MathCity.org
Merging man and maths

Exercise 6.3 (Solutions) Page \# 272
Calculus and Analytic Geometry, MATHEMATICS 12
Available online @ http://www.mathcity.org, Version: 3.0

Question \# 1

Prove that normal lines of a circle pass through the centre of the circle.
Solution Consider a circle with centre at origin and radius r.

$$
x^{2}+y^{2}=r^{2}
$$

Differentiating w.r.t. x

$$
2 x+2 y \frac{d y}{d x}=0 \Rightarrow 2 y \frac{d y}{d x}=-2 x \Rightarrow \frac{d y}{d x}=-\frac{x}{y}
$$

Slope of tangent at $\left(x_{1}, y_{1}\right)=m=\left.\frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}=-\frac{x_{1}}{y_{1}}$.
Since normal is \perp ar to tangent therefore
Slope of normal at $\left(x_{1}, y_{1}\right)=-\frac{1}{m}=-\frac{1}{-x_{1} / y_{1}}=\frac{y_{1}}{x_{1}}$.
Now equation of normal at $\left(x_{1}, y_{1}\right)$ having slope $\frac{y_{1}}{x_{1}}$

$$
\begin{align*}
& y-y_{1}=\frac{y_{1}}{x_{1}}\left(x-x_{1}\right) \\
\Rightarrow & x_{1} y-x_{1} y_{1}=y_{1} x-y_{1} x_{1} \\
\Rightarrow & x_{1} y=y_{1} x \ldots \ldots \ldots \ldots . . \tag{i}
\end{align*}
$$

Clearly centre of circle $(0,0)$ satisfies (i), hence normal lines of the circles passing through the centre of the circle.

Question \# 2

Prove that the straight line drawn from the centre of a circle perpendicular to a tangent passes through the point of tangency.
Solution Consider a circle with centre at origin and radius r.

$$
x^{2}+y^{2}=r^{2}
$$

Differentiating w.r.t. x

$$
\begin{aligned}
& 2 x+2 y \frac{d y}{d x}=0 \\
& \Rightarrow 2 y \frac{d y}{d x}=-2 x \Rightarrow \frac{d y}{d x}=-\frac{x}{y} .
\end{aligned}
$$

Slope of tangent at $\left(x_{1}, y_{1}\right)=m=\left.\frac{d y}{d x}\right|_{\left(x_{1}, y_{1}\right)}=-\frac{x_{1}}{y_{1}}$.
Slope of line \perp ar to tangent $=-\frac{1}{m}=-\frac{1}{-x_{1} / y_{1}}=\frac{y_{1}}{x_{1}}$.
Now equation of line perpendicular to tangent passing through centre $(0,0)$

$$
y-0=\frac{y_{1}}{x_{1}}(x-0)
$$

$$
\begin{equation*}
\Rightarrow x_{1} y=y_{1} x \tag{i}
\end{equation*}
$$

Clearly the point of tangency $\left(x_{1}, y_{1}\right)$ satisfy (i), hence the straight line drawn from the centre of circle perpendicular to a tangent passes through the point of tangency.

Question \# 3

Prove that the mid-point of the hypotenuse of a right triangle is the circumcentre of the triangle.
Solution Let $O A B$ be a right triangle with $|O A|=a,|O B|=b$.
Then the coordinates of A and B are $(a, 0)$ and $(0, b)$ respectively.
Let C be the mid-point of hypotenuse $A B$. Then

$$
\text { coordinate of } C=\left(\frac{a+0}{2}, \frac{0+b}{2}\right)=\left(\frac{a}{2}, \frac{b}{2}\right)
$$

Now $\quad|C A|=\sqrt{\left(\frac{a}{2}-a\right)^{2}+\left(\frac{b}{2}-0\right)^{2}}$

$$
=\sqrt{\left(-\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}
$$

$$
|C B|=\sqrt{\left(\frac{a}{2}-0\right)^{2}+\left(\frac{b}{2}-b\right)^{2}}
$$

$$
=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(-\frac{b}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}
$$

$$
|C O|=\sqrt{\left(0-\frac{a}{2}\right)^{2}+\left(0-\frac{b}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}
$$

Since $|C A|=|C B|=|C O|$, therefore C is the centre of the circumcircle.
Hence the mid-point of the hypotenuse of a right triangle is the circumcentre of the triangle.

Mean proportional

Let a, b and c be three numbers. The number b is said to be mean proportional between a and b if a, b, c are in geometric means or

$$
b^{2}=a c \quad \text { or } \quad \frac{b}{a}=\frac{a}{c}
$$

Question \# 4

Prove that the perpendicular dropped from a point of a circle on a diameter is a mean proportional between the segments into which it divides the diameter.
Solution Consider a circle of radius r and centre $(0,0)$, then equation of circle

$$
x^{2}+y^{2}=r^{2}
$$

Let A and B are end-points of diameter of circle along x-axis, then coordinate of A and B are $(-r, 0)$ and $(0, r)$ respectively.

Also let $P(a, b)$ be any point on circle and
\perp ar from P cuts diameter at C. Then coordinate of C are $(a, 0)$.
Since $P(a, b)$ lies on a circle, therefore

$$
\begin{equation*}
a^{2}+b^{2}=r^{2} \tag{i}
\end{equation*}
$$

Now

$$
\begin{aligned}
& |A C|=\sqrt{(r+a)^{2}-(0-0)^{2}}=r+a \\
& |C B|=\sqrt{(r-a)^{2}-(0-0)^{2}}=r-a \\
& |P C|=\sqrt{(a-a)^{2}+(b-0)^{2}}=\sqrt{0+b^{2}}=b
\end{aligned}
$$

Now

$$
\begin{aligned}
&|A C| \cdot|C B|=(r+a)(r-a) \\
&=r^{2}-a^{2} \\
&=a^{2}+b^{2}-a^{2} \quad \text { from (i) } \\
&=b^{2}=|P C|^{2} \\
& \Rightarrow|A C| \cdot|C B|=|P C| \cdot|P C| \quad \Rightarrow \frac{|A C|}{|P C|}=\frac{|P C|}{|C B|} \\
& \Rightarrow|P C| \text { is a mean proportional to }|A C| \text { and }|C B|
\end{aligned}
$$

In case of error(s), please report at http://www.mathcity.org/error

Book: Exercise 6.3 (Page 272)

Calculus and Analytic Geometry Mathematic 12
Punjab Textbook Board, Lahore.
Available online at http://www.MathCity.org in PDF Format
Updated: September,30,2017.

