Model Paper Matkematic (HSSG-I)				
Board: F.B.I.S.E.	Time : 03 H	rs	Marks: 100	
Section – A (Marks: 20)				
Q. 1. (a) Fill in the blanks.			(5)	
i) The conjugate of $4i+3$		_		
ii) The sum of all the thr				
iii) If $b^2 - 4ac$ is a perfect of a single base of $b^2 - 4ac$ is a perfect of b^2 - 4ac is a perfect of $b^2 - 4ac$ is a perfect of $b^2 $		of equation are	• • • • • • • • •	
iv) The Period of $\sin 2x$ v) $\cos (\alpha + \beta) - \cos (\alpha - \beta)$				
v) $\cos(a + p) = \cos(a - p)$	p) –			
(b) Mark true or false by ✓			(5)	
i) If A and B are overlapping then $n(B - A) = n(A) - n(A \cap B)$				
ii) The domain of princi	-			
iii) If <i>a</i> and <i>b</i> are any tw	-			
iv) If α and β are roots of	of the equation $ax^2 + c$	bx + b = 0 then a	$\alpha\beta = \frac{D}{\alpha}$.	
		、	u	
v) Multiplicative inverse	e of $(a, 0)$ is $\left(\frac{1}{a}, 0\right)$).		
(c) Pick up the right answer.			(5)	
i) The general term of th	the expansion $(a+b)$	$)^{n}$.		
(a) ${}^{n}C_{r} a^{n} b^{r}$	(b) ${}^{n}C_{n-r} a^{n} b^{r}$	(c) ${}^{n}C_{r} a^{n-r} b^{r}$	(d) ${}^{n}C_{r} a^{n} b^{n-r}$	
ii) $\tan\left(\frac{\pi}{2}-\theta\right) = \dots$	•••••			
(a) $\cot\theta$ (b) -	$-\cot\theta$ (c) $\tan\theta$	(d) $-\tan\theta$		
iii) The Harmonic Means between a and b is				
(a) $\frac{a+b}{2ab}$ (b)	$\frac{a-b}{2ab}$ (c) $\frac{2ab}{a+b}$	(d) None of th	em.	
iv) ${}^{n}C_{r} \times r! = \dots$				
(a) ${}^{n}P_{r}$	(b) $^{n+1}C_r$ (c) n	C_{r+1} (d) $^{n+1}P_{1}$	y.	
v) A square matrics $A = [a_{ij}]_{n \times n}$ is called symmetric if $A = \dots$				
(a) A^2 (b) ($\left(\overline{A}\right)^t$ (c) $ A $	(d) None of the	em.	

(d) Find correct result from Column-I from Column-III and write in Column-III.

Column-I	Column-II	Column-III
i) <i>r</i>	$A^{c} \cap B^{c}$	
ii) $\forall a \in \mathbb{R}, a = a$	171.887°	
iii) (A∪B) ^c	$\frac{\Delta}{s}$	
iv) $2 \operatorname{Tan}^{-1} A$	Reflexive property.	
v) 3 Radian	$\operatorname{Tan}^{-1} \frac{2A}{1-A^2}$	

Section - B (Marks: 40 (4 Marks each))

Q. 2. Find the multiplicative inverse of 1-2i.

OR

OR

Construct truth table for $(p \land \sim p) \rightarrow q$. Q. 3. If *A* and *B* are non-singular matrices, then show that $(AB)^{-1} = B^{-1}A^{-1}$ **O**R

If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P, then show that the common difference is $\frac{a-c}{2ac}$.

Q. 4. How many (a) diagonals and (b) triangles can be formed by joining the vertices of polygon having 12 sides?

Insert four G.Ms between 3 and 96.

Q. 5. Prove without using Calculator.

$$\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$$

Prove that
$$\cos^{-1} A - \cos^{-1} B = \cos^{-1} \left(AB + \sqrt{(1 - A^2)(1 - B^2)} \right)$$

Q.6. If α and β are the roots of the equation $3x^2 - 2x + 4 = 0$, find the value of $\alpha^2 - \beta^2$ **Q. 7.** Resolve it into partial fraction.

$$\frac{x}{(x-a)(x-b)(x-c)}$$

= $3\sin\theta - 4\sin^3\theta$

- **Q. 8.** Prove that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$
- Q.9. Find the length of the equatorial arc subtending an angle of 1° at the centre of the earth, taking the radius of the earth as 6400 km.
- Q. 10 Find the measure of the greatest angle if sides of triangle are 16, 20, 33.
- **Q. 11** Solve the equation $\cot^2 \theta = \frac{1}{3}$

Section – C (Marks: 40)

Attempt any four Questions. (5+5 marks each)

- **Q. 12.** (a) Prove that $\overline{z} = z$ if and only if z is real.
 - (b) Determine whether (P(S), *), where * stands for intersection is a semi-

group, a monoid or neither. If it is a monoid, specify its identity.

Q. 13. (a) Find the inverse of the matrix by using row operation.

$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

- **(b)** Solve the equation $4^x 3 \cdot 2^{x+3} + 128 = 0$
- **Q. 14. (a)** Resolve $\frac{1}{(x+1)^2(x^2-1)}$ into Partial Fraction. **(b)** If $y=1+\frac{x}{2}+\frac{x^2}{4}+\cdots$ i) Show that $x=2\left(\frac{y-1}{y}\right)$
 - ii) Find the interval in which the series is convergent.
- **Q. 15.** (a) Two dice are thrown. E_1 is the event that the sum of their dots is an odd number and E_2 is the event that one is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$.

(b) Use Mathematic Induction to prove the following formulae for every positive integer n.

$$\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} = \frac{1}{2} \left[1 - \frac{1}{3^n} \right]$$

Q. 16. (a) Prove that $\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta$

(b) Reduce $\sin^4\theta$ to an expression involving only function of multiple of θ , raised to the first power.

Q. 17. (a) Draw the graph of $y = \tan 2x$ in the interval $[-\pi, \pi]$.

(b) Show that
$$r_1 = 4R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$

Q. 18. (a) Prove that
$$2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$$

(b) Solve the equation: $\sqrt{3}\tan x - \sec x - 1 = 0$

Made by Atiq ur Rehman (atiq@mathcity.tk) http://www.mathcity.tk

YEAR: 2003

PAGE 2/2