MODEL PAPER "MATHEMATICS"

Intermediate Part - I Examination, 2007

(Academic session 2006 - 2008)

Roll No.	
In Figures _	100
In Words _	

OBJECTIVE

Time: 30 Minutes Marks = 20

Note: Write your Roll No. in the space provided. Cutting, overwriting, erasing, using lead pencil will have no credit.

Q.No. 1 Each question has four possible answers. Select the correct answer and encircle it.

- The no. $\frac{2}{3}$ is called a (i)
 - rational no. (a)

(b) irrational no.

(c) integer

- (d) none of these
- The set {(a, b)} is called (ii)
 - infinite set (a)
- (b) singleton set
- set with two elements
- (d) empty set
- A square matrix A is a skew hermitoan if (A) is (iii)
 - (a) A
- (b) -A
- (c) A
- (d) A'

If the matrices A and B are conformable for multiplication, then (AB)" = (iv)

- AB (a)
- (b) BA
- (c) A'B'
- (d) B'A'

If the roots of the quad. equation $ax^2 + bx + c = 0$ are real and irrational then (v)

 $b^2 - 4ac > 0$

- (b) $b^* 4ac = 0$
- (c) $b^2 4ac < 0$ (d) none of these
- The product of the four fourth roots of unity is
 - (a)
- (b)

season from the design of the great and the stephing of the state of t Partial fraction of $\frac{1}{(x+1)(x^2-1)}$ will be of the form

(a) $\frac{A}{x+1} + \frac{Bx+c}{x^2-1}$

- (b) $\frac{A}{x+1} + \frac{B}{x^2-1}$
- (c) $\frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$
- (d) none of these

Arithmetic mean between 2a and 2b is (viii)

- a + b(a)
- (b)
- none of these

(ix)	The sum	of an	infinite	geometric	series exists if
(/ A)	THE SHIP	WA THAN	*******	Penins	A CONTRACTOR OF THE PARTY OF TH

$$(a) |r| < 1$$

$$|r| < 1$$
 (b) $|r| > 1$ (c) $r = 1$ (d) $r = -1$

$$(c) | r = 1$$

$$(d) r = -1$$

(x)
$$\sum_{k=1}^{n} K^2$$

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n^2(n+1)^2}{4}$$

(c)
$$\frac{n(n+1)(2n+1)}{6}$$

If A and B are disjoint events then $P(A \cup B) =$ (xi)

(a)
$$P(A) + P(B)$$

(b)
$$P(A) - P(B)$$

(c)
$$P(A) + P(B) - P(A \cap B)$$
 (d) none of these

(xii) If
$${}^{n}C_{8} = {}^{n}C_{12}$$
, then n =

The expansion of $(1 + 2x)^{-2}$ is valid if (xiii)

(a)
$$|x| < \frac{1}{2}$$
 (b) $|x| < 1$ (c) $|x| < 2$ (d) none of these

(b)
$$|x| \le 1$$

(c)
$$|x| < 2$$

In one hour, the hour hand of a clock turns through (xiv)

(a)
$$\frac{\pi}{8}$$
 radians (b) $\frac{\pi}{4}$ radians (c) $\frac{\pi}{6}$ radians (d) $\frac{\pi}{2}$ radians

(b)
$$\frac{\pi}{4}$$
 radians

(c)
$$\frac{\pi}{6}$$
 radians

(d)
$$\frac{\pi}{2}$$
 radians

$$(xv)$$
 $sin(2\theta) =$

(a)
$$\frac{2 \tan \theta}{1 - \tan^2 \theta}$$
 (b) $\frac{2 \tan \theta}{1 + \tan^2 \theta}$ (c) $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$ (d) $\frac{1 + \tan^2 \theta}{1 - \tan^2 \theta}$

(b)
$$\frac{2\tan\theta}{1 + \tan^2\theta}$$

(c)
$$\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

$$(d) \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta}$$

Period of $\sin \frac{x}{3}$ is (xvi)

(c)
$$\frac{2\pi}{3}$$

If AABC is right angle triangle, then the law of cosines reduces to (xvii)

The law of sines

- (b) The law of tangents
- The pythagorus theorem (d) none of these

Radius of escribed circle opposite to the vertex A is

(a)
$$\frac{\Delta}{a}$$

(b)
$$\frac{\Delta}{b}$$

(b)
$$\frac{\Delta}{b}$$
 (c) $\frac{\Delta}{s-a}$

The domain of the principal tan function is (xix)

(a)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
 (b) $(0, \pi)$

(xx) The solution of the equation tanx =
$$\frac{1}{\sqrt{3}}$$
 is in

I and II quadrants (a)

- I and III quadrants
- II and IV quadrants (c)
- none of these (d)

MODEL PAPER "MATHEMATICS"

Intermediate Part - I Examination, 2007

(Academic session 2006 - 2008)

SUBJECTIVE

Time: 2.30 Hours

Marks = 80

SECTION - I

Note: Attempt any "TWENTY FIVE" questions from Section - I and THREE questions from Section - II.

Q.No. 2 Write short answers to any twenty five of the following questions.

 $25 \times 2 = 50$

- (i) Find the multiplicative inverse of (-4, 7)
- (ii) Define a complex No.
- (iii) Define a semi group.
- (iv) Show that the statement $(p \land q) \rightarrow p$ is a tautology.
- (v) Show B A by venn diagram when A and B are overlapping acts?
- (vi) If $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix}$ show that $A + A^t$ is symmetric.
- (vii) Without expansion verify that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- (viii) Define the rank of a matrix.
- (ix) Define a polynomial function and degree of a polynomial.
- (x) Show that $1 + w^{37} + w^{38} = 0$
- (xi) When polynomial $x^3 + 2x^2 + kx + 4$ is divided by x 2, the remainder is 14. Find the value of k.
- (xii) If α , β are the roots of $5x^2 x 2 = 0$, form the equation whose roots are $\frac{3}{\alpha}, \frac{3}{\beta}$
- (xiii) Resolve $\frac{2}{x^2 1}$ into partial fractions.
- (xiv) What is a proper rational fraction?
- (xv) Which term of the A.P. 5, 2, -1, is 85.
- (xvi) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P. show that common ratio is $\pm \sqrt{\frac{a}{c}}$.
- (xvii) If $a_{n-3} = 2n 5$, find the n-th term of the sequence.
- (xviii) How many terms of the series $-9 6 3 + 0 + \dots$ amount to 66.
- (xix) If 5 is the H.M. between 2 and b then find b.
- (xx) Find the No. of diagonals of a six sided figure.
- (xxi) How many arrangements of the letters of the word PAKPATTAN taken all at a time can be made?