Model Paper Matkenatic (HSSG-I)

Section - \mathbb{R} ((Tlarks: 20)

Q. 1. (a) Fill in the blanks.
i) If $z=2 i+3$ then $|z|=$ \qquad
ii) $\sim q \rightarrow \sim p$ is called the Contrapositive of
iii) The next two term of $7,9,12,16, \ldots \ldots \ldots$. are
iv) $0!=$

$$
=.
$$

v) $\tan \left(\frac{3 \pi}{2}+\theta\right)=$ \qquad
(b) Mark true or false by \checkmark or \boldsymbol{x}.
i) ${ }^{n} C_{r}={ }^{n} C_{n-r}$
ii) The identity element in a group is not unique.
iii) If $b^{2}-4 a c=0$ then the roots will be $\frac{-b}{2 a}$ and $\frac{-b}{2 a}$.
iv) $A-B=A \cup B^{c}$.
v) If $1+\cos x=0$ then $x=\pi+2 n \pi, \quad n \in \mathbb{Z}$.
(C) Pick up the right answer.
i) $n(A \cap B)=0$ if
(a) $A \cap B \neq 0$
(b) $A=B$
(c) $A \cap B=\varphi$
(d) None of them
ii) $\cos \alpha \cos \beta+\sin \alpha \sin \beta=$
(a) $\cos (\alpha+\beta)$
(b) $\sin (\alpha+\beta)$
(c) $\cos (\alpha-\beta)$
(d) $\sin (\alpha-\beta)$
iii) The Geometric Means between $-2 i$ and $8 i$ is
(a) $\pm 4 i$
(b) ± 4
(c) 4
(d) None of them.
iv) $\sqrt{7}$ is a \qquad number.
(a) Rational
(b) Natural
(c) Integer
(d) Irrational
v) A square matrix A with complex entries, is called hermitian if $A=$.
(a) A^{2}
(b) $(\bar{A})^{t}$
(c) $|A|$
(d) None of them.
(d) Find correct result from Column-I from Column-II and write in Column-III.

Column-I	Column-II	Column-III
i) r_{2}	Period of $\tan x$	
ii) $\forall a, b \in \mathbb{R}, a b=b a$	Group	
iii) π	$\frac{\Delta}{s-b}$	
iv) $\tan ^{-1}(\sqrt{3})$	Commutative Law	
v) $(\mathbb{Z},+)$	$\frac{2 \pi}{3}$	

Section - B (TTParks: 40)
Q. 2. Without expansion prove that

$$
\left|\begin{array}{ccc}
b c & c a & a b \tag{4}\\
1 / a & 1 / b & 1 / c \\
a & b & c
\end{array}\right|=0
$$

By the use of synthetic division, solve the equation $x^{4}-5 x^{2}+4=0$ if -1 and 2 are its roots.
Q. 3. Show that $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right)$............ $2 n$ factors $=1$

OR

If the numbers $\frac{1}{k}, \frac{1}{2 k+1}, \frac{1}{4 k-1}$ are in harmonic sequence, find k.
Q. 4. Which term of A.P. $-2,4,10$, is 148 .

Find the general term in the expansion of $(1+x)^{-3}$ when $|x|<1$.
Q. 5. Find the smallest angle of the triangle $A B C$ if $\quad a=37.34, \quad b=3.24, c=35.06$

OR
Convert the following theorem to logical and prove them by constructing truth table

$$
\begin{equation*}
(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \tag{4}
\end{equation*}
$$

Q. 6. Find the term involving x^{4} in the expansion of $(3-2 x)^{7}$
Q. 7. Convert 21.256° to the $D^{\circ} M^{\prime} S^{\prime \prime}$ form.
Q. 8. Prove the identity;

$$
\begin{equation*}
\sqrt{\frac{1+\sin \alpha}{1-\sin \alpha}}=\frac{\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}} \tag{4}
\end{equation*}
$$

Q. 9. Prove that; $R=\frac{a b c}{4 \Delta}$
Q. 10. A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is $5 m$ from the wall. Find its length?
Q. 11. Without using calculator/table show that $\cos ^{-1} \frac{4}{5}=\cot ^{-1} \frac{4}{3}$.

Section - C (TITarks: 40)

Attempt any four Questions. (5+5 marks each)
Q. 12. (a) Find the rank of the matrix $\left(\begin{array}{cccc}1 & -1 & 2 & -3 \\ 2 & 0 & 7 & -7 \\ 3 & 1 & 12 & -11\end{array}\right)$
(b) If α and β are the roots of $x^{2}-3 x+5=0$. Form the equation whose roots

$$
\text { are } \frac{1-\alpha}{1+\alpha} \text { and } \frac{1-\beta}{1+\beta} \text {. }
$$

Q. 13. (a) Solve the equations $\left\{\begin{array}{c}x^{2}-y^{2}=5 \\ 4 x^{2}-3 x y=18\end{array}\right.$
(b) Resolve into partial fraction $\frac{x^{2}-10 x+13}{(x-1)\left(x^{2}-5 x+6\right)}$
Q. 14. (a) If α, β, γ are the angles of triangle $A B C$, prove that

$$
\tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \cdot \tan \frac{\gamma}{2}+\tan \frac{\gamma}{2} \cdot \tan \frac{\alpha}{2}=1
$$

(b) Sine is periodic function and its period is 2π. Prove it.
Q. 15. (a) Show that $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$
(b) Find the solution set of the equation; $\cos 2 x=\sin 3 x$.
Q. 16. (a) If m and n are nearly equal, show that

$$
\left[\frac{5 m-2 n}{3 n}\right]^{\frac{1}{3}} \approx \frac{m}{m+2 n}+\frac{n+m}{2 n}
$$

(b) Find n A.Ms between a and b.
Q. 17. (a) Find the number of arrangement of 3 books on English and 5 books on Urdu for placing them on a shelf such that the books on the same subject are together.
(b) The sum of infinite geometric series is half the sum of the squares of its terms. If the sum of its first two terms is $9 / 2$. Find the series.
Q. 18. (a) Prove that $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$
(b) $\sqrt{3} \tan x-\sec x-1=0$

