Exercise 2.10 (Solutions)
Calculus and Analytic Geometry, MATHEMATICS 12
Available online @ http://www.mathcity.org, Version: 3.0

Question \# 1

Find two positive integers whose sum is 30 and their product will be maximum.

Solution

Let x and $30-x$ be two positive integers and P denotes product integers then

$$
\begin{aligned}
P & =x(30-x) \\
& =30 x-x^{2}
\end{aligned}
$$

Diff. w.r.t. x

$$
\begin{equation*}
\frac{d P}{d x}=30-2 x \tag{i}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} P}{d x^{2}}=-2 \tag{ii}
\end{equation*}
$$

For critical points, put $\frac{d P}{d x}=0$

$$
\begin{gathered}
\Rightarrow 30-2 x=0 \\
\Rightarrow-2 x=-30 \quad \Rightarrow x=15
\end{gathered}
$$

Putting value of x in (ii)

$$
\left.\frac{d^{2} P}{d x^{2}}\right|_{x=2}=-2<0
$$

$\Rightarrow P$ is maximum at $x=15$
Other + tive integer $=30-x$

$$
=30-15=15
$$

Hence 15 and 15 are the required positive numbers.

Question \# 2

Divide 20 into two parts so that the sum of their squares will be minimum.

Solution

Let x be the part of 20 then other is $20-x$.

Let S denotes sum of squares then

$$
\begin{aligned}
S & =x^{2}+(20-x)^{2} \\
& =x^{2}+400-40 x+x^{2} \\
& =2 x^{2}-40 x+400
\end{aligned}
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d S}{d x}=4 x-40 \tag{i}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} S}{d x^{2}}=4 \tag{ii}
\end{equation*}
$$

For stationary points put $\frac{d S}{d x}=0$

$$
\begin{aligned}
& \Rightarrow 4 x-40=0 \quad \Rightarrow \quad 4 x=40 \\
& \Rightarrow \quad x=10
\end{aligned}
$$

Putting value of x in (ii)

$$
\left.\frac{d^{2} S}{d x^{2}}\right|_{x=10}=4>0
$$

$\Rightarrow S$ is minimum at $x=10$
Other integer $=20-x=20-10=10$
Hence 10,10 are the two parts of 20 .

Question \# 3

Find two positive integers whose sum is 12 and the product of one with the square of the other will be maximum.

Solution

Let x and $12-x$ be two + tive integers and P denotes product of one with square of the other then

$$
\begin{aligned}
P & =x(12-x)^{2} \\
\Rightarrow P & =x\left(144-24 x+x^{2}\right) \\
& =x^{3}-24 x^{2}+144 x
\end{aligned}
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d P}{d x}=3 x^{2}-48 x+144 \tag{i}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} P}{d x^{2}}=6 x-48 \ldots \tag{ii}
\end{equation*}
$$

For critical points put $\frac{d P}{d x}=0$

$$
\begin{aligned}
& 3 x^{2}-48 x+144=0 \\
\Rightarrow & x^{2}-16 x+48=0 \\
\Rightarrow & x^{2}-4 x-12 x+48=0 \\
\Rightarrow & x(x-4)-12(x-4)=0 \\
\Rightarrow & (x-4)(x-12)=0 \\
\Rightarrow & x=4 \text { or } x=12
\end{aligned}
$$

We can not take $x=12$ as sum of integers is 12 . So put $x=4$ in (ii)

$$
\begin{aligned}
\left.\frac{d^{2} P}{d x^{2}}\right|_{x=4} & =6(4)-48 \\
& =24-48=-24<0
\end{aligned}
$$

$\Rightarrow P$ is maximum at $x=4$.
So the other integer $=12-4=8$
Hence 4,8 are the required integers.
Alternative Method: (by Irfan
Mehmood: Fazaia Degree College Risalpur)
Let x and $12-x$ be two positive integers and P denotes product of one with square of the other then

$$
\begin{aligned}
& P=x^{2}(12-x) \\
\Rightarrow & P=12 x^{2}-x^{3}
\end{aligned}
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d P}{d x}=24 x-3 x^{2} \tag{i}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} P}{d x^{2}}=24-6 x \tag{ii}
\end{equation*}
$$

For critical points put $\frac{d P}{d x}=0$

$$
\begin{aligned}
& 24 x-3 x^{2}=0 \\
\Rightarrow & 3 x(x-8)=0 \\
\Rightarrow & x=0 \text { or } x=8
\end{aligned}
$$

We cannot take $x=0$ as given integers are positive. So put $x=8$ in (ii)

$$
\begin{aligned}
\left.\frac{d^{2} P}{d x^{2}}\right|_{x=8} & =24-6(8) \\
& =24-48=-24<0
\end{aligned}
$$

$\Rightarrow P$ is maximum at $x=8$.
So the other integer $=12-8=4$
Hence 4,8 are the required integers.

Question \# 4

The perimeter of a triangle is 16 cm . If one side is of length 6 cm , What are length of the other sides for maximum area of the triangle.

Solution

Let the remaining sides of the triangles are x and y

Perimeter $=16$
$\Rightarrow 6+x+y=16$

$$
\begin{align*}
& \Rightarrow x+y=16-6 \Rightarrow x+y=10 \\
& \Rightarrow y=10-x \ldots \ldots . \text { (i) } \tag{i}
\end{align*}
$$

Now suppose A denotes the square of the area of triangle then

$$
A=s(s-a)(s-b)(s-c)
$$

Where $s=\frac{a+b+c}{2}=\frac{6+x+y}{2}$

$$
\begin{align*}
& =\frac{6+x+10-x}{2} \tag{i}\\
& =\frac{16}{2}=8
\end{align*}
$$

So $\quad A=8(8-6)(8-x)(8-y)$

$$
=8(2)(8-x)(8-10+x)
$$

$$
=16(8-x)(-2+x)
$$

$$
=16\left(-16+2 x+8 x-x^{2}\right)
$$

$$
\Rightarrow A=16\left(-16+10 x-x^{2}\right)
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d A}{d x}=16(10-2 x) \tag{i}
\end{equation*}
$$

Again diff. w.r.t x

$$
\frac{d^{2} A}{d x^{2}}=16(-2)=-32
$$

For critical points put $\frac{d A}{d x}=0$

$$
\begin{aligned}
& 16(10-2 x)=0 \\
\Rightarrow & (10-2 x)=0 \Rightarrow-2 x=-10 \\
\Rightarrow & x=5
\end{aligned}
$$

Putting value of x in (ii)

$$
\left.\frac{d^{2} A}{d x^{2}}\right|_{x=5}=-32<0
$$

$\Rightarrow A$ is maximum at $x=5$
Putting value of x in (i)

$$
y=10-5=5
$$

Hence length of remaining sides of triangles are 5 cm and 5 cm .

Question \# 5

Find the dimensions of a rectangle of largest area having perimeter 120 cm .

Solution

Let x and y
be the length and breadth of rectangle, then
Area $=A=x y \ldots$. (i)

Perimeter $=120$
$\Rightarrow x+x+y+y=120$
$\Rightarrow 2 x+2 y=120$
$\Rightarrow x+y=60$
$\Rightarrow y=60-x$
Putting in (i)

$$
\begin{aligned}
& A=x(60-x) \\
\Rightarrow \quad & A=60 x-x^{2}
\end{aligned}
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d A}{d x}=60-2 x \tag{iii}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} A}{d x^{2}}=-2 \tag{iv}
\end{equation*}
$$

For critical points put $\frac{d A}{d x}=0$

$$
\begin{aligned}
& 60-2 x=0 \quad \Rightarrow-2 x=-60 \\
& \Rightarrow x=30
\end{aligned}
$$

Putting value of x in (iv)

$$
\left.\frac{d^{2} A}{d x^{2}}\right|_{x=30}=-2<0
$$

$\Rightarrow A$ is maximum at $x=30$
Putting value of x in (ii)

$$
y=60-30=30
$$

Hence dimension of rectangle is 30 cm , 30 cm .

Question \# 6

Find the lengths of the sides of a variable rectangle having area $36 \mathrm{~cm}^{2}$ when its perimeter is minimum.

Solution

Let x and y be the length and breadth of the rectangle then

$$
\begin{aligned}
\text { Area } & =x y \\
\Rightarrow 36 & =x y \\
\Rightarrow y & =36 / x \ldots \text { (i) }
\end{aligned}
$$

Now perimeter $=2 x+2 y$

$$
\begin{aligned}
\Rightarrow P & =2 x+2(36 / x) \\
& =2\left(x+36 x^{-1}\right)
\end{aligned}
$$

Diff. P w.r.t x

$$
\begin{equation*}
\frac{d P}{d x}=2\left(1-36 x^{-2}\right) \ldots \tag{ii}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{aligned}
\frac{d^{2} P}{d x^{2}} & =2\left(0-36\left(-2 x^{-3}\right)\right) \\
& =2\left(72 x^{-3}\right)=\frac{144}{x^{3}}
\end{aligned}
$$

For critical points put $\frac{d P}{d x}=0$

$$
\begin{aligned}
& 2\left(1-36 x^{-2}\right)=0 \Rightarrow 1-\frac{36}{x^{2}}=0 \\
\Rightarrow & 1=\frac{36}{x^{2}} \Rightarrow x^{2}=36 \Rightarrow x= \pm 6
\end{aligned}
$$

Since length can not be negative therefore

$$
x=6
$$

Putting value of x in (ii)

$$
\left.\frac{d^{2} P}{d x^{2}}\right|_{x=6}=\frac{144}{(6)^{3}}>0
$$

Hence P is minimum at $x=6$.
Putting in eq. (i)

$$
y=\frac{36}{6}=6
$$

Hence 6 cm and 6 cm are the lengths of the sides of the rectangle.

Question \# 7

A box with a square base and open top is to have a volume of 4 cubic dm. Find the dimensions of the box which will require the least material.

Solution

Let x be the lengths of the sides of the base and y be the height of the box.
Then Volume
$=x \cdot x \cdot y$
$\Rightarrow 4=x^{2} y$

$\Rightarrow y=\frac{4}{x^{2}}$.
Suppose S denotes the surface area of the box, then

$$
\begin{gathered}
S=x^{2}+4 x y \\
\Rightarrow S=x^{2}+4 x\left(\frac{4}{x^{2}}\right)
\end{gathered}
$$

$$
\Rightarrow S=x^{2}+16 x^{-1}
$$

Diff. S w.r.t x

$$
\begin{equation*}
\frac{d S}{d x}=2 x-16 x^{-2} \ldots \tag{ii}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{align*}
\frac{d^{2} S}{d x^{2}} & =2-16\left(-2 x^{-3}\right) \\
& =2+\frac{32}{x^{3}} \ldots \tag{iii}
\end{align*}
$$

For critical points, put $\frac{d S}{d x}=0$

$$
\begin{aligned}
& 2 x-16 x^{-2}=0 \Rightarrow 2 x-\frac{16}{x^{2}}=0 \\
& \Rightarrow \frac{2 x^{3}-16}{x^{2}}=0 \\
& \Rightarrow 2 x^{3}-16=0 \Rightarrow 2 x^{3}=16 \\
& \Rightarrow x^{3}=8 \quad \Rightarrow x=2
\end{aligned}
$$

Putting in (ii)

$$
\left.\frac{d^{2} S}{d x^{2}}\right|_{x=2}=2+\frac{32}{(2)^{3}}>0
$$

$\Rightarrow S$ is min. when $x=2$
Putting value of x in (i)

$$
y=\frac{4}{(2)^{2}}=1
$$

Hence $2 \mathrm{dm}, 2 \mathrm{dm}$ and 1 dm are the dimensions of the box.

Question \# 8

Find the dimensions of a rectangular garden having perimeter 80 meters if its area is to be maximum.

Solution

Do yourself as question \# 5.

Question \# 9

An open tank of square base of side x and vertical sides is to be constructed to contain a given quantity of water. Find the depth in terms of x if the expense of
lining the inside of the tank with lead will be least.

Solution

Let y be the height of the open tank.

Then Volume $=x \cdot x \cdot y$

$$
\begin{align*}
& \Rightarrow V=x^{2} y \\
& \Rightarrow y=\frac{V}{x^{2}} \tag{i}
\end{align*}
$$

If S denotes the surface area the open tank, then

$$
\begin{aligned}
S & =x^{2}+4 x y \\
& =x^{2}+4 x\left(\frac{V}{x^{2}}\right) \\
\Rightarrow S & =x^{2}+4 V x^{-1}
\end{aligned}
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d S}{d x}=2 x-4 V x^{-2} \tag{ii}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{align*}
\frac{d^{2} S}{d x^{2}} & =2-4 V\left(-2 x^{-3}\right) \\
& =2+\frac{8 V}{x^{3}} \ldots \ldots \tag{iii}
\end{align*}
$$

For critical points, put $\frac{d S}{d x}=0$

$$
\begin{aligned}
& 2 x-4 V x^{-2}=0 \quad \Rightarrow 2 x-\frac{4 V}{x^{2}}=0 \\
& \Rightarrow \frac{2 x^{3}-4 V}{x^{2}}=0 \quad \Rightarrow 2 x^{3}-4 V=0 \\
& \Rightarrow 2 x^{3}=4 V \quad \Rightarrow x^{3}=2 V \\
& \Rightarrow x=(2 V)^{\frac{1}{3}}
\end{aligned}
$$

Putting in (ii)

$$
\begin{aligned}
\left.\frac{d^{2} S}{d x^{2}}\right|_{x=(2 V)^{\frac{1}{3}}} & =2+\frac{8 V}{\left((2 V)^{\frac{1}{3}}\right)^{3}} \\
& =2+\frac{8 V}{2 V}=2+4=6>0
\end{aligned}
$$

$\Rightarrow S$ is minimum when $x=(2 V)^{\frac{1}{3}}$
i.e. $\quad x^{3}=2 V \Rightarrow V=\frac{x^{3}}{2}$

Putting in (i)

$$
y=\frac{x^{3} / 2}{x^{2}}=\frac{x}{2}
$$

Hence height of the open tank is $\frac{x}{2}$.

Question \# 10

Find the dimensions of the rectangular of maximum area which fits inside the semi-circle of radius 8 cm

Solution

Let $2 x \& y$ be dimension of rectangle.

Then from figure, using Pythagoras theorem

$$
\begin{align*}
& x^{2}+y^{2}=8^{2} \\
\Rightarrow & y^{2}=64-x^{2} \tag{i}
\end{align*}
$$

Now Area of the rectangle is given by

$$
A=2 x \cdot y
$$

Squaring both sides

$$
\begin{aligned}
A^{2} & =4 x^{2} y^{2} \\
& =4 x^{2}\left(64-x^{2}\right) \\
& =256 x^{2}-4 x^{4}
\end{aligned}
$$

Now suppose

$$
\begin{equation*}
f=A^{2}=256 x^{2}-4 x^{4} \tag{ii}
\end{equation*}
$$

Diff. w.r.t x

$$
\begin{equation*}
\frac{d f}{d x}=512 x-16 x^{3} \tag{iii}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} f}{d x^{2}}=512-48 x^{2} \tag{iv}
\end{equation*}
$$

For critical points, put $\frac{d f}{d x}=0$
$\Rightarrow 512 x-16 x^{3}=0$
$\Rightarrow 16 x\left(32-x^{2}\right)=0$
$\Rightarrow 16 x=0 \quad$ or $\quad 32-x^{2}=0$
$\Rightarrow x=0 \quad$ or $\quad x^{2}=32$
$\Rightarrow x= \pm 4 \sqrt{2}$

Since x can not be zero or -ive, therefore

$$
x=4 \sqrt{2}
$$

Putting in (iv)

$$
\begin{aligned}
& \left.\frac{d^{2} f}{d x^{2}}\right|_{x=4 \sqrt{2}}=512-48(4 \sqrt{2})^{2} \\
& \quad=512-48(32)=512-1536 \\
& \quad=-1024<0
\end{aligned}
$$

\Rightarrow Area is max. for $x=4 \sqrt{2}$
Hence length $=2 x=2(4 \sqrt{2})$

$$
\begin{aligned}
\text { Breadth } & =y=\sqrt{64-(4 \sqrt{2})^{2}} \\
& =\sqrt{64-32}=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

Hence dimension is $8 \sqrt{2} \mathrm{~cm}$ and $4 \sqrt{2} \mathrm{~cm}$.

Question \# 11

Find the point on the curve $y=x^{2}-1$ that is closest to the point $(3,-1)$

Solution

Let $P(x, y)$ be point and let $A(3,-1)$.
Then $d=|A P|=\sqrt{(x-3)^{2}+(y+1)^{2}}$

$$
\begin{aligned}
\Rightarrow d^{2} & =(x-3)^{2}+(y+1)^{2} \\
& =(x-3)^{2}+\left(x^{2}-1+1\right)^{2}
\end{aligned}
$$

$\because y=x^{2}-1$ (given)

$$
\Rightarrow d^{2}=(x-3)^{2}+x^{4}
$$

Let $\quad f=d^{2}=(x-3)^{2}+x^{4}$.
Diff. w.r.t x

$$
\begin{equation*}
\frac{d f}{d x}=2(x-3)+4 x^{3} \tag{i}
\end{equation*}
$$

Again diff. w.r.t x

$$
\begin{equation*}
\frac{d^{2} f}{d x^{2}}=2+12 x^{2} \tag{ii}
\end{equation*}
$$

For stationary points, put $\frac{d f}{d x}=0$

$$
2(x-3)+4 x^{3}=0
$$

$$
\begin{aligned}
& \Rightarrow 2 x-6+4 x^{3}=0 \\
& \Rightarrow 4 x^{3}+2 x-6=0 \\
& \Rightarrow 2 x^{3}+x-3=0 \quad \div \text { ing by } 2 \\
& \text { By synthetic division }
\end{aligned}
$$

1	2	0	1	-3
	\downarrow	2	2	3
	2	2	3	$\boxed{0}$

$$
\Rightarrow x=1 \quad \text { or } \quad 2 x^{2}+2 x+3=0
$$

$$
\Rightarrow \quad x=\frac{-2 \pm \sqrt{4-4(2)(3)}}{4}
$$

$$
=\frac{-2 \pm \sqrt{-20}}{4}
$$

This is complex and not acceptable.
Now put $x=1$ in (ii)

$$
\begin{aligned}
& \left.\frac{d^{2} f}{d x^{2}}\right|_{x=1}=2+12(1)^{2}=14>0 \\
& \Rightarrow d \text { is minimum at } x=1
\end{aligned}
$$

Also $y=1^{2}-1=0$.
Hence $(1,0)$ is the required point.

Question \# 12

Find the point on the curve $y=x^{2}+1$
that is closest to the point $(18,1)$

Solution

Do yourself as Q \# 11

Error Analyst			
Ubaid ur Rehman	$\mathbf{2 0 1 4 - 1 6}$	Govt. College, Attock.	
Irfan Mehmood	$\mathbf{2 0 1 4 - 1 6}$	Fazaia Degree College Risalpur.	
Asma Mussarat	$\mathbf{2 0 1 4 - 1 6}$	Fazaia Degree College Risalpur.	
Abdul Jabbar	$\mathbf{2 0 1 4 - 1 6}$	IMCB F-8/4, Islamabad.	
Hussnain Nisar	$\mathbf{2 0 1 4 - 1 6}$	Fazaia Degree College Risalpur.	
Kiran Javed	$\mathbf{2 0 1 4 - 1 6}$		Fazaia Degree College Risalpur.

Please report us error at www.mathcity.org/error

Book: Exercise 2.10

Calculus and Analytic Geometry Mathematic 12
Punjab Textbook Board, Lahore.

Available online at http://www.MathCity.org in PDF Format
(Picture format to view online).
Updated: September,12,2017.

These resources are shared under the licence Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/
Under this licence if you remix, transform, or build upon the
material, you may not distribute the modified material.

