mathcity.org

Section - B (4 $\times 10=\mathbf{4 0}$ marks)

Q \# 2. Attempt any TEN parts. Graph paper will be supplied on demand.

(i) Evaluate: $\quad \lim _{\theta \rightarrow 0} \frac{1-\cos p \theta}{1-\cos q \theta}$	Ex 1.3-3(xi) - p27
(ii) Discuss the continuity of $f(x)$ at $x=c$	
$f(x)=\left\{\begin{array}{lll} 2 x+5 & \text { if } & x \leq 2 \\ 4 x+1 & \text { if } & x>2 \end{array}, c=2\right.$	Ex 1.4-2(i) - p28
(iii) If $y=\tan \left(2 \operatorname{Tan}^{-1} \frac{x}{2}\right)$, show that $\frac{d y}{d x}=\frac{4\left(1+y^{2}\right)}{4+x^{2}}$.	Ex 2.5-Exp2-p78
(iv) Find $\frac{d y}{d x}$ if $y=x^{2} \ln \frac{1}{x}$.	Ex 2.6-2(iv) - p89
(v) Find the differential equation $x^{2}(2 y+1) \frac{d y}{d x}-1=0$	Ex 3.8-1(ii) - p177
(vi) Evaluate: $\int \frac{\cot \sqrt{x}}{\sqrt{x}} d x$	Ex 3.3-Exp4-p132
(vii) Evaluate: $\int \frac{x \operatorname{Sin}^{-1} x}{\sqrt{1-x^{2}}} d x$	Ex 3.4-1(xxi) - p144
(viii) Find an equation of the perpendicular bisector joining the points $A(3,5)$ and $B(9,8)$.	Ex 4.3-11-p216
(ix) Determine the value of p such that the lines $2 x-3 y-1=0$, $3 x-y-5=0$ and $3 x+p y+8=0$ meet at a point.	Ex 4.4-5-p223
(x) Graph the solution set of linear inequality in $x y$ - plane: $2 x+1 \geq 0$ (use graph paper)	Ex 5.1-1(v) - p236
(xi) Find an equation of the parabola whose focus is $F(-3,4)$ and directrix is $3 x-4 y+5=0$.	Ex 6.4 - Exp2 - p277
(xii) Tangent are drawn from $(-3,4)$ to the circle $x^{2}+y^{2}=21$. Find an equation of the line joining the points of contact.	Ex $6.2-$ Exp $8-p 263$
(xiii) Find the eccentricity, the coordinate of the vertices and foci of the hyperbola $\frac{y^{2}}{16}-\frac{x^{2}}{49}=1$.	Ex 6.6 - Exp3-p296
(xiv) If $\underline{a}=3 \underline{i}-\underline{j}-4 \underline{k}, \underline{b}=-2 \underline{i}-4 \underline{j}-3 \underline{k}$ and $\underline{c}=\underline{i}+2 \underline{j}-\underline{k}$. Find a unit vector parallel to $3 \underline{a}-2 \underline{b}+4 \underline{c}$.	Ex 7.2-6-p342

Section C (40 Marks (5+5 each))

Note: Attempt any FOUR questions. Graph paper will be supplied on demand.
Q \# 3 (a) If θ is measured in radian then prove that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.
(b) If $x=a \cos ^{3} \theta, y=b \sin ^{3} \theta$, show that $a \frac{d y}{d x}+b \tan \theta=0$.

Ex 1.3 - Art1.5.8p25

Ex 2.5-8-p79

Q \# 4 (a). Find the dimensions of a rectangular garden having perimeter 80 meters if its area is to be maximum. (b) Evaluate: $\int e^{-x} \sin 2 x d x$.	Ex 2.10-8-p117 Ex 3.4-2(vi) - p144
Q \# 5 (a) If $y=\left(\cos ^{-1} x\right)^{2}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$. (b) Maximize the function defined as: $f(x, y)=2 x+3 y$ subject to the constraints $2 x+y \leq 8 ; x+2 y \leq 14 ; x \geq 0 ; y \geq 0$.	$\begin{aligned} & \text { Ex 2.7-8-p95 } \\ & \text { Ex 5.3-5-p248 } \end{aligned}$
Q \# 6 (a) Evaluate: $\quad \int \sqrt{1-\cos 2 x} d x, \quad(1-\cos 2 x>0)$ (b) Find the joint equation of the lines through the origin and perpendicular the lines $a x^{2}+2 h x y+b y^{2}=0$.	Ex 3.2-2(vii) - p131 Ex 4.5-8-p228
Q \# 7 (a) Find equations of two parallel lines perpendicular to $2 x-y+3=0$ such that the product of the $x-$ and y-intercept of each is 3 . (b) Find an equation of the parabola whose focus is $F(-3,1)$ and directrix is $x-2 y-3=0$.	Ex 4.3-26-p218 Ex 6.4-2(iii) - p281
Q \#8 (a) Find equation of circle of radius 2 and tangent to the line $x-y-4=0$ at $A(1,-3)$. (b) Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side and half as long. Use vector method.	Ex 6.1-9-p256 Ex 7.1-14-p335
Q \# 9 (a) Find the unit vector perpendicular to both \underline{a} and \underline{b}. Also find sine of angle between them where $\underline{a}=\underline{\hat{i}}+\underline{\hat{j}}$ and $\underline{b}=\underline{\hat{i}}-\underline{\hat{j}}$. (b) For the real valued function $f(x)=\frac{2 x+1}{x-1}, x>1$. Find $f^{-1}(x)$ and verify $f\left(f^{-1}(x)\right)=f^{-1}(f(x))$.	Ex 7.4-2(iv) -p358 Ex 1.2-2(iv) - p14

Chart between Question from Exercises and Examples

Ask us at http:/ / forum.mathcity.org

For news and updates visit http:/ / www.mathcity.org

