent to the circle	Ex $6.1-6-\mathrm{p} 256$
$x^{2}+y^{2}+6 x-4 y=0$	

(xii) write an equation of the parabola whose focus is $F(2,5)$ and directrix is $y=1$.
(xiii) Show that the vectors $2 \underline{i}-\underline{j}+\underline{k}, \underline{i}-3 \underline{j}-5 \underline{k}$ and $3 \underline{i}-4 \underline{j}-4 \underline{k}$

Ex 6.4-2(ii) - p281 form sides of a right angle triangle..
(xiv) Find the points of intersection of $\frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ and $\frac{x^{2}}{3}-\frac{y^{2}}{3}=1$

Ex 7.3 - Exp6- p347

Ex 6.7-8-p309

Section C ($\mathbf{4 0}$ Marks)	
Note: Attempt any FIVE Questions. Graph paper will be supplied on demand.	
Q \# 3. If θ is measured in radian then prove that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.	Ex 1.3 - Art1.5.8 - p25
Q \# 4. The perimeter of a triangle is 20 cm . If one side is of length 8cm, what are lengths of other two sides of maximum area of triangle.	Ex $2.10-$ Exp3 - p115

Q \# 5. Evaluate; $\quad \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{(1+\cos x)(2+\cos x)} d x$.	Ex 3.6-32-p164
Q \# 6. Find the area of region bounded by the triangle whose sides are: $7 x-y-10=0$ $10 x+y-41=0$ $3 x+2 y+3=0$	Ex 4.4-14-p224
Q \# 7.Minimize $z=2 x+y$ subject to the constraints $x+y \geq 3$, $7 x+5 y \leq 35, x \geq 0, y \geq 0$.	Ex 5.3-4-p248
Q \# 8. Find an equation of the ellipse having vertices $(0, \pm 5)$, eccentricity $\frac{3}{5}$. And sketch the graph	Ex 6.5-1(vi) - p296
Q \# 9. Prove by the vector method that perpendicular bisectors of the sides of triangle are concurrent	Ex 7.3-8-p350

For news and updates visit http:/ / www.MathCity.org
Print on Legal page for best view

MathCity.org is really very thankful to Miss Sumbul of Punjab College, Sargodha for providing this paper in Document format.

