Model I	Paper Matkema	atic (HSSG-I))
Board: F.B.I.S.E.	Time : 03 H	Irs	Marks: 100
	Section – A (Marl	rs: 20)	
Q. 1. (a) Fill in the blanks.			(5)
i) If $z = 2i+3$ then $ z =$			
ii) $\sim q \rightarrow \sim p$ is called the C	Contrapositive of		
iii) The next two term of 7,9	9,12,16, are		
iv) 0! =			
v) $\tan\left(\frac{3\pi}{2}+\theta\right) = \dots$			
(b) Mark true or false by ✓ or ×	•		(5)
i) ${}^{n}C_{r} = {}^{n}C_{n-r}$			
ii) The identity element in a	group is not unique.		
iii) If $b^2 - 4ac = 0$ then the	roots will be $\frac{-b}{2a}$ and	$\frac{-b}{2a}$.	
iv) $A - B = A \cup B^{c}$. v) If $1 + \cos x = 0$ then $x = 0$	$=\pi+2n\pi, n\in\mathbb{Z}.$		
(c) Pick up the right answer.			(5)
i) $n(A \cap B) = 0$ if			()
(a) $A \cap B \neq 0$	(b) $A = B$	(c) $A \cap B = \varphi$	(d) None of them
ii) $\cos\alpha\cos\beta + \sin\alpha\sin\beta =$	==		
(a) $\cos(\alpha + \beta)$	(b) $\sin(\alpha + \beta)$	(c) $\cos(\alpha - \beta)$	(d) $\sin(\alpha - \beta)$
iii) The Geometric Means be	etween $-2i$ and $8i$ is		
(a) $\pm 4i$	(b) ±4	(c) 4	(d) None of them.
iv) $\sqrt{7}$ is a	mber.		
(a) Rational	(b) Natural (c) In	teger (d) Ir	rational
v) A square matrix A with	complex entries, is cal	led hermitian if $A =$	=
(a) A^2	(b) $\left(\overline{A}\right)^{t}$	(c) <i>A</i>	(d) None of them.

(d) Find correct result from Column-I from Column-II and write in Column-III.

(5)

Column-I	Column-II	Column-III
i) <i>r</i> ₂	Period of tan x	
ii) $\forall a, b \in \mathbb{R}, ab = ba$	Group	
iii) π	$\frac{\Delta}{s-b}$	
iv) $\tan^{-1}(\sqrt{3})$	Commutative Law	
v) (ℤ,+)	$\frac{2\pi}{3}$	

Section – B (Marks: 40)

Q. 2. Without expansion prove that

$$\begin{vmatrix} bc & ca & ab \\ 1/ & 1/ & 1/ \\ a & b & c \\ \hline & OR \end{matrix} = 0$$
(4)

By the use of synthetic division, solve the equation $x^4 - 5x^2 + 4 = 0$ if -1 and 2 are its roots. **Q. 3.** Show that $(1 + \omega)(1 + \omega^2)(1 + \omega^4)(1 + \omega^8).....2n$ factors = 1 (4)

If the numbers $\frac{1}{k}, \frac{1}{2k+1}, \frac{1}{4k-1}$ are in harmonic sequence, find k. **Q. 4.** Which term of A.P. -2, 4, 10, is 148. (4)

PAGE 1/2

OR

Find the general term in the expansion of $(1+x)^{-3}$ when |x| < 1.

Q. 5. Find the smallest angle of the triangle *ABC* if a = 37.34, b = 3.24, c = 35.06 (4)

Convert the following theorem to logical and prove them by constructing truth table $(A \cap B)' = A' \cup B'$

Q. 6. Find the term involving
$$x^4$$
 in the expansion of $(3-2x)^7$ (4)

- **Q. 7.** Convert 21.256° to the $D^{\circ}M'S''$ form.
- **Q. 8.** Prove the identity;

$$\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}} = \frac{\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}}$$
(4)

$$\sqrt{1-\sin\alpha}$$
 $\sin\frac{\alpha}{2}-\cos\frac{\alpha}{2}$

- **Q. 9.** Prove that; $R = \frac{abc}{4\Delta}$
 - $R = \frac{abc}{4\Lambda} \tag{4}$

Q. 10. A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is 5m from the wall. Find its length?

Q. 11. Without using calculator/table show that $\cos^{-1}\frac{4}{5} = \cot^{-1}\frac{4}{3}$. (4)

Section - C (Warks: 40)

Attempt any four Questions. (5+5 marks each)

Q. 12. (a) Find the rank of the matrix $\begin{pmatrix} 1 & -1 & 2 & -3 \\ 2 & 0 & 7 & -7 \\ 3 & 1 & 12 & -11 \end{pmatrix}$

(**b**) If α and β are the roots of $x^2 - 3x + 5 = 0$. Form the equation whose roots

are
$$\frac{1-\alpha}{1+\alpha}$$
 and $\frac{1-\beta}{1+\beta}$.

Q. 13. (a) Solve the equations $\begin{cases} x^2 - y^2 = 5 \\ 4x^2 - 3xy = 18 \end{cases}$

(b) Resolve into partial fraction $\frac{x^2 - 10x + 13}{(x - 1)(x^2 - 5x + 6)}$

Q. 14. (a) If α, β, γ are the angles of triangle *ABC*, prove that

$$\tan\frac{\alpha}{2} \cdot \tan\frac{\beta}{2} + \tan\frac{\beta}{2} \cdot \tan\frac{\gamma}{2} + \tan\frac{\gamma}{2} \cdot \tan\frac{\alpha}{2} = 1$$

(b) Sine is periodic function and its period is 2π . Prove it.

Q. 15. (a) Show that $2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$

(b) Find the solution set of the equation; $\cos 2x = \sin 3x$.

Q. 16. (a) If m and n are nearly equal, show that

$$\left[\frac{5m-2n}{3n}\right]^{\frac{1}{3}} \approx \frac{m}{m+2n} + \frac{n+m}{2n}$$

(b) Find n A.Ms between a and b.

- **Q. 17.** (a) Find the number of arrangement of 3 books on English and 5 books on Urdu for placing them on a shelf such that the books on the same subject are together.
 - (b) The sum of infinite geometric series is half the sum of the squares of its terms.

If the sum of its first two terms is $\frac{9}{2}$. Find the series.

Q. 18. (a) Prove that
$$2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$$

(b) $\sqrt{3}\tan x - \sec x - 1 = 0$

Made by **Atiq ur Rehman** (atiq@mathcity.tk) http://www.mathcity.tk

YEAR: 2004

(4)