Exercise 7.3 (Solutions) Page 349
Calculus and Analytic Geometry, MATHEMATICS 12
@ http://www.mathcity.org, Version Available online: 3.0

Question \# 1

Find the cosine of the angle θ between \underline{u} and \underline{v} :
(i)

$$
\underline{u}=3 \underline{\hat{i}}+\underline{\hat{j}}-\underline{\hat{k}}, \underline{v}=2 \underline{\hat{i}}-\underline{\hat{j}}+\underline{\hat{k}}
$$

(ii) $\quad \underline{u}=\underline{\hat{i}}-3 \underline{\hat{j}}+4 \underline{\hat{k}}, \underline{v}=4 \underline{\hat{i}}-\underline{\hat{j}}+3 \underline{\hat{k}}$
(iii)

$$
\begin{equation*}
\underline{u}=[-3, \overline{5}], \underline{v}=[6,-2] \tag{iv}
\end{equation*}
$$

$$
\underline{u}=[2,-3,1], \underline{v}=[2,4,1]
$$

Solution

(i)

$$
\begin{aligned}
& \underline{u}=3 \underline{i}+\underline{\hat{j}}-\underline{\hat{k}}, \quad \underline{v}=2 \underline{\hat{i}}-\underline{\hat{j}}+\underline{\hat{k}} \\
&|\underline{u}|= \sqrt{(3)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{9+1+1}=\sqrt{11} \\
&|\underline{v}|=\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{4+1+1}=\sqrt{6} \\
& \underline{u} \cdot \underline{v}=(3 \underline{i}+\underline{\hat{j}}-\underline{\hat{k}}) \cdot(2 \underline{i}-\underline{\hat{j}}+\underline{\hat{k}}) \\
&=(3)(2)+(1)(-1)+(-1)(1)=6-1-1=4
\end{aligned}
$$

Now $\quad \underline{u} \cdot \underline{v}=|\underline{u}||\underline{v}| \cos \theta$

$$
\Rightarrow \cos \theta=\frac{\underline{u} \cdot \underline{v}}{|\underline{u}||\underline{v}|}=\frac{4}{\sqrt{11} \times \sqrt{6}} \quad \Rightarrow \cos \theta=\frac{4}{\sqrt{66}}
$$

(ii) Do yourself as above

$$
\begin{equation*}
\underline{u}=[-3,5]=-3 \underline{\hat{i}}+5 \underline{\hat{j}} \quad, \quad \underline{v}=[6,-2]=6 \underline{\hat{i}}-2 \underline{\hat{j}} \tag{iii}
\end{equation*}
$$

Now do yourself as above

$$
\begin{equation*}
\underline{u}=[2,-3,1]=2 \underline{\hat{i}}-3 \underline{\hat{j}}+\underline{\hat{k}} \quad, \quad \underline{v}=2 \underline{\hat{i}}+4 \underline{\hat{j}}+\underline{\hat{k}} \quad \text { Now do yourself as } \text { (i) } \tag{iv}
\end{equation*}
$$

Question \# 2

Calculate the projection of \underline{a} along \underline{b} and projection of \underline{b} along \underline{a} when:
(i)

$$
\underline{a}=\underline{\hat{i}}-\underline{\hat{k}}, \underline{b}=\underline{\hat{j}}+\underline{\hat{k}}
$$

$$
\text { (ii) } \quad \underline{a}=3 \underline{\hat{i}}+\underline{\hat{j}}-\underline{\hat{k}}, \underline{b}=-2 \underline{\hat{i}}-\underline{\hat{j}}+\underline{\hat{k}}
$$

Solution

$$
\begin{equation*}
\underline{a}=\underline{\hat{i}}-\underline{\hat{k}} \quad, \quad \underline{b}=\underline{\hat{j}}+\underline{\hat{k}} \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& |\underline{a}|=\sqrt{(1)^{2}+(0)^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2} \\
& |\underline{b}|=\sqrt{(0)^{2}+(1)^{2}+(1)^{2}}=\sqrt{1+1}=\sqrt{2} \\
& \underline{a} \cdot \underline{b}=(\underline{\hat{i}}-\underline{\hat{k}}) \cdot(\underline{\hat{j}}+\underline{\hat{k}})=(1)(0)+(0)(1)+(-1)(1)=0+0-1=-1
\end{aligned}
$$

Since $\quad \underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$
So projection of \underline{a} along $\underline{b}=|\underline{a}| \cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{b}|}=\frac{-1}{\sqrt{2}}$
Also projection of \underline{b} along $\underline{a}=|\underline{b}| \cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}|}=\frac{-1}{\sqrt{2}}$
(ii)

Question \# 3

Find a real number α so that the vectors \underline{u} and \underline{v} are perpendicular.
(i) $\underline{u}=2 \alpha \underline{\hat{i}}+\underline{\hat{j}}-\underline{\hat{k}}, \underline{v}=\underline{\hat{i}}+\alpha \underline{\hat{j}}+4 \underline{\hat{k}}$
(ii) $\underline{u}=\alpha \underline{\hat{i}}+2 \alpha \underline{\hat{j}}-\underline{\hat{k}}, \underline{v}=\underline{\hat{i}}+\alpha \underline{\hat{j}}+3 \underline{\hat{k}}$

Solution

(i) Do yourself as (ii) below
(ii) $\quad \underline{u}=\alpha \underline{\hat{i}}+2 \alpha \underline{\hat{j}}-\underline{\hat{k}} \quad, \quad \underline{v}=\underline{\hat{i}}+\alpha \underline{\hat{j}}+3 \underline{\hat{k}}$

Since \underline{u} and \underline{v} are perpendicular therefore $\underline{u} \cdot \underline{v}=0$

$$
\begin{aligned}
& \Rightarrow(\alpha \underline{i}+2 \alpha \underline{\hat{j}}-\hat{\underline{k}}) \cdot(\hat{i}+\alpha \underline{\hat{j}}+3 \hat{k})=0 \\
& \Rightarrow(\alpha)(1)+(2 \alpha)(\alpha)+(-1)(3)=0 \\
& \Rightarrow \alpha+2 \alpha^{2}-3=0 \quad \Rightarrow 2 \alpha^{2}+\alpha-3=0 \\
& \Rightarrow 2 \alpha^{2}+3 \alpha-2 \alpha-3=0 \quad \Rightarrow \alpha(2 \alpha+3)-1(2 \alpha+3)=0 \\
& \Rightarrow(2 \alpha+3)(\alpha-1)=0 \\
& \Rightarrow 2 \alpha+3=0 \quad \text { or } \quad \alpha-1=0 \\
& \Rightarrow \alpha=-\frac{3}{2} \quad \text { or } \quad \alpha=1
\end{aligned}
$$

Question \# 4

Find the number z so that the triangle with vertices $A(1,-1,0), B(-2,2,1)$ and $C(0,2, z)$ is a right triangle with right angle at C.

Solution

Given vertices: $\quad A(1,-1,0), B(-2,2,1)$ and $C(0,2, z)$

$$
\begin{aligned}
& \overrightarrow{C A}=(1-0) \underline{\hat{i}}+(-1-2) \underline{\hat{j}}+(0-z) \underline{\hat{k}}=\underline{\hat{i}}-3 \underline{\hat{j}}-z \underline{\hat{k}} \\
& \overrightarrow{C B}=(-2-0) \underline{\hat{i}}+(2-2) \underline{\hat{j}}+(1-z) \underline{\hat{k}}=-2 \underline{\hat{i}}+(1-z) \underline{\hat{k}}
\end{aligned}
$$

Now $\overrightarrow{C A}$ is \perp to $\overrightarrow{C B}$ therefore $\overrightarrow{C A} \cdot \overrightarrow{C B}=0$

$$
\begin{aligned}
& \Rightarrow(\hat{i}-3 \hat{\underline{j}}-z \underline{\hat{k}}) \cdot(-2 \hat{\underline{i}}+(1-z) \underline{\hat{k}})=0 \\
& \Rightarrow(1)(-2)+(-3)(0)+(-z)(1-z)=0 \\
& \Rightarrow-2+0-z+z^{2}=0 \quad \Rightarrow z^{2}-z-2=0 \\
& \Rightarrow z^{2}-2 z+z-2=0 \quad \Rightarrow z(z-2)+1(z-2)=0 \\
& \Rightarrow(z-2)(z+1)=0 \\
& \Rightarrow z-2=0 \quad \text { or } \quad z+1=0 \\
& \Rightarrow z=2 \quad \text { or } \quad z=-1
\end{aligned}
$$

Question \# 5

If \underline{v} is a vector for which
$\underline{v} \cdot \underline{\hat{i}}=0, \quad \underline{v} \cdot \underline{\hat{j}}=0, \quad \underline{v} \cdot \underline{\hat{k}}=0$, find \underline{v}.

Solution

Suppose $\underline{v}=a_{1} \underline{\hat{i}}+a_{2} \underline{\hat{j}}+a_{3} \underline{\hat{k}}$
Since $\quad \underline{v} \cdot \underline{\hat{i}}=0 \Rightarrow\left(a_{1} \underline{\hat{i}}+a_{2} \underline{\hat{j}}+a_{3} \underline{\hat{k}}\right) \cdot \underline{\hat{i}}=0$

$$
\begin{aligned}
& \Rightarrow a_{1} \underline{\hat{i}} \cdot \underline{\hat{i}}+a_{2} \underline{\hat{j}} \cdot \underline{\hat{i}}+a_{3} \underline{\hat{k}} \cdot \underline{\hat{i}}=0 \\
& \Rightarrow a_{1}(1)+a_{2}(0)+a_{3}(0)=0 \quad \Rightarrow a_{1}=0
\end{aligned}
$$

Also $\underline{v} \cdot \underline{\hat{j}}=0 \quad \Rightarrow\left(a_{1} \underline{\hat{i}}+a_{2} \underline{\hat{j}}+a_{3} \underline{\hat{k}}\right) \cdot \underline{\hat{j}}=0$
$\Rightarrow a_{1} \underline{\hat{i}} \cdot \underline{\hat{j}}+a_{2} \underline{\hat{j}} \cdot \underline{\hat{j}}+a_{3} \underline{\hat{k}} \cdot \underline{\hat{j}}=0$
$\Rightarrow a_{1}(0)+a_{2}(1)+a_{3}(0)=0 \quad \Rightarrow a_{2}=0$
Also $\underline{v} \cdot \underline{\hat{k}}=0 \Rightarrow\left(a_{1} \underline{\hat{i}}+a_{2} \underline{\hat{j}}+a_{3} \underline{\hat{k}}\right) \cdot \underline{\hat{k}}=0$
$\Rightarrow a_{1} \underline{\hat{i}} \cdot \underline{\hat{k}}+a_{2} \underline{\hat{j}} \cdot \underline{\hat{k}}+a_{3} \underline{\hat{k}} \cdot \underline{\hat{k}}=0$
$\Rightarrow a_{1}(0)+a_{2}(0)+a_{3}(1)=0 \quad \Rightarrow a_{3}=0$
Hence

$$
\underline{v}=(0) \underline{i}+(0) \underline{\hat{j}}+(0) \underline{\hat{k}}=0
$$

Question \# 6

(i) Show that the vectors $3 \underline{\hat{i}}-2 \underline{\hat{j}}+\underline{\hat{k}}, \underline{\hat{i}}-3 \underline{\hat{j}}+5 \underline{\hat{k}}$ and $2 \underline{\hat{i}}+\underline{\hat{j}}-4 \underline{\hat{k}}$ from a right angle.
(ii) Show that the set of points $P=(1,3,2), Q=(4,1,4)$ and $R(6,5,5)$ from a right triangle.

Solution

(i) Let $\quad \underline{a}=3 \underline{\hat{i}}-2 \underline{\hat{j}}+\underline{\hat{k}} \quad, \quad \underline{b}=\underline{\hat{i}}-3 \underline{\hat{j}}+5 \underline{\hat{k}} \quad$ and $\quad \underline{c}=2 \underline{\hat{i}}+\underline{\hat{j}}-4 \underline{\hat{k}}$

Now $\underline{b}+\underline{c}=\underline{\hat{i}}-3 \underline{\hat{j}}+5 \underline{\hat{k}}+2 \underline{\hat{i}}+\underline{\hat{j}}-4 \underline{\hat{k}}$

$$
=3 \underline{\hat{i}}-2 \underline{\hat{j}}+\underline{\hat{k}}=\underline{a}
$$

Hence $\underline{a}, \underline{b}$ and \underline{c} form a triangle.
Now $\underline{a} \cdot \underline{b}=(3 \underline{\hat{i}}-2 \underline{\hat{j}}+\underline{\hat{k}}) \cdot(\underline{\hat{i}}-3 \underline{\hat{j}}+5 \underline{\hat{k}})$

$$
=(3)(1)+(-2)(-3)+(1)(5)=3+6+5=14
$$

$$
\underline{b} \cdot \underline{c}=(\underline{\hat{i}}-3 \underline{\hat{j}}+5 \underline{\hat{k}}) \cdot(2 \underline{\hat{i}}+\underline{\hat{j}}-4 \underline{\hat{k}})
$$

$$
=(1)(2)+(-3)(1)+(5)(-4)=2-3-20=-21
$$

$$
\underline{c} \cdot \underline{a}=(2 \underline{\hat{i}}+\underline{\hat{j}}-4 \underline{\hat{k}}) \cdot(3 \underline{\hat{i}}-2 \underline{\hat{j}}+\underline{\hat{k}})
$$

$$
=(2)(3)+(1)(-2)+(-4)(1)=6-2-4=0
$$

Since $\underline{c} \cdot \underline{a}=0$ therefore $\underline{c} \perp \underline{a}$
Hence $\underline{a}, \underline{b}$ and \underline{c} represents sides of right triangle.
(ii) Given: $P(1,3,2), Q(4,1,4)$ and $R(6,5,5)$

$$
\overrightarrow{P Q}=(4-1) \underline{\hat{i}}+(1-3) \underline{\hat{j}}+(4-2) \underline{\hat{k}}=3 \underline{\hat{i}}-2 \underline{\hat{j}}+2 \underline{\hat{k}}
$$

$$
\begin{aligned}
& \overrightarrow{Q R}=(6-4) \underline{\hat{i}}+(5-1) \underline{\hat{j}}+(5-4) \underline{\hat{k}}=2 \underline{\hat{i}}+4 \underline{\hat{j}}+\underline{\hat{k}} \\
& \overrightarrow{R P}=(1-6) \underline{\hat{i}}+(3-5) \underline{\hat{j}}+(2-5) \underline{\hat{k}}=-5 \underline{\hat{i}}-2 \underline{\hat{j}}-3 \underline{\hat{k}}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \overrightarrow{P Q}+\overrightarrow{Q R}+\overrightarrow{R P} \\
& =3 \underline{\hat{i}}-2 \underline{\hat{j}}+2 \underline{\hat{k}}+2 \underline{\hat{i}}+4 \underline{\hat{j}}+\underline{\hat{k}}-5 \underline{\hat{i}}-2 \underline{\hat{j}}-3 \underline{\hat{k}}=0
\end{aligned}
$$

Hence P, Q and R are vertices of triangle.
Now

$$
\begin{aligned}
\overrightarrow{P Q} \cdot \overrightarrow{Q R} & =(3 \underline{\hat{i}}-2 \underline{\hat{j}}+2 \underline{\hat{k}}) \cdot(2 \underline{\hat{i}}+4 \underline{\hat{j}}+\underline{\hat{k}}) \\
& =(3)(2)+(-2)(4)+(2)(1)=6-8+2=0 \\
\Rightarrow \overrightarrow{P Q} & \perp \overrightarrow{Q R}
\end{aligned}
$$

Hence P, Q and R are vertices of right triangle.

Question \# 7

Show that mid point of hypotenuse a right triangle is equidistant from its vertices.

Solution

Suppose a right triangle $O A B$. Let C be a midpoint of hypotenuse $A B$, then

$$
\begin{equation*}
\overrightarrow{C A}=-\overrightarrow{C B} \quad \Rightarrow|\overrightarrow{C A}|=|\overrightarrow{C B}| \tag{i}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \overrightarrow{O A}=\overrightarrow{O C}+\overrightarrow{C A} \\
& \overrightarrow{O B}=\overrightarrow{O C}+\overrightarrow{C B}
\end{aligned}
$$

Since $\overrightarrow{O A} \perp \overrightarrow{O B}$ therefore $\overrightarrow{O A} \cdot \overrightarrow{O B}=0$

$$
\begin{aligned}
& \Rightarrow(\overrightarrow{O C}+\overrightarrow{C A}) \cdot(\overrightarrow{O C}+\overrightarrow{C B})=0 \\
& \Rightarrow(\overrightarrow{O C}-\overrightarrow{C B}) \cdot(\overrightarrow{O C}+\overrightarrow{C B})=0 \quad \because \overrightarrow{C A}=-\overrightarrow{C B} \\
& \Rightarrow \overrightarrow{O C} \cdot(\overrightarrow{O C}+\overrightarrow{C B})-\overrightarrow{C B} \cdot(\overrightarrow{O C}+\overrightarrow{C B})=0 \\
& \Rightarrow \overrightarrow{O C} \cdot \overrightarrow{O C}+\overrightarrow{O C} \cdot \overrightarrow{C B}-\overrightarrow{C B} \cdot \overrightarrow{O C}-\overrightarrow{C B} \cdot \overrightarrow{C B}=0 \\
& \Rightarrow|\overrightarrow{O C}|^{2}+\overrightarrow{O C} \cdot \overrightarrow{C B}-\overrightarrow{O C} \cdot \overrightarrow{C B}-|\overrightarrow{C B}|^{2}=0 \\
& \Rightarrow|\overrightarrow{O C}|^{2}-|\overrightarrow{C B}|^{2}=0 \\
& \Rightarrow|\overrightarrow{O C}|^{2}=|\overrightarrow{C B}|^{2} \quad \Rightarrow \mid \overrightarrow{O C} \cdot \overrightarrow{C B}=\overrightarrow{C B} \cdot \overrightarrow{O C} \\
& \Rightarrow|\overrightarrow{C B}| \ldots \ldots \ldots \ldots . \text { (ii) }
\end{aligned}
$$

Combining (i) and (ii), we have

$$
|\overrightarrow{O C}|=|\overrightarrow{C A}|=|\overrightarrow{C B}|
$$

Hence midpoint of hypotenuse of right triangle is equidistant from its vertices.

Question \# 8

Prove that perpendicular bisectors of the sides of a triangle are concurrent.

Solution

Let A, B and C be a vertices of a triangle having position vectors $\underline{a}, \underline{b}$ and \underline{c} respectively.
Also consider D, E and F are midpoints of sides $\overline{A B}, \overline{B C}$ and $\overline{C A}$, then

$$
\begin{aligned}
& \text { p.v of } D=\overrightarrow{O D}=\frac{\underline{a}+\underline{b}}{2} \\
& \text { p.v of } E=\overrightarrow{O E}=\frac{\underline{b}+\underline{c}}{2} \\
& \text { p.v of } F=\overrightarrow{O F}=\frac{\underline{c}+\underline{a}}{2}
\end{aligned}
$$

Let right bisector on $\overline{A B}$ and $\overline{B C}$ intersect at point O, which is an origin.
Since $\overrightarrow{O D}$ is \perp to $\overrightarrow{A B}$
Therefore $\overrightarrow{O D} \cdot \overrightarrow{A B}=0$

$$
\begin{align*}
& \Rightarrow\left(\frac{\underline{a}+\underline{b}}{2}\right) \cdot(\underline{b}-\underline{a})=0 \quad \Rightarrow \frac{1}{2}(\underline{b}+\underline{a}) \cdot(\underline{b}-\underline{a})=0 \\
& \Rightarrow(\underline{b}+\underline{a}) \cdot(\underline{b}-\underline{a})=0 \quad \Rightarrow \underline{a} \cdot(\underline{b}-\underline{a})+\underline{b} \cdot(\underline{b}-\underline{a})=0 \\
& \Rightarrow \underline{a} \cdot \underline{b}-\underline{a} \cdot \underline{a}+\underline{b} \cdot \underline{b}-\underline{b} \cdot \underline{a}=0 \\
& \Rightarrow \underline{a} \cdot \underline{b}-|\underline{a}|^{2}+|\underline{b}|^{2}-\underline{a} \cdot \underline{b}=0 \quad \because \underline{a} \cdot \underline{b}=\underline{b} \cdot \underline{a} \\
& \Rightarrow|\underline{b}|^{2}-|\underline{a}|^{2}=0 \ldots \ldots \ldots . . \text { (i) } \tag{i}
\end{align*}
$$

Also $\overrightarrow{O E}$ is \perp to $\overrightarrow{B C}$
Therefore $\overrightarrow{O E} \cdot \overrightarrow{B C}=0 \Rightarrow\left(\frac{\underline{b}+\underline{c}}{2}\right) \cdot(\underline{c}-\underline{b})=0$
Similarly solving as above, we get

$$
\begin{equation*}
|\underline{c}|^{2}-|\underline{b}|^{2}=0 \ldots \ldots \ldots \ldots \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we have

$$
\begin{aligned}
& |\underline{b}|^{2}-|\underline{a}|^{2}+|\underline{c}|^{2}-|\underline{b}|^{2}=0+0 \\
\Rightarrow & |\underline{c}|^{2}-|\underline{a}|^{2}=0 \\
\Rightarrow & (\underline{c}+\underline{a}) \cdot(\underline{c}-\underline{a})=0 \\
\Rightarrow & \left(\frac{\underline{c}+\underline{a}}{2}\right) \cdot(\underline{c}-\underline{a})=0 \\
\Rightarrow & \overrightarrow{O F} \cdot \overrightarrow{A C}=0 \Rightarrow \overrightarrow{O F} \text { is } \perp \text { to } \overrightarrow{A C}
\end{aligned}
$$

i.e. $\overrightarrow{O F}$ is also right bisector of $\overrightarrow{A C}$.

Hence perpendicular bisector of the sides of the triangle are concurrent.

Question \# 9

Prove that the altitudes of a triangle are concurrent.

Solution

Consider A, B and C are vertices of triangle having position vectors $\underline{a}, \underline{b}$ and \underline{c} respectively. Let altitude on $\overrightarrow{A B}$ and $\overrightarrow{B C}$ intersect at origin $O(0,0)$.

Since $\overrightarrow{O C}$ is perpendicular to $\overrightarrow{A B}$

$$
\begin{align*}
& \Rightarrow \overrightarrow{O C} \cdot \overrightarrow{A B}=0 \\
& \Rightarrow \underline{c} \cdot(\underline{b}-\underline{a})=0 \\
& \Rightarrow \underline{c} \cdot \underline{b}-\underline{c} \cdot \underline{a}=0 \ldots \tag{i}
\end{align*}
$$

Also $\overrightarrow{O A}$ is perpendicular to $\overrightarrow{B C}$

$$
\begin{align*}
& \Rightarrow \overrightarrow{O A} \cdot \overrightarrow{B C}=0 \\
& \Rightarrow \underline{a} \cdot(\underline{c}-\underline{b})=0 \\
& \Rightarrow \underline{a} \cdot \underline{c}-\underline{a} \cdot \underline{b}=0 \ldots \tag{ii}
\end{align*}
$$

Adding (i) and

$$
\begin{aligned}
& \underline{c} \cdot \underline{b}-\underline{c} \cdot \underline{a}+\underline{a} \cdot \underline{c}-\underline{a} \cdot \underline{b}=0+0 \\
\Rightarrow & \underline{c} \cdot \underline{b}-\underline{c} \cdot \underline{a}+\underline{c} \cdot \underline{a}-\underline{a} \cdot \underline{b}=0 \\
\Rightarrow & \underline{c} \cdot \underline{b}-\underline{a} \cdot \underline{b}=0 \\
\Rightarrow & (\underline{c}-\underline{a}) \cdot \underline{b}=0 \\
\Rightarrow & \overrightarrow{A C} \cdot \overrightarrow{O B}=0 \quad \because \underline{a} \cdot \underline{c}=\underline{c} \cdot \underline{a} \\
\Rightarrow & \overrightarrow{A C} \text { is perpendicular to } \overrightarrow{A C} . \underline{c}-\underline{a}
\end{aligned}
$$

Hence altitude of the triangle are concurrent.

Question \# 10

Prove that the angle in a semi circle is a right angle.

Solution

Consider a semicircle having centre at origin $O(0,0)$ and A, B are end points of diameter having position vectors $\underline{a},-\underline{a}$
respectively. Let C be any point on a circle having position vector $\underset{c}{c}$.

Clearly radius of semicircle $=|\underline{a}|=|-\underline{a}|=|\underline{c}|$
Now $\quad \overrightarrow{A C}=\underline{c}-\underline{a}$

$$
\overrightarrow{B C}=\underline{c}-(-\underline{a})=\underline{c}+\underline{a}
$$

Consider

$$
\begin{array}{rlrl}
\overrightarrow{A C} \cdot \overrightarrow{B C} & =(\underline{c}-\underline{a}) \cdot(\underline{c}+\underline{a}) & \\
& =\underline{c} \cdot(\underline{c}+\underline{a})-\underline{a} \cdot(\underline{c}+\underline{a}) & & \\
& =\underline{c} \cdot \underline{c}+\underline{c} \cdot \underline{a}-\underline{a} \cdot \underline{c}-\underline{a} \cdot \underline{a} \\
& =|\underline{c}|^{2}+\underline{a} \cdot \underline{c}-\underline{a} \cdot \underline{c}+|\underline{a}|^{2} & & \because \underline{a} \cdot \underline{c}=\underline{c} \cdot \underline{a} \\
& =|\underline{c}|^{2}-|\underline{a}|^{2} \\
& =|\underline{c}|^{2}-|\underline{c}|^{2}=0 & & \because|\underline{a}|=|\underline{c}|
\end{array}
$$

This show $\overrightarrow{A C}$ is \perp to $\overrightarrow{B C}$ i.e. $\angle A C B=90^{\circ}$
Hence angle in a semi circle is a right angle.

Question \# 11

Prove that $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$

Solution

Consider two unit vectors $\underline{\hat{a}}$ and $\underline{\hat{b}}$ making angle α and $-\beta$ with +ive x-axis.

Then $\quad \underline{\hat{a}}=O A=\cos \alpha \underline{\hat{i}}+\sin \alpha \underline{\hat{j}}$
and

$$
\begin{aligned}
\underline{\hat{b}}=O B & =\cos (-\beta) \underline{\hat{i}}+\sin (-\beta) \underline{\hat{j}} \\
& =\cos \beta \underline{\hat{i}}-\sin \beta \underline{\hat{j}}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \underline{\hat{a}} \cdot \underline{\hat{b}}=(\cos \alpha \underline{\hat{i}}+\sin \alpha \underline{\hat{j}}) \cdot(\cos \beta \underline{\hat{i}}-\sin \beta \underline{\hat{j}}) \\
& \Rightarrow \underline{\hat{a}} \cdot \underline{\hat{b}}=\cos \alpha \cos \beta-\sin \alpha \sin \beta \text { (i) }
\end{aligned}
$$

But we have $\angle A O B=\alpha+\beta$

$$
\begin{align*}
& \Rightarrow \begin{array}{l}
\Rightarrow \underline{\underline{a}} \cdot \underline{\hat{b}}=|\underline{\hat{a}}|| | \underline{\hat{b}} \mid \cos (\alpha+\beta) \\
\\
\\
=(1)(1) \cos (\alpha+\beta) \quad \because|\underline{\hat{a}}|=|\underline{\hat{b}}|=1 \\
\Rightarrow \underline{\underline{a}} \cdot \underline{\hat{b}}=\cos (\alpha+\beta) \ldots \text { (ii) }
\end{array} .
\end{align*}
$$

Comparing (i) and(ii), we have

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

Question \# 12

Prove that in any triangle $A B C$.
(i) $b=a \cos C+c \cos A$
(ii) $c=a \cos B+b \cos A$
(ii) $b^{2}=c^{2}+a^{2}-2 c a \cos B$
(iv) $c^{2}=a^{2}+b^{2}-2 a b \cos C$

Solution

(i) Consider $\underline{a}, \underline{b}$ and \underline{c} are vectors along the sides of triangle $B C, C A$ and $A B$, also let $\quad|\underline{a}|=a,|\underline{b}|=b \quad$ and $\quad|\underline{c}|=c$ then form triangle,

$$
\underline{a}+\underline{b}+\underline{c}=0 \ldots \text { (i) }
$$

(i) $\Rightarrow \underline{b}=-\underline{a}-\underline{c}$

Taking dot product of above with \underline{b}, we have

$$
\begin{aligned}
\underline{b} \cdot \underline{b} & =(-\underline{a}-\underline{c}) \cdot \underline{b} \\
|\underline{b}|^{2} & =-\underline{a} \cdot \underline{b}-\underline{c} \cdot \underline{b} \\
& =-|\underline{a}||\underline{b}| \cos (\pi-C)-|\underline{c} \| \underline{b}| \cos (\pi-A) \\
& =|\underline{a}||\underline{b}| \cos C+|\underline{c}||\underline{b}| \cos A \\
\Rightarrow & b^{2}=a b \cos C+c b \cos A \\
\Rightarrow b & =a \cos C+c \cos A \quad \because \cos (\pi-B)=-\cos B
\end{aligned}
$$

(ii) From equation (i)

$$
\underline{c}=-\underline{a}-\underline{b}
$$

Taking dot product of above equation with \underline{c}.

$$
\underline{c} \cdot \underline{c}=(-\underline{a}-\underline{b}) \cdot \underline{c}
$$

Now do yourself as above.

(iii) From equation (i)

$$
\underline{b}=-\underline{a}-\underline{c}
$$

Taking dot product of above equation with \underline{b}

$$
\begin{array}{rlr}
\underline{b} \cdot \underline{b} & =(-\underline{a}-\underline{c}) \cdot \underline{b} \\
& =(-\underline{a}-\underline{c}) \cdot(-\underline{a}-\underline{c}) \quad \because \underline{b}=-\underline{a}-\underline{c} \\
|\underline{b}|^{2} & =-\underline{a} \cdot(-\underline{a}-\underline{c})-\underline{c} \cdot(-\underline{a}-\underline{c}) \\
& =\underline{a} \cdot \underline{a}+\underline{a} \cdot \underline{c}+\underline{c} \cdot \underline{a}+\underline{c} \cdot \underline{c} \\
& =\underline{a} \cdot \underline{a}+\underline{a} \cdot \underline{c}+\underline{a} \cdot \underline{c}+\underline{c} \cdot \underline{c} \\
& =\underline{a} \cdot \underline{a}+2 \underline{a} \cdot \underline{c}+\underline{c} \cdot \underline{c} \\
& =|\underline{a}|^{2}+2|\underline{a}||\underline{c}| \cos (\pi-B)+|\underline{c}|^{2} \\
\Rightarrow b^{2} & =a^{2}+a c(-\cos B)+c^{2} \quad \because \underline{a} \cdot \underline{b}=\underline{b} \cdot \underline{a} \\
b^{2} & =c^{2}+a^{2}-2 c a \cos B & \because \cos (\pi-B)=-\cos B \\
\end{array}
$$

Hence
(iv) From equation (i)

$$
\underline{c}=-\underline{a}-\underline{b}
$$

Taking dot product of above equation with \underline{c}

$$
\begin{aligned}
\underline{c} \cdot \underline{c} & =(-\underline{a}-\underline{b}) \cdot \underline{c} \\
& =(-\underline{a}-\underline{b}) \cdot(-\underline{a}-\underline{b}) \quad \because \underline{c}=-\underline{a}-\underline{b}
\end{aligned}
$$

Now do yourself as above (iii)

	Error Analyst
Saqib Aleem (2015)	Punjab College of Sciences
Uzair Amin (2016)	

Book: Exercise 7.3, page 349

Calculus and Analytic Geometry Mathematic 12
Punjab Textbook Board, Lahore.
Available online at http://www.MathCity.org in PDF Format
(Picture format to view online).
Updated: october,5,2017.

These resources are shared under the licence Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/

