mathcity.oro

Question \# I

Given $f(x, y)=2 x+5 y$

$$
\begin{align*}
& 2 y-x \leq 8 \ldots \ldots \ldots \ldots(i \tag{i}\\
& x-y \leq 4 \\
& \Rightarrow \quad-x+y \geq-4 \ldots \ldots \ldots \ldots
\end{align*}
$$

The associated equations of (i) and (ii) are

$$
\begin{align*}
& 2 y-x=8 \ldots \ldots \ldots \ldots . .(i i i) \\
& -x+y=-4 \ldots \ldots \ldots . .
\end{align*}
$$

Put $x=0$ in (iii)

$$
2 y-0=8 \Rightarrow 2 y=8 \Rightarrow y=4
$$

Put $y=0$ in (iii)

$$
2(0)-x=8 \quad \Rightarrow 0-x=8 \quad \Rightarrow \quad x=-8
$$

$\Rightarrow(0,4)$ and $(-8,0)$ lies on (iii).

Put $x=0$ in (iv)

$$
-0+y=-4 \Rightarrow y=-4
$$

Put $y=0$ in (iv)

$$
-x+0=-4 \Rightarrow x=4
$$

$\Rightarrow(0,-4)$ and $(4,0)$ lies on (iv).
For intersection, subtracting (iii) and (iv)

$$
\begin{array}{r}
-x+2 y=8 \\
-x+y=-4 \\
+{ }_{+}=12
\end{array}
$$

Putting values of y in (iv)

$$
-x+12=-4 \Rightarrow x=4+12=16
$$

$\Rightarrow(16,12)$ is point of intersection of (iii) and (iv)
Form the graph we see that the corner points of feasible region are $(4,0),(0,0)$, $(0,4)$ and $(16,12)$.
Now we find value of $f(x, y)$ at corner points

$$
\begin{aligned}
& f(4,0)=' 2(4)+5(0)=8+0=8 \\
& f(0,0)=2(0)+5(0)=0+0=0 \\
& f(0,4)=2(0)+5(4)=0+20=20 \\
& f(16,12)=2(16)+5(12)=32+60=92
\end{aligned}
$$

Hence f is maximum at the corner point $(16,12)$.

Question \# 2

Given $f(x, y)=x+3 y$

$$
\begin{align*}
& 2 x+5 y \leq 30 \tag{i}\\
& 5 x+4 y \leq 20 \tag{ii}
\end{align*}
$$

The associated equations of (i) and (ii) are

$$
\begin{align*}
& 2 x+5 y=30 \tag{iii}\\
& 5 x+4 y=20 \tag{iv}
\end{align*}
$$

Put $x=0$ in (iii)
$2(0)+5 y=30 \Rightarrow 5 y=30 \Rightarrow y=6$
Put $y=0$ in (iii)
$2 x+5(0)=30 \Rightarrow 2 x=30 \Rightarrow x=15$
$\Rightarrow(0,6)$ and $(15,0)$ lies on (iii).
Put $x=0$ in (iv)

$$
5(0)+4 y=20 \Rightarrow 4 y=20 \Rightarrow y=5
$$

Put $y=0$ in (iv)

$$
5 x+4(0)=20 \Rightarrow 5 x=20 \Rightarrow x=4
$$

$\Rightarrow(0,5)$ and $(4,0)$ lies on $(i v)$.
Form the graph we see that the corner points of feasible region are $(0,0),(4,0)$ and $(0,5)$.

Now we find value of $f(x, y)$ at corner points

$$
\begin{aligned}
& f(0,0)=0+3(0)=0 \\
& f(4,0)=4+3(0)=4 \\
& f(0,5)=0+3(5)=15
\end{aligned}
$$

Hence f is maximum at $(0,5)$.

Question \# 3

Given $f(x, y)=2 x+3 y$

$$
\begin{equation*}
3 x+4 y \leq 12 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
2 x+y \leq 4 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
2 x-y \leq 4 \tag{iii}
\end{equation*}
$$

$\Rightarrow-2 x+y \geq-4$
The associated equations of $(i),(i i)$ and (iii) are

$$
\begin{gather*}
3 x+4 y=12 \ldots \ldots \ldots \ldots(i) \tag{iv}\\
2 x+y=4 \ldots \ldots \ldots . .(v) \\
-2 x+y=-4 \ldots \ldots \ldots(v i)
\end{gather*}
$$

Put $x=0$ in (iv)

$$
3(0)+4 y=12 \Rightarrow 4 y=12 \Rightarrow y=3
$$

Put $y=0$ in (iv)
$3 x+4(0)=12 \Rightarrow 3 x=12 \Rightarrow x=4$

$\Rightarrow(0,3)$ and $(4,0)$ lies on $(i v)$.
Put $x=0$ in (v)

$$
2(0)+y=4 \Rightarrow y=4
$$

Put $y=0$ in (v)
$2 x+(0)=4 \Rightarrow 2 x=4 \Rightarrow x=2$
$\Rightarrow(0,4)$ and $(2,0)$ lies on (v).
Put $x=0$ in ($v i$)
$-2(0)+y=-4 \Rightarrow y=-4$
Put $y=0$ in (vi)
$-2 x+0=-4 \Rightarrow y=2$
$\Rightarrow(0,-4)$ and $(2,0)$ lies on line $(v i)$.
For intersection of $(i v)$ and (v), \times ing (v) by 4 and subtracting from (iv).

$$
\begin{aligned}
3 x+4 y & =12 \\
-8 x+4 y & =-16 \\
\hline-5 x \quad & =-4 \\
\Rightarrow x & =\frac{4}{5}
\end{aligned}
$$

Putting values of x in (iv)
$2\left(\frac{4}{5}\right)+y=4 \Rightarrow y=4-\frac{8}{5} \Rightarrow x=\frac{12}{5}$
$\Rightarrow\left(\frac{4}{5}, \frac{12}{5}\right)$ is point of intersection of (iii) and (iv)
Form the graph we see that the corner points of feasible region are $(0,0),(2,0)$
$(0,3)$ and $\left(\frac{4}{5}, \frac{12}{5}\right)$.
Now we find value of $f(x, y)$ at corner points

$$
\begin{aligned}
& f(0,0)=2(0)+3(0)=0 \\
& f(2,0)=2(2)+3(0)=4 \\
& f(0,3)=2(0)+3(3)=9 \\
& f\left(\frac{4}{5}, \frac{12}{5}\right)=2\left(\frac{4}{5}\right)+3\left(\frac{12}{5}\right)=\frac{8}{5}+\frac{36}{5}=\frac{44}{5}=8 \frac{4}{5}
\end{aligned}
$$

Hence f is maximum at $(0,3)$.

Question \# 4

Given: $f(x, y)=2 x+y$
*Correction
$x+y \geq 3$
$7 x+5 y \leq 35$
The associated equations of (i) and (ii) are

$$
\begin{equation*}
x+y=3 \tag{iii}
\end{equation*}
$$

\qquad
$7 x+5 y=35$
Put $x=0$ in (iii)
$0+y=3 \Rightarrow y=3$
Put $y=0$ in (iii)
$x+0=3 \Rightarrow x=3$
$\Rightarrow(0,3)$ and $(3,0)$ lies on (iii).
Put $x=0$ in (iv)

$$
7(0)+5 y=35 \Rightarrow y=7
$$

Put $y=0$ in (iv)

$7 x+5(0)=35 \Rightarrow x=5$
$\Rightarrow(0,7)$ and $(5,0)$ lies on (iv).
From graph we see that the corner points of feasible region are $(3,0)(0,3),(5,0)$ and $(0,7)$.
Now we find value of $f(x, y)$ at corner points

$$
\begin{aligned}
& f(3,0)=2(3)+0=6 \\
& f(0,3)=2(0)+3=3 \\
& f(5,0)=2(5)+0=10 \\
& f(0,7)=2(0)+7=7
\end{aligned}
$$

Hence f is minimum at corner point $(0,3)$.

Question \# 5

> Do yourself

Question \# 6

Do yourself

Question \# 7

Let x and y denotes units of food X and food Y respectively.
Let $f(x, y)$ denotes the cost function, then we have to minimize

$$
f(x, y)=25 x+30 y
$$

subject to the constraints

$$
\begin{align*}
& 2 x+3 y \geq 12 \tag{i}\\
& 4 x+2 y \geq 16 \\
\Rightarrow & 2 x+y \geq 8 \ldots \tag{ii}
\end{align*}
$$

The associated equations of (i) and (ii) are

$$
\begin{aligned}
& 2 x+3 y=12 \ldots \ldots \ldots \ldots \text { (iii) } \\
& 2 x+y=8 \ldots \ldots \ldots \ldots \text { (iv) }
\end{aligned}
$$

Put $x=0$ in (iii) $\Rightarrow 3 y=12 \Rightarrow y=4$
Put $y=0$ in (iii) $\Rightarrow 2 x=12 \Rightarrow x=6$
$\Rightarrow(0,4) \&(6,0)$ lies on $(i i i)$

Put $x=0$ in $(i v) \Rightarrow y=8$
Put $y=0$ in $(i v) \Rightarrow 2 x=8 \Rightarrow x=4$
$\Rightarrow(0,8) \&(4,0)$ lies on $(i v)$
For intersection of (iii) \& (iv), -ing (iii) \& (iv)

$$
\begin{aligned}
2 x+3 y & =12 \\
2 x+y & =-8
\end{aligned} \quad \Rightarrow y=2
$$

Put $y=2$ in (iv)

$$
2 x+2=8 \Rightarrow 2 x=6 \Rightarrow x=3
$$

$\Rightarrow(3,2)$ is intersection of (iii) \& (iv)
From graph, we see that corner points are $(6,0),(3,2)$ and $(0,8)$.
Now

$$
\begin{aligned}
& f(6,0)=25(6)+30(0)=150 \\
& f(3,2)=25(3)+30(2)=75+60=135 \\
& f(0,8)=25(0)+30(8)=240
\end{aligned}
$$

Since $f(x, y)$ is minimum at $(3,2)$ therefore
Hence 3 unit of food X and 2 unit of food Y are used to minimize the cost.

Question \# 8

Let x denotes number of fans and y denotes number of sewing machines.
Then profit function

$$
f(x, y)=22 x+18 y
$$

Subject to the constraints

$$
\begin{align*}
& x+y \leq 20 \ldots \ldots \ldots \ldots \text { (i) } \\
& 360 x+240 y \leq 5760 \\
\Rightarrow & 9 x+6 y \leq 144 \ldots \ldots \ldots \ldots \text { (ii) } \quad(\div \text { ing by } 40) \tag{ii}
\end{align*}
$$

We have to maximize $f(x, y)$
The associated equation of (i) and (ii) are

$$
\begin{array}{r}
\qquad x+y=20 \ldots \ldots . \tag{iii}\\
9 x+6 y=144 \ldots \\
\text { Put } x=0 \text { in }(\text { iii }) \Rightarrow y=20 \\
\text { Put } y=0 \text { in (iii) } \Rightarrow x=20
\end{array}
$$

$\Rightarrow(0,20) \&(20,0)$ lies of $(i i i)$
Now put $x=0$ in (iv) $\Rightarrow 6 y=144 \Rightarrow y=24$
Put $y=0$ in (iv) $\Rightarrow 9 x=144 \Rightarrow x=16$
$\Rightarrow(0,24) \&(16,0)$ lies on (iv)
For point of intersection of (iii) and (iv)
Multiplying eq. (iii) by 6 and subtracting from (iv)

$$
\begin{aligned}
9 x+6 y & =144 \\
6 x+6 y & =-120 \\
\hline 3 x & =24 \Rightarrow x=8
\end{aligned}
$$

Putting value of x in (iii)

$$
\begin{aligned}
8+y=20 & \Rightarrow y=20-8 \\
& \Rightarrow y=12
\end{aligned}
$$

$\Rightarrow(8,12)$ is the intersection of (iii) and (iv)
Now from graph we see that $(0,0),(16,0),(8,12)$ and $(0,20)$ are corner points of feasible region.

Now

$$
\begin{aligned}
& f(0,0)=0+0=0 \\
& f(16,0)=22(16)+18(0)=352 \\
& f(8,12)=22(16)+18(12)=392 \\
& f(0,20)=22(0)+18(20)=360
\end{aligned}
$$

Since $f(x, y)$ is maximum at $(8,12)$. Thus 8 fans and 12 sewing machine to maximize the profile.

Question \# 9

Let x denotes the unit of product A and y denotes the unit of product B
Then profit function is

$$
f(x, y)=30 x+20 y
$$

subject to the constraints

$$
\begin{align*}
& 2 x+y \leq 800 \ldots \ldots \ldots \tag{i}\\
& x+2 y \leq 1000 \ldots \ldots \ldots .
\end{align*}
$$

The corresponding equations of (i) and (ii) are

$$
\begin{align*}
2 x+y & =800 \tag{iii}\\
x+2 y & =1000
\end{align*}
$$

in (iii) $\Rightarrow y=800$
Put $x=0$ in (iii) $\Rightarrow y=800$
Put $y=0$ in $(i i i) \Rightarrow 2 x=800$

$$
\Rightarrow \quad x=400
$$

$\Rightarrow(0,800) \&(400,0)$ lies on (iii)

Now put $x=0$ in (iv) $\Rightarrow 2 y=1000 \Rightarrow y=500$
Put $y=0$ in (iv) $\Rightarrow x=1000$
Hence $(0,500) \&(1000,0)$ lies on (iv)
For point of intersection, xing eq. (iii) by 2 and - ing from (iv)

$$
\begin{aligned}
4 x+2 y & =1600 \\
-x+2 y & =-1000 \\
\hline 3 x & =600
\end{aligned} \Rightarrow x=200
$$

Putting value of x in (iii)

$$
\begin{aligned}
& 2(200)+y=800 \\
\Rightarrow & y=800-400 \Rightarrow y=400
\end{aligned}
$$

So $(200,400)$ is point of intersection of line (iii) \& (iv)
From graph, we see that corner points of feasible region are

$$
(0,500),(0,0),(400,0) \&(200,400) .
$$

Now

$$
\begin{aligned}
& f(0,500)=30(0)+20(500)=10000 \\
& f(0,0)=30(0)+20(0)=0 \\
& f(400,0)=30(400)+20(0)=12000 \\
& f(200,400)=30(200)+20(400)=14000
\end{aligned}
$$

Since $f(x, y)$ is maximum at $(200,400)$.
Thus 200 unit of product A and 400 unit of product B must be used to maximize the profit.
http://www.mathcity.org
mathcity@gmail.com
$ص$ ص

Error Analyst
Waiting for someone

