mathcity.org

Merging man and maths

Federal Board - Arraal 2006 Paper II Mathematics Paper-II , Time Allowed: 2.40 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc

Section –B (4 ´ 10 =40 marks)		
Q # 2. Attempt any TEN parts. Graph paper will be supplied on demand.		
(i) Evaluate: $\lim_{q \to 0} \frac{1 - \cos pq}{1 - \cos qq}$	Ex 1.3 – 3(xi) – p27	
(ii) Discuss the continuity of $f(x)$ at $x = c$		
$f(x) = \begin{cases} 2x+5 & if x \le 2\\ 4x+1 & if x > 2 \end{cases}, \ c = 2$	Ex 1.4 – 2(i) – p28	
(iii) If $y = \tan\left(2Tan^{-1}\frac{x}{2}\right)$, show that $\frac{dy}{dx} = \frac{4(1+y^2)}{4+x^2}$.	Ex 2.5 – Exp2 – p78	
(iv) Find $\frac{dy}{dx}$ if $y = x^2 \ln \frac{1}{x}$.	Ex 2.6 – 2(iv) – p89	
(v) Find the differential equation $x^2(2y+1)\frac{dy}{dx}-1 = 0$	Ex 3.8 – 1(ii) – p177	
(vi) Evaluate: $\int \frac{\cot\sqrt{x}}{\sqrt{x}} dx$	Ex 3.3 – Exp4 – p132	
(vii) Evaluate: $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$	Ex 3.4 – 1(xxi) – p144	
(viii) Find an equation of the perpendicular bisector joining the points $A(3,5)$ and $B(9,8)$.	Ex 4.3 – 11 – p216	
(ix) Determine the value of p such that the lines $2x-3y-1 = 0$, 3x-y-5 = 0 and $3x + py + 8 = 0$ meet at a point.	Ex 4.4 – 5 – p223	
(x) Graph the solution set of linear inequality in xy – plane: $2x+1 \ge 0$ (use graph paper)	Ex 5.1 – 1(v) – p236	
(xi) Find an equation of the parabola whose focus is $F(-3,4)$ and directrix is $3x - 4y + 5 = 0$.	Ex 6.4 – Exp2 – p277	
(xii) Tangent are drawn from $(-3,4)$ to the circle $x^2 + y^2 = 21$. Find an equation of the line joining the points of contact.	Ex 6.2 – Exp8 – p263	
(xiii) Find the eccentricity, the coordinate of the vertices and foci of the hyperbola $\frac{y^2}{16} - \frac{x^2}{49} = 1$.	Ex 6.6 – Exp3 – p296	
(xiv) If $\underline{a} = 3\underline{i} - \underline{j} - 4\underline{k}$, $\underline{b} = -2\underline{i} - 4\underline{j} - 3\underline{k}$ and $\underline{c} = \underline{i} + 2\underline{j} - \underline{k}$. Find a unit vector parallel to $3\underline{a} - 2\underline{b} + 4\underline{c}$.	Ex 7.2 – 6 – p342	

Section C (40 Marks (5+5 each))

Note: Attempt any FOUR questions. Graph paper will be supplied on demand.

Q # 3 (a) If q is measured in radian then prove that $\lim_{q\to 0} \frac{\sin q}{q} = 1$.	Ex 1.3 – Art1.5.8 – p25
(b) If $x = a\cos^3 q$, $y = b\sin^3 q$, show that $a\frac{dy}{dx} + b\tan q = 0$.	Ex 2.5 – 8 – p79

Q # 4 (a). Find the dimensions of a rectangular garden having perimeter 80 meters if its area is to be maximum.	Ex 2.10 – 8 – p117
(b) Evaluate: $\int e^{-x} \sin 2x dx$.	Ex 3.4 – 2(vi) – p144
Q # 5 (a) If $y = (\cos^{-1} x)^2$, prove that $(1 - x^2) y_2 - xy_1 - 2 = 0$.	Ex 2.7 - 8 – p95
(b) Maximize the function defined as: $f(x, y) = 2x + 3y$ subject to the constraints $2x + y \le 8$; $x + 2y \le 14$; $x \ge 0$; $y \ge 0$.	Ex 5.3 – 5 – p248
Q # 6 (a) Evaluate: $\int \sqrt{1 - \cos 2x} dx$, $(1 - \cos 2x > 0)$	Ex 3.2 – 2(vii) – p131
(b) Find the joint equation of the lines through the origin and perpendicular the lines $ax^2 + 2hxy + by^2 = 0$.	Ex 4.5 – 8 – p228
Q # 7 (a) Find equations of two parallel lines perpendicular to $2x - y + 3 = 0$ such that the product of the $x -$ and y -intercept of each is 3.	Ex 4.3 – 26 – p218
(b) Find an equation of the parabola whose focus is $F(-3,1)$ and directrix is $x-2y-3=0$.	Ex 6.4 – 2(iii) – p281
Q # 8 (a) Find equation of circle of radius 2 and tangent to the line $x - y - 4 = 0$ at $A(1, -3)$.	Ex 6.1 – 9 – p256
(b) Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side and half as long. Use vector method.	Ex 7.1 – 14 – p335
Q # 9 (a) Find the unit vector perpendicular to both \underline{a} and \underline{b} . Also find sine of angle between them where $\underline{a} = \hat{\underline{i}} + \hat{\underline{j}}$ and $\underline{b} = \hat{\underline{i}} - \hat{\underline{j}}$.	Ex 7.4 – 2(iv) – p358
(b) For the real valued function $f(x) = \frac{2x+1}{x-1}$, $x > 1$. Find $f^{-1}(x)$ and verify $f(f^{-1}(x)) = f^{-1}(f(x))$.	Ex 1.2 – 2(iv) – p14

Chart between Question from Exercises and Examples

Questions
Examples

Ask us at http://forum.mathcity.org For news and updates visit http://www.mathcity.org