OBJECTIVE

Q. 7: Some possible answers to each statement are given below. Tick (P) mark the

- i) $x = at^2$ and y = 2at represents:
 - a) Circle
- b) Ellipse
- c) Parabola
- d) Hyperbola

- ii) $\lim_{x\to 0} \frac{e^x 1}{x} = \dots$
- 1c) e
- d) ∞

- iii) If $f(x) = x^{\frac{2}{3}}$ then f'(8) =

 - a) $\frac{1}{2}$ b) $\frac{2}{3}$
- c) $\frac{1}{3}$
- d) 3

- iv) If $y = \cos^{-1} \frac{x}{a}$, then $\frac{dy}{dx} =$
 - a) $\frac{-1}{\sqrt{a^2 x^2}}$ b) $\frac{1}{\sqrt{a^2 x^2}}$
 - c) $\frac{1}{a\sqrt{a^2-x^2}}$ d) $\frac{1}{\sqrt{a^2+x^2}}$

v)
$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots + \frac{x^n}{n}f^{(n)}(0) + \dots$$

a) Taylor's series

- b) Binomial series
- c) Machlaurin's series
- d) Power series

vi)
$$\int \sec 5x \tan 5x \, dx =$$

a) $5\sec 5x \tan 5x + c$

b) $\frac{1}{5}\sec x + c$

c) $\frac{\sec 5x}{5} + c$

d) $\frac{\tan 5x}{5} + c$

vii)
$$\int \cos x \left(\frac{\ln \sin x}{\sin x} \right) dx =$$

a) $\ln(\sin x)^2 + c$

b) $\frac{1}{2} \ln(\sin x)^2 + c$

c) $(\ln \sin x)^2 + c$

d) $\frac{1}{2} (\ln \sin x)^2 + c$

viii)
$$\int xe^x dx =$$

- a) $xe^{x} + e^{x} + c$
- b) $e^{x} + x + c$ d) $xe^{x} + c$
- c) $xe^x e^x + c$

ix)
$$\int_0^{\frac{1}{\sqrt{3}}} \frac{dx}{1+x^2} =$$

- a) $\frac{p}{2}$ b) $\frac{p}{6}$ c) $\frac{p}{4}$ d) $\frac{p}{3}$

x) The solution of $\frac{dy}{dx} = -y$ is			
	a) $y = e^x$ b) $y = e^x$	ce^{-x} c) $y = -x$	$=e^{-x} d) y=ce^{x}$
xi) If $a = 0$ in the $ax + by + c = 0$ then line is			
	a) \parallel to x – axis	b) 1	to $y-axis$
	c) Inclined	· · · · · · · · · · · · · · · · · · ·	ssing through origin
xii) The point of intersection of medians of a triangle is called a) Centroid b) Orthocentre			
	a) Centroidc) Circumcentre	,	-centre
xiii) $(0,0)$ is one of the solutions of inequality;			
a) $3x + 5y > 7$ b) $2x - 3y > 4$			
		d) $2x + 3y < 0$	
xiv) Radius r of a circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is			
,	a) $\sqrt{g^2 + f^2 + c}$	0 00	b) $\sqrt{g^2 + f^2 - c}$
	c) $\sqrt{g+f+c}$	d) $$	$\overline{g^2-f^2-c}$
xv) The point where the axis meets the parabola is called			
	a) Focus b) Dire	*	entre d) Vertex
xvi) For the ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ foci are			
	a) $(\pm c, 0)$ b) $(0, \pm c, 0)$	(c) c) $(c,0)$	d) (0,c)
xvii) For the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ the directrices are			
	a) $x = \pm \frac{c}{e}$ b) $x =$	$\pm \frac{c}{e^2} c) x = \pm \frac{c}{2e}$	$d) y = \pm \frac{c}{e^2}$
xviii) For the equation of tangent to conic x^2 is replaced by			
	a) xx_1 b) x	c) $\frac{1}{2}(x+x_1)$) d) xx_1^2
xix) Cosine of the angle between two non-zero vectors \underline{a} and \underline{b} is			
	a) $\underline{a} \cdot \underline{b}$ b) $\frac{ \underline{a} \underline{b} }{\underline{a} \cdot \underline{b}}$	c) $\frac{\underline{a} \cdot \underline{b}}{ \underline{a} \underline{b} }$	d) $\frac{\underline{a} \times \underline{b}}{ \underline{a} \underline{b} }$
xx) If $\underline{a} \times \underline{b} = 0$ and $\underline{a} \cdot \underline{b} = 0$ then			
, <u> </u>	a) \underline{a} and \underline{b} are para		b) \underline{a} and \underline{b} are perpendicular
	c) Either $\underline{a} = 0$ or \underline{b}	=0	d) Both \underline{a} and \underline{b} are non-zero

This Paper is available online at http://www.mathcity.org

If you have a question or query you can ask at http://forum.mathcity.org

If you found any error submit at http://www.mathcity.org/error

Section - I

Note: All questions are to be attempted on answer book.

Q # 1: Write any TWENTY-FIVE short answers of the following questions:

(i) If
$$f(x) = \sin x$$
, find $\frac{f(a+h) - f(a)}{h}$

- (ii) Evaluate the limit: $\lim_{x\to 2} \frac{x^3 8}{x^2 + x 6}$
- (iii) Discuss the continuity of f(x):

$$f(x) = \begin{cases} 2x+5, & \text{if } x \le 2\\ 4x+1, & \text{if } x > 2 \end{cases} \text{ at } x = 2.$$

- (iv) Differentiate w.r.t x of $\frac{2x-3}{2x+1}$.
- (v) Differentiate $\sin^2 x$ w.r.t $\cos^4 x$
- (vi) Find $\frac{dy}{dx}$, if $y = \cosh 2x$.
- (vii) If $y = \sin 3x$, find y_2
- (viii) Examine the function defined as $f(x) = 1 + x^3$ for extreme value.
 - (ix) Find dy when $y = x^2 1$ when 'x' change from 3 to 2.02
 - (x) Evaluate: $\int \frac{1-x^2}{1+x^2} dx$
- (xi) Evaluate: $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$
- (xii) Evaluate: $\int \ln x dx$
- (xiii) Evaluate: $\int \frac{2a}{a^2 x^2} dx$
- (xiv) Evaluate: $\int a^{x^2} x \, dx$
- (xv) Find the area bounded by $\sin x$ from x = -p/2 to p/2.
- (xvi) Show that solution of $\frac{1}{x} \frac{dy}{dx} 2y = 0$ is $y = ce^{x^2}$.
- (xvii) Find the points trisecting the join of A(-1,-4) and B(6,2).
- (xviii) Find k so that \overline{AB} is perpendicular to \overline{CD} , where A(7,3), B(k,-6), C(-4,5), D(-6,4) are given vertices.
- (xix) Find equation of line with x-intercept -9, slope -4.
- (xx) Find the area of the triangular region whose vertices are A(-5,3), B(-2,2), C(4,2).
- (xxi) Find the interior angle A of the triangle with vertices A(-2,11), B(-6,-3), C(4,-9).
- (xxii) Find the measure of the angle between the line represented by the homogeneous equation $x^2 xy 6y^2 = 0$.
- (xxiii) Define the associated equation of an inequality.

- (xxiv) What is convex region? Define it.
- (xxv) What is linear programming?
- (xxvi) Define circle.
- (xxvii) Find the vertex and directrix of $x^2 = -16y$.
- (xxviii) Find the lengths of semi major axis and semi minor axis of ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
 - (xxix) Define hyperbola.
 - (xxx) Determine whether the point P(-5,6) lies outside, on or inside the circle $x^2 + y^2 + 4x 6y 12 = 0$.
- (xxxi) Find an equation of circle with ends of diameter at (-3,2) and (5,-6).
- (xxxii) Write the most general equation of second degree of the conic.
- (xxxiii) Find a, so that $|a\underline{i} + (a+1)\underline{j} + 2\underline{k}| = 3$.
- (xxxiv) Find a so that the vectors $2\underline{i} + a\underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + a\underline{k}$ are perpendicular.
- (xxxv) Find a vector perpendicular to each of the vectors $\underline{a} = 2\underline{i} + \underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} \underline{k}$.
- (xxxvi) What is scalar triple product?
- (xxxvii) Find the area of the triangle with vertices A(1,-1,1), B(2,1,-1) and C(-1,1,2).

Section - II

Note: Attempt any THREE questions.

- **Q # 2 (a)** Prove that $\lim_{x\to 0} \frac{a^x 1}{x} = \log_e a$
 - **(b)** Find the derivative of $(x+4)^{\frac{1}{3}}$ w.r.t x by definition.
- **Q # 3 (a)** Evaluate: $\int \frac{\sqrt{2} dx}{\sin x + \cos x}$
 - **(b)** Evaluate: $\int_{-1}^{2} (x + |x|) dx$
- $\mathbf{Q} \# \mathbf{4}$ (a) The three points A(7,-1), B(-2,2) and C(1,4) are consecutive vertices of a parallelogram. Find the fourth vertex.
 - (b) Graph the feasible region subject to constraints $2x-3y \le 6$, $2x+y \ge 2$, $x+2y \le 8$, $x \ge 0$, $y \ge 0$
- **Q** # **5** (a) Find the equation of circle passing through points A(3,-1), B(0,1) and having
- centre at 4x-3y-3=0. **(b)** Find the equation of parabola with focus (-3,1) and directrix x-2y-3=0.
- **Q** # 6 (a) Find a unit vector perpendicular to the plane containing \underline{a} and \underline{b} , also find sine of angle between then;

$$\underline{a} = 2\underline{i} - 2\underline{j} + 4\underline{k}$$
, $\underline{b} = -\underline{i} + \underline{j} - 2\underline{k}$.

(b) Find a so that the vectors $\underline{i} - \underline{j} + \underline{k}$, $\underline{i} - 2\underline{j} - 3\underline{k}$ and $3\underline{i} - a\underline{j} + 5\underline{k}$ are coplanar.