Mathcity.org Merging man and maths

Model Paper 1 (Objective orly) Board of Intermediate & Secondary Education.

Available online @ http://www.mathcity.org/fsc

•••					
	(Y) mark the correct/best one.				
1.	Around "5000 B.C." the Egyptians had a number system based on				
	(a) 5	(b)	50		
	(c) 10	(d)	100		
2.	A well defined collection of disting	ct objec	cts is called		
	(a) Relation	(b)	Set None of these		
	(c) Function				
3.	If there are <i>m</i> rows and <i>n</i> column				
	(a) $m \times m$	(b) (d)	$m \times n$		
	(c) $n \times m$		$n \times n$ division of a polynomial $f(x)$		
4.	There is a nice shortcut method for long division of a polynomial $f(x)$				
	by $(x - a)$ is called		Detimation		
	(a) Factorization	(b)	Rationalization		
	(c) Synthetic division	(d)			
5.	The quotient of two polynomials $\frac{P(x)}{Q(x)}$ where $Q(x) \neq 0$, with no common				
	factors is called	2(~)			
	(a) Improper Rational Fraction	(b)	Proper Rational Fraction		
	(c) Rational Fraction	(d)	None of these		
6.	An infinite sequence has				
	(a) A last term	(b)	No last term		
	(c) Both (a) and (v)	(d)	None of these x^2		
7.	First four terms of the sequence $a_n = (-1)^n \cdot n^2$				
	(a) $1, 2, 3, 4$		-1, 4, -9, 16		
	(c) $1, -4, -9, -16$	(d)	1, -2, 3, -4		
8.	$\overset{n}{C}+\overset{n}{C}=$				
	r r-1				
	(a) C	(b)	C^{n+1}		
	(a) C_r	(~)	r		
	n+1	(d)	n C		
	$(\mathbf{c}) = \frac{C}{r+1}$	(d)	r+1		
	n-1 $n-1$				
9.	$C_{r} + C_{r+1} =$				
	$r = r \rightarrow 3$		n-1		
	(a) C	(b)	С		
	Γ.		r+1		
	$(\mathbf{c}) = \stackrel{n}{C}$	(d)	n C		
		()	r+1		

(a) $ x > 1$ (b) $ x \neq 1$ (c) $ x < 1$ (d) None of these 11. The expansion $(1 + 2x)^{-2}$ is valid if (a) $ x < \frac{1}{2}$ (b) $ x < 1$				
(c) $ x < 1$ (d) None of these 11. The expansion $(1 + 2x)^{-2}$ is valid if				
(a) $ \mathbf{x} < \frac{1}{2}$				
(c) $ x \le 2$ (d) None of these				
Trigonometry is an important branch of				
(a) Algebra (b) Mathematics				
(c) Physics (d) None of these				
The word trigonometry has been derived from three				
(a) English alphabets (b) German words				
(c) Greek words (d) None of these				
14. The Fundamental Law of Trigonometry is				
(a) $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$				
(b) $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$				
(c) $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$				
(d) None of these				
The Fundamental Law is true for α , β if				
15. The Fundamental Law is true for α , β if (a) For all values of $\alpha \& \beta$ (b) $\alpha > \beta > 0$ only				
(c) $\alpha > 0 \& \beta < 0$ only (d) None of these				
16 Domain of tangent function =				
(a) \Re (b) $\Re - \{x \mid x = (2n+1)\}$	1) π , $n \in z$ }			
(c) $\Re - \{x \mid x = (2n+1)\frac{\pi}{2}, n \in z\}$ (d) None of these				
Domain of a cotangent function =				
(a) $\Re - \{x \mid x = n\frac{\pi}{2}, n \in z\}$ (b) $\Re - \{x \mid x = n\pi, n \in z\}$	$\in z$			
(d) None of these				
18 Sum of all the angles of a triangle is				
18. Sum of all the angles of a triangle is (a) 90° (b) 270°				
$(a) = 190^{\circ}$ (d) 180°				
the curface line is called angle of				
(b) Direct angle (b) Officie angle				
(d) Depression				
the second function then its utilian is	c			
	3			
(a) Set of prime numbers (a) Hone of				
(C) Set of prime has ***********************************				

Page 2/2

Available at http://www.mathcity.org